
The Art of Agent-Oriented Modeling

Leon Sterling and Kuldar Taveter

The MIT Press

Cambridge, Massachusetts

London, England

http://mitpress.mit.edu/0262013118

6 2009 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical
means (including photocopying, recording, or information storage and retrieval) without permission in
writing from the publisher.

For information about special quantity discounts, please email special_sales@mitpress.mit.edu.

This book was set in Times New Roman on 3B2 by Asco Typesetters, Hong Kong.
Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Sterling, Leon.
The art of agent-oriented modeling / Leon S. Sterling and Kuldar Taveter.

p. cm. — (Intelligent robotics and autonomous agents series)
Includes bibliographical references and index.
ISBN 978-0-262-01311-6 (hardcover : alk. paper) 1. Intelligent agents (Computer software) 2. Computer
software—Development. I. Taveter, Kuldar. II. Title.
QA76.76.I58S757 2009
006.3—dc22 2008044231

10 9 8 7 6 5 4 3 2 1

1 Introduction

We live today in a complicated world. Complexity comes in many guises, and ranges

from small-scale to large-scale concerns. On the small scale, we interact with an ever-

increasing array of devices, most of them new and incompletely understood, such as

mobile phones and portable digital music players. On the large scale we live in com-

plex institutions—governments, corporations, educational institutions, and religious

groups. No one can understand all that goes on in such institutions.

A sensible response to dealing e¤ectively with the complexity is to seek help. Help

can come from other people. We may hire a consultant to help us deal with govern-

ment. We may get a friend to help us install a home wireless network, or we may use

software tools to automate tasks like updating clocks and software. It might even be

sensible to combine both people and software. An underlying purpose of this book is

to help us conceptualize a complicated environment, where many parts—both social

and technical—interact. The key concepts we use are agents and systems.

The underlying question in this book is how to design systems that work e¤ectively

in the modern environment, where computing is pervasive, and where people interact

with technology existing in a variety of networks and under a range of policies and

constraints imposed by the institutions and social structures that we live in. We use

the word ‘‘system’’ in the broadest sense. Systems encompass a combination of

people and computers, hardware, and software. There are a range of devices, from

phones to MP3 players, digital cameras, cars, and information booths.

We are particularly interested in systems that contain a significant software com-

ponent that may be largely invisible. Why the interest? Such systems have been hard

to build, and a lot of expensive mistakes have been made. We believe that better con-

ceptualization of systems will lead to better software.

In this first chapter, we discuss our starting philosophy. There are particular chal-

lenges within the modern networked, computing environment, such as its changeabil-

ity and consequent uncertainty. We discuss challenges of the computing environment

in the first section. In the second section we address agents, and why we think they

are a natural way to tame complexity. In the third section, we discuss multiagent

systems. The fourth section addresses modeling. In the fifth section, we discuss sys-

tems engineering, which we believe is a good background for conceptualizing the

building of systems. Using multiagent systems to better understand systems with a

significant software component is really the raison d’être of the book. The sixth

section briefly describes a complementary view of multiagent systems that proceeds

‘‘bottom-up,’’ where desired behavior emerges from the interaction of components

rather than being designed in ‘‘top-down.’’ The final section in the first chapter

frames our discussion in the context of the history of programming languages and

paradigms over the last fifty years.

An aspect of our philosophy is a strongly pragmatic streak. This book is intended

to encourage people to model systems from an agent-oriented perspective. From our

teaching experience, we know that describing abstract concepts is insu‰cient. Clear

examples of concept use are extremely helpful, and methods are needed to use the

concepts. We strongly believe that developers and students can learn to model by

looking at good examples and adapting them. The development of good examples

from our teaching and research experience was why we felt ready to write this book.

We decided to write this book only when convinced that people could build practical

things, and our modeling approach would help people envisage multiagent systems

operating in complex environments.

1.1 Building Software in a Complex, Changing World

The task of building software has never been more challenging. There is unprece-

dented consumer demand and short product cycles. Change in the form of new tech-

nology is happening at an increasing rate. Software needs to be integrated with

existing systems and institutions as seamlessly as possible, and often in a global

network where local cultural factors may not be understood.

In this section, we identify several key characteristics of the modern computing

environment for which software must be written. These characteristics suggest five

attributes that software should have in order to be e¤ective within the environment.

These desirable software attributes are motivating factors for the multiagent perspec-

tive being advocated in this book.

Complexity is the first characteristic we highlight. Essentially, the modern world is

complicated, and that complexity a¤ects software. As an example, consider a billing

system for mobile phone usage or consumption of utilities such as electricity or gas.

At first thought, billing may seem reasonably straightforward. All you need is a mon-

itoring mechanism, such as a timer for phone calls or a meter for electricity, and a

table of rates. Then it will be a simple calculation to determine the bill. However,

billing is not simple in practice. There have been expensive software failures in build-

ing billing systems. New taxes could be introduced that change the way billing must

4 Chapter 1

be done, and complications when taxes should apply. The government may allow

rebates for certain classes of citizens, such as the elderly, with complicated rules for

eligibility. There may be restrictions on how such rebates are to be reported. Phone

calls that cross calendar days or have di¤erential rates cause complications. Interna-

tional calls have a myriad of other factors. The phone company may decide on

special deals and promotions. In other words, the potentially simple billing system is

complex, as it is complicated by a range of social, commercial, and technical issues—

a common occurrence.

Another characteristic of many modern systems is that they are distributed, both

computationally and geographically. Web applications are the norm, and they

engender a whole range of issues. For example, if the Web application has an inter-

national customer base, does it make sense to have mirror sites for storing and down-

loading information? If the web tra‰c is high volume, does there need to be load

balancing? Are multilingual versions of the interface necessary, or at least a change

of terms in di¤erent places where the software is delivered? Such considerations

change the nature of an application.

Most software applications are time-sensitive. Time is an issue both in response to

consumer demand and for consumption of resources. For the former, we expect

instantaneous responses to our queries. Indeed, too slow a response can cause a

product to fail. For the latter, if too many computational resources are necessary to

process information, an application may be infeasible. Architectures and designs

need to be analyzed for speed and other qualities.

The surrounding environment is uncertain and unpredictable. Not all of the infor-

mation that we receive is reliable. Some of the information is caused by genuine

uncertainty, like weather predictions or future prices of stock. Some information is

fraudulent, such as emails that are part of phishing attacks or scams. Although un-

predictability may make life interesting in some circumstances, it is a challenge for

software developers. There is no guarantee that the environment can be controlled,

which has been the prevailing style for standard software methods. Software has to

be developed to expect the unexpected.

The final characteristic of the modern environment that we highlight is that it is

open. There is new information and new realities. New software viruses are written

that must be protected against. There are new policies promulgated by institutions

and new legislation developed by governments. And it is not just new information

that a¤ects the environment. The external environment is changing. Bank interest

rates change; mobile phone plans change. To be e¤ective in the environment, behav-

ior must change accordingly.

Having identified these challenging characteristics of the modern environment, let

us suggest desirable attributes for software if it is to perform e¤ectively and serve us

well.

Introduction 5

The first attribute desirable for software is adaptivity. As the world changes, we

would like our software to reflect the change. As new facts enter the world, the soft-

ware should not break. Brittleness was a problem with expert systems and has limited

their applicability. An obvious area where adaptivity is essential is security. As a new

virus or security threat is determined, it would be good if the virus checking/firewall/

security system incorporated the information automatically. Indeed, software is be-

ginning to run automatic security updates, and this trend needs to continue.

The second attribute is intelligence. Consumer ads already sometimes claim that

their product is more intelligent than its competitors—for example, an air condition-

ing system or a mobile phone. Presumably they mean more features. We would hope

that increased intelligence would lead to better integration. We certainly appreciate

when a computer clock automatically adjusts for Daylight Saving Time, and when

memory sticks and digital cameras work seamlessly across a range of computers

and operating systems. Intelligence is a way of dealing with complexity and uncer-

tainty, and being able to determine when knowledge may be false. One dimension

of intelligence that we would expect is awareness. A system that was unaware of

what was going on around it would not seem intelligent.

A third desirable attribute is e‰ciency. There is a need and expectation for instan-

taneous responses, which will be achieved only by e‰cient implementations in light

of the complexity. E‰ciency may well determine the possibility of solutions—for ex-

ample, file sharing or downloading large video files.

A more abstract fourth attribute is purposefulness. In light of the complexity and

changing nature of the environment, it will be di‰cult—if not impossible—for all

requirements to be stated. It is better to work at a higher level and to explain pur-

poses in terms of goals, and, in certain circumstances, to have the system determine

the appropriate path of action. This approach can aid system design and clarity,

which leads to the next attribute.

The final attribute is a little bit di¤erent and perhaps less obvious; namely, the

software should be understandable, at least in its design and overall purpose. We

need ways of thinking about and describing software that simplify complexity, at

least with regard to describing behavior. The desire for understandability is influ-

enced by the software engineering perspective undertaken within this book. There

are many potential advantages of understandable software, including better instruc-

tions for how to use it.

These are a lot of demands, and we need to address them. Let us explore one

way of thinking about them. Indeed, the rationale for developing the agent-

oriented modeling techniques that form the essence of this book is that they better

address the characteristics of the world around us and can meet the desirable soft-

ware objectives.

6 Chapter 1

1.2 What Is an Agent?

This book advocates adoption of the concept of agents in thinking about software in

today’s world. Agents are suitable for the current software development challenges

outlined in the previous section. In our opinion, the applicability of agents is likely

to increase over the coming years.

An agent has existed as a concept for thousands of years. The Oxford American

Dictionary gives two meanings for the word ‘‘agent,’’ both of which are relevant. Per-

haps the more fundamental definition of the two is ‘‘a person or thing that takes an

active role or produces a specified e¤ect.’’ The connotation is that agents are active

entities that exist in the world and cause it to change. The phrase ‘‘agent of change’’

springs to mind, and indeed was mentioned in the dictionary entry. The concepts of

roles and e¤ects mentioned in the definition are key. They will be discussed in the

next chapter and throughout the book.

The more common sense meaning is the other definition: ‘‘a person who acts on

behalf of another, for example, managing business, financial, or contractual matters,

or provides a service.’’

In human communities and societies, an agent is a person who carries out a task

on behalf of someone else. For example, a travel agent can make enquiries and

bookings for your holiday; a literary agent interacts with publishers to try and find

a book publisher; and a real estate agent helps you buy, sell, or rent a house or fac-

tory. In a well-known biblical story from the Old Testament (Gen. 24:1–67), Abra-

ham sends his servant Eliezer to act as a marriage agent to find a bride for his son

Isaac.

Computer science researchers have used the word ‘‘agent’’ for more than twenty-

five years with a range of di¤erent meanings. For the purpose of this chapter, we

define an agent as ‘‘an entity that performs a specific activity in an environment of

which it is aware and that can respond to changes.’’ Depending on their background,

readers are likely to bring initially di¤ering emphases and understanding of the word

‘‘agent’’ to the book. We anticipate that the reader will gain an increased under-

standing of the word ‘‘agent’’ through engagement with this book, its associated

exercises, and attempts to construct agent-oriented models.

One obvious consequence of our informal definition that is worth explicitly point-

ing out is that people are agents. People live in the world, are aware of changes in the

world in many di¤erent factors and attributes, including weather, politics, and social

organizations. People act in the world. For example, they might protect themselves

against the weather by carrying an umbrella or putting on sunscreen or a snow

suit—usually not all three simultaneously. They might vote in an election to influ-

ence politics; they might form networks of friends.

Introduction 7

Let us look at some agents from the world of computing over the past decade.

Some readers may be surprised at what we consider to be an agent. However,

whether you agree or disagree with the classification should not a¤ect your apprecia-

tion of the book.

The first successful robot in the consumer market has been Roomba. Its Web site

proclaims that Roomba is ‘‘the world’s top-selling home robot, with over two million

sold.’’ Roomba is an automated vacuum cleaner, designed to clean rooms. It senses

the shape of your room and determines a cleaning pattern for traversing the room. It

is flat and capable of vacuuming under beds and couches. Most models have a charg-

ing base to which they return when they are running out of power. Why we describe

it as an agent is that it senses its environment, a house, and its own state, and per-

forms a task—namely cleaning a floor. It responds to changes in the environment,

such as moving furniture, people, and its own power level. In 2006, the company

introduced the Scooba, which washes floors rather than vacuuming, but is otherwise

similar. A video clip distributed on the Internet shows it sucking up Diet Coke and

‘‘eating’’ pretzel crumbs.

The next example we consider is a Tamagotchi, a toy developed in Japan and

popularized in the late 1990s. In one sense, a Tamagotchi is just a simple interactive

simulation. It has ‘‘needs’’: food, bathroom, sleep; its owner, usually a young child,

must provide for those needs. If the needs are not met, the Tamagotchi ‘‘gets sick’’

and can even ‘‘die.’’ Later models interact with other Tamagotchis, and recently,

Tamagotchi Towns have been created on the Internet. We model Tamagotchis in

detail in chapter 3.

The most popular robot in Japan is AIBO, a robot produced by Sony Entertain-

ment. Sony marketed AIBO as an electronic pet. AIBO comes with preprogrammed

behaviors, including walking, wagging its tail, flashing its eyes, and electronic bark-

ing (or making some sound). The behaviors are sophisticated, including a great

ability to right itself if it falls over on an uneven surface, for example. Several of the

behaviors are a¤ected by its interaction with people, such as being patted on the

head: hence the marketing as a pet.

As well as preprogrammed behaviors, Sony provided a programming environment

for AIBO. It promoted the use of the programming environment through the addi-

tion of a special league to RoboCup, a robot soccer-playing competition held annu-

ally since 1997. The Sony dog league, started in 2000, has teams of three AIBO dogs

playing soccer on a field larger than two table-tennis tables. The dogs have improved

their play over time. While playing a game of soccer, an AIBO dog is certainly

an agent. It must sense where the ball is, move to the ball, propel the ball forward

toward the goal, and play out its assigned team role—for example, attacker or de-

fender. A photo of an AIBO dog is shown in figure 1.1.

8 Chapter 1

These three examples are tangible. The agents can be identified with a physical de-

vice, a vacuum cleaner, a toy, or a dog. Let us be a bit more abstract, as we consider

four software examples.

In addition to the so-called gadget-based digital pets mentioned previously, such as

Tamagotchis, there are other types of digital pets. They can be Web site–based, such

as digital pets that can be obtained and played with in the Neopets, Webkinz, and

Petz4fun Web sites. There are also game-based digital pets running on video game

consoles, such as Nintendogs by Nintendo and HorseZ by Ubisoft, both for Nin-

tendo DS game consoles.

The second example is a virus of the software kind. Essentially a computer virus is

a computer program written to alter the way a computer operates, without the per-

mission or knowledge of the user. We believe a virus should be able to self-replicate

and be able to execute itself. Consequently, we regard a computer virus to be an

agent because it needs to sense the status of the networked environment that it is in,

and to act by a¤ecting files and computers. Viruses can certainly be e¤ective. The

MyDoom virus is reported to have infected more than two hundred thousand com-

puters in a single day. Viruses can be regarded as a malevolent agent, as opposed to a

benevolent agent.

The next example is one always discussed in the graduate agent class at the Uni-

versity of Melbourne. Consider a program for handling email, such as Microsoft

Outlook, Eudora, or the native Mac OS X mail program, Mail. Is such a program

Figure 1.1
The AIBO by Sony

Introduction 9

an agent? In our opinion, it is. The mail handling program needs to be aware of the

network environment, and whether particular hosts are receiving email. If hosts are

not receiving mail, messages are queued up and sent later without further human

intervention. The email program performs actions such as filtering spam. Further,

the email program is an agent in the sense of acting as a person’s representative. It

has detailed knowledge of network protocols that both Leon and Kuldar would

need to research. It knows what networks you are connected with—for example,

Ethernet or a wireless network—and chooses which one to use appropriately. Stu-

dents, however, are initially reluctant to regard Outlook or the other programs as

agents, instead regarding them as merely programs.

To consider this issue further, how about a RIM BlackBerry? Is the physical de-

vice the agent, or is the software running the device the agent? In our opinion, there

is no precise answer. What you are modeling determines the response.

Another standard example used in the agent class at the University of Melbourne

is considering whether a Web crawler is an agent. Here, students usually regard the

Web crawler as an agent. Certainly a Web crawler takes action in the environment,

but whether it is aware of its environment is less clear. There are many more exam-

ples that could be explored, but we will encourage further discussion via the exercises

at the end of the chapter.

To conclude this section, we note that the agent is not a precisely defined entity.

There is an associated metaphor of an agent as a representative that suggests several

qualities. We highlight three qualities now. One quality is being purposeful in both

senses of agents mentioned earlier. Another important quality of an agent is con-

trolled autonomy, or the ability to pursue its own goals seemingly independently.

The third quality is the agent needs to be situated—that is, aware of the environment

around it. It must be capable of perceiving changes and responding appropriately.

All of the examples that we have discussed are situated in an environment they

must respond to, and possess the qualities of purposefulness and autonomy, at least

to some extent. We consider this topic in more detail in chapter 2.

1.3 From Individual Agents to Multiagent Systems

Individual agents can be interesting. Interactions between agents can also be interest-

ing, as can interactions between an agent and the environment in which it is situated.

Adopting the agent metaphor for developing software raises both the visibility and

abstraction level of interactions between agents. To appreciate the value in being

able to understand agents and their interactions, we need to consider a broader sys-

tems view.

Loosely, a system is a set of entities or components connected together to make a

complex entity or perform a complex function. If several—or perhaps all—of the

10 Chapter 1

connected entities are agents, we have a multiagent system. This book is about mod-

eling systems as multiagent systems.

The term sociotechnical system is sometimes used to refer to systems that contain

both a social aspect, which may be a subsystem, and a technical aspect. Although the

term sociotechnical system has some attraction, we prefer the term multiagent system

for two reasons. First, it emphasizes our interest in agent-oriented modeling. Second,

it avoids any existing associations with di¤erent meanings of sociotechnical system.

In using the term ‘‘multiagent system,’’ we typically convey the sense that the whole

is greater than the sum of the parts; also, that the agents interact, and that there will

be a focus on interactions.

A note on words: a strength (and weakness) of this book is its attempt to bridge

the gap between the everyday world and a strictly formal world. It does so by appro-

priating terms from our language, such as agent, model, goal, and role, and imbuing

them with a technical meaning. Giving precise technical definitions is a mathematical

skill, which can be learned but does not come easily, and many people struggle with

learning this skill. We aim for accuracy in our use of words, but we do so unobtru-

sively. We tend not to define terms formally, but will describe specific models care-

fully. How to progress from general, abstract requirements to precise computer

systems is a challenge that will be partly addressed in chapter 7 on methodologies

and demonstrated in chapters 8, 9, and 10 on applications.

What is an example of an interaction between agents? A prototypical example

from the domestic environment, among others, is an agent encountering and greeting

another agent. Microwaves and DVD players often display a welcome message when

they are turned on. The message is only for the purpose of interaction. We model

greeting in chapters 4 and 9 in the context of a smart home.

Several agents interacting produce interesting behavior that is not predictable. A

popular game in the first years of the twenty-first century is ‘‘The Sims,’’ which was

originally released in 2000 and which comes in several variants. People play the game

by controlling activities, appearances, and other attributes of a set of computer-

animated characters. The game engine executes the activities, e¤ectively allowing a

(simple) simulation of a family. A key feature of the interest in the game is in seeing

how the characters interact.

A wonderful example of the power of defining simple characters and activities

and letting the interactions produce interesting behavior comes from the movie tril-

ogy Lord of the Rings. The movie producers had the challenge of creating realistic

large-scale battle scenes between the coalition of the heroes and their followers and

the coalition of their enemies. Clearly, participants in a battle are agents, having

to observe the actions of others attacking them and having to e¤ect a mortal

blow. The key actors of the movie are agents in the battle and need to be filmed.

However, it would be expensive getting thousands of extras to enact a battle. Instead,

Introduction 11

the key human protagonists were superimposed on a computer animation of a

battle. The animation of the battle was generated by software agents run under

simulation. Each software agent had simple motions defined. It was the interac-

tion between them that made the scene interesting. Very realistic battle scenes were

produced.

Simulations are a good source of examples of multiagent systems. The military in

Australia and the United States, among other countries, have successfully developed

multiagent simulations. We mention here two examples that illustrate possibilities for

agent applications.

The Smart Whole Air Mission Model (SWARMM) was developed as a collabora-

tive project between the Air Operations Division of DSTO and the Australian Artifi-

cial Intelligence Institute in the mid-1990s. It integrated a physics simulation of flying

aircraft with pilot tactics and reasoning. SWARMM was written in the multiagent

reasoning system dMARS. The types of tasks modeled in SWARMM were air de-

fense, attack, escort, and sweep (the use of a fighter to clear a path for an incoming

fighter plane or planes). SWARMM allowed the pilots’ reasoning to be traced graph-

ically during execution of the simulation. The simulation was developed in coopera-

tion with F-18 pilots who liked the rapid feedback and high-level understandability

of the simulation. The simulation had tens of agents who formed small teams, and

several hundred tactics. The project was very successful. Taking the agent perspective

helped develop an understandable system from which the pilots received visual feed-

back on their tactics, and the interaction between tactics could be seen in the soft-

ware and understood.

In the late 1990s, the U.S. military conducted Synthetic Theater of War (STOW

97), an Advanced Concept Technology Demonstration jointly sponsored by the De-

fense Advanced Research Projects Agency (DARPA) and the United States Atlantic

Command. STOW 97 was a training activity consisting of a continuous forty-eight

hour synthetic exercise. Technically, it was a large, distributed simulation at the level

of individual vehicles. Five U.S. sites participated (one each for the Army, Navy,

Marines, Air, and Opposing Forces), plus one in the United Kingdom (UK). All

told, there were approximately five hundred computers networked together across

these sites, generating on the order of five thousand synthetic entities (tanks, air-

planes, helicopters, individual soldiers, ships, missile batteries, buses, and so on).

Agent-based software controlled helicopters and airplanes in part of the exercise.

Eight company-level missions were run, ranging in size from five to sixteen helicop-

ters (plus automated commanders for Army missions), each of which succeeded in

performing its principal task of destroying enemy targets.

We conclude this section by considering multiagent systems in two domains: an in-

telligent home and e-commerce. Both of them are naturally modeled as multiagent

systems, and demonstrate both social and technical characteristics. Social character-

12 Chapter 1

istics apply to how humans interact with technology and how humans interact with

each other by the mediation of the technology, and technical characteristics obvi-

ously portray the technology to be used.

Let us consider a smart home where appliances interoperate seamlessly for the

benefit of the home occupants, a promising area of application for intelligent agents.

According to Wikipedia, the intelligent home ‘‘is a technological achievement aimed

at connecting modern communication technologies and making them available for

everyday household tasks. With intelligent home systems, it becomes possible to call

home from any telephone or desktop computer in the world to control home appli-

ances and security systems. Intelligent home systems guide the user to perform any

operation, to control lighting, heating, air conditioning, or to arm or disarm the

security system, and to record or to listen to messages. Other themes envisioned in

intelligent home systems are automation, connectivity, wireless networking, enter-

tainment, energy and water conservation, and information access.’’

An intelligent home system is easily envisaged with separate agents controlling the

separate subsystems such as heating, lighting, air conditioning, security, and enter-

tainment, and the agents interacting to facilitate the comfort and convenience of the

home owner. Here are some small examples. When the phone rings, the entertain-

ment agent could be aware and turn down the volume of any loud music in the

vicinity. An alarm clock set to wake up the home owner for an early morning flight

could reset the alarm after it contacted the airport and discovered that the flight was

delayed. A security system could track any person in the house. If the person in the

house was not recognized by the system, an intruder alert could be initiated, whereby

the home owner and the police were contacted, provided with a photo of the in-

truder, and any visitors or tradespeople scheduled to visit the house were warned to

stay away. Some of these example scenarios will be elaborated in chapter 9.

The intelligent home needs knowledge about the technical devices, including their

communication capabilities, parameters that can be set, and functions that they can

achieve. The intelligent home also needs to be aware of legal and social restrictions.

Examples are not playing music too loudly late at night, and not running automatic

watering systems in gardens during times of severe water restrictions. The home also

needs considerable general knowledge.

We turn to e-commerce. According to Wikipedia (October 11, 2006), e-commerce

‘‘consists primarily of the distributing, buying, selling, marketing, and servicing of

products or services over electronic systems such as the Internet. . . . It can involve

electronic funds transfer, supply chain management, e-marketing, online marketing,

online transaction processing, electronic data interchange (EDI), automated inven-

tory management systems, and automated data collection systems. . . . It typically

uses electronic communications technology such as the Internet, extranets, email,

e-books, databases, catalogues, and mobile phones.’’

Introduction 13

E-commerce in its broadest sense is already a big business. Buyers and sellers, both

institutions and individuals, can and should clearly be modeled as agents. They form

organizations such as company hierarchies, virtual enterprises, and markets. Interac-

tion protocols such as auctions are relevant for modeling and understanding the

behaviors of such organizations and their constituent individual agents. A key activ-

ity to be understood is negotiation, which has been thoroughly studied in the agent

community. E-commerce also implies agents’ detailed knowledge about their envi-

ronment, which consists of environment objects, such as Enterprise Resource Plan-

ning (ERP) and Enterprise Application Integration (EAI) systems, servers, Web

services, and databases. In business processes are also relevant cultural values, prod-

ucts, and their pricing. All these examples show the complexity of multiagent sys-

tems. Business-to-business e-commerce is illustrated in chapter 8.

1.4 What Is Modeling?

The underlying motivation of this book is to help people write software that can

work e¤ectively in the modern software context, such as a sophisticated smart home

or global e-commerce. To deal with the complexities in such environments, we need

to model the systems, highlighting which features are important for the software and

how they will be enacted and which features can be ignored.

This section addresses modeling, or the construction and description of models.

Modeling is empowering in a practical sense. If you can model, you are a significant

part of the way to building something useful.

Let us consider the question: ‘‘What is a model?’’ A definition taken from the Web

is that a model is a ‘‘hypothetical description of a complex entity or process.’’ A

model is constructed to aid in building the system that we have in mind. To para-

phrase Parnas’s well-known characterization of specifications, a model should be as

complex as it needs to be to reflect the issues the system is being built to address, but

no more complex.

What are some examples of models? A common school project for primary school

children is to build a model of the solar system. In such a model, there is at least

some depiction of individual planets, and the sun. More detailed models may include

moons of planets and asteroids. More advanced students may try and get some idea

of distance of planets from the sun, by either placing the planets in an order, or with

some scaled representation of distance. Yet more ambitious students may add a

dynamic element to the model by having the planets move around their orbit. Build-

ing a good model of the solar system clearly stretches the abilities of primary school

children—and usually their parents.

Many years ago, Leon had the experience of visiting a steel plant in northern Ohio

to pitch a project to build an expert system that could troubleshoot flaws while mak-

14 Chapter 1

ing steel. He was accompanied by a professor of mechanical engineering, who was

o¤ering to build a model of the steel plant. The model would be built at a consistent

scale, and would involve pouring liquid from a model of the steel furnace and trans-

porting the molten steel in carts on a track to the location where it would be shaped

into sheets. Key discussion points were the layout of the plant, viscosity of the model

liquid, and what aspects of the model would be useful for the engineers ultimately

designing and building the plant, so that they could be confident the plant would

work correctly from the moment it started operating.

Kuldar had the experience of visiting the Melbourne Museum and seeing a display

of gold mining. The model of the gold mine at the museum was a useful way of vis-

ualizing how the gold mine would have operated in its heyday. Without the model, it

would have been di‰cult to understand.

These examples are of tangible, concrete models. The world of software is more

abstract, and accordingly, more abstract models are needed to help envisage and

build software systems. We note that software professionals or computing students,

the likely readers of this book, possibly spend less time thinking about models than

other engineering disciplines or construction areas. Perhaps they don’t think in terms

of models at all.

One field in which modeling has been used is the development of object-oriented

systems. It is usual to build a UML description, which is in fact a model. UML is

an acronym for Unified Modeling Language, which reminds us of its modeling na-

ture. UML models can be checked and reviewed to see whether the system is under-

stood and correct before code is generated and the system implemented. Modeling

notations for systems built in a procedural style have also been developed, but are

perhaps not as widely used.

Models abstract information. For object-oriented programming, interfaces be-

tween classes are given, and the actual data passing mechanisms are finalized when

the code is implemented. The model limits what we focus on at various stages of the

software development life cycle.

To summarize this section, we advocate building appropriate models in order to

understand how to design and implement a complex system. It is essential to have

intuitively understandable models. The models must have su‰cient detail to be use-

ful, but not so much detail as to overwhelm.

1.5 Systems Engineering

How does one build a multiagent system? The research community has diverse opin-

ions on what to emphasize. The conference title of an early set of workshops devoted

to all things ‘‘agenty,’’ ATAL, reflects that diversity of opinion. ATAL is an acro-

nym for Agent Theory, Architecture, and Languages. The theoreticians claim that

Introduction 15

once the theory is established, the practice will be straightforward to implement, and

so emphasis should be on theory. The architects claim that if you have the right ar-

chitecture, all the rest will follow. The language developers claim that given the right

programming language, it is straightforward for agent developers to build multiagent

systems.

This book makes a di¤erent claim. A multiagent system is a system with a signifi-

cant software component. We must build on what has been learned about developing

software over the last forty years. The perspective that needs to be taken for building

multiagent systems is a software engineering perspective, which we loosely identify

with a systems engineering perspective. So we choose not to focus on theory, archi-

tecture, or language, though of course we don’t ignore them. Indeed, chapters 5 and

7 discuss some of the architectures, languages, and tools that have emerged from

agent research and development.

In this section, we give some motivation for software and systems engineering, a

field often slighted and misunderstood by computer scientists and AI researchers.

We mention the software engineering life cycle, which motivates the models that

we discuss in chapter 3 and illustrate in our examples. We also relate the software

engineering life cycle to the systems engineering life cycle by using the analogy of

constructing a building. Chapter 4 discusses quality, an important issue to consider

when taking a software engineering perspective.

To gain a perspective of software engineering, we o¤er the following analogy.

Consider the task of building a small shed for storage in the backyard of a house, a

common hobby for men, especially in previous decades. Many men and women

could be successful with this task, particularly if they have a practical bent. However,

just because someone built such a storage shed would not immediately qualify him or

her to build a thirty-floor o‰ce building. There is extra knowledge needed about

building materials, structures, and regulations—to mention just a few issues. Now

consider the task of writing a computer program to process data. Many men and

women could be successful with this task, particularly if they have a technical bent.

However you wouldn’t automatically trust that person to program an air tra‰c

control system. The missing discipline and knowledge is loosely covered in the area

of software engineering.

A definition of software engineering developed for Engineers Australia is ‘‘a disci-

pline applied by teams to produce high-quality, large-scale, cost-e¤ective software

that satisfies the users’ needs and can be maintained over time.’’

Significant words and phrases in the definition include discipline, which implies an

underlying body of knowledge; users, which implies the need for requirements; teams,

which implies the need for communications and interfaces; over time, which implies

that the system should be able to be changed without becoming brittle; high-quality,

which suggests performance criteria, not only functional capabilities; and large-scale,

16 Chapter 1

which means di¤erent architectural consideration about performance and other qual-

ities. Understanding costs and trade-o¤s in design will be important. Also important

will be recognizing the needs of stakeholders, not only users.

Although all aspects of software engineering are not explicitly addressed, we have

been influenced by taking a software engineering view. Models have been proposed

that we believe can be understood by a variety of stakeholders at varying levels of

abstraction. We take a systems view because multiagent system designers and devel-

opers should have a broad awareness of how the software they are designing and

building interacts with other hardware, software, and agents more generally.

We presume that the multiagent system will follow a systems development life

cycle. There will be a stage of gathering requirements. Once the requirements

have been elicited, they are analyzed. The analysis goes hand in hand with design,

where trade-o¤s are expected to be needed to allow the building of a system that

meets users’ requirements, both functional and nonfunctional. The system must be

implemented, tested, and maintained. Explicit languages, methodologies, and tools

for the latter stages are presented in chapters 5 and 7. But the models of chapter

3 and 4 have been developed in the belief that good engineering practices can be

followed.

As discussed in section 1.3, this book takes a systems engineering approach by

conceiving of the final product as a system. Systems engineering has been defined as

the process of specifying, designing, implementing, validating, deploying, and main-

taining sociotechnical systems. A useful analogy is the process of constructing a

building. When someone plans the building of a house, the first thing that needs

to be done is a sketch. The sketch roughly specifies the location, size, shape, and

purpose of the building and the layout and purposes of its rooms. It proceeds from

conversations between the customer and architect.

Next, the architect turns the sketch into the architect’s drawings, which include

floor plans, cutaways, and pictures of the house-to-be. The purpose of the drawings

is to enable the owner to relate to them and either agree or disagree with its di¤erent

parts and aspects. We can call this process requirements engineering, because its main

purpose is to understand and specify requirements for the building. Moreover, as the

architect normally creates the drawings by using a computer-aided design (CAD)

system of some sort, it could also be possible to simulate some aspects of the build-

ing, such as how doors and windows are opened, or what kind of interior and func-

tionalities the building should include. Both the sketch and the architect’s drawings

model the final product—the building—from the owner’s perspective.

As the next step, the architect’s drawings are turned into the architect’s plans.

The plans constitute the designer’s perspective of the final product. They consist of

detailed descriptions of the building-to-be from di¤erent aspects, including site work,

plumbing, electrical systems, communication systems, masonry, wood structure, and

Introduction 17

so forth. The architect’s plans specify the materials to be used for construction work

and serve as a basis for negotiation with a general contractor.

Finally, the contractor transforms the architect’s plans into the contractor’s plans,

which represent the builder’s perspective. The contractor’s plans essentially provide a

‘‘how to build it’’ description. They define the order of building activities and con-

sider the technology available to the contractor. There can also be the so-called

shop plans, which are out-of-context specifications of the parts, or functional areas

that are outsourced to subcontractors.

A systems engineering process is in many ways similar to the process of construct-

ing a building. First, we sketch the system as situated in its environment. The models

employed for this purpose may, for example, include use cases—a means of specify-

ing required usages of a system. This is the system modeled from the owner’s perspec-

tive. The owner’s perspective may also comprise scenarios that can be simulated. The

designer’s perspective consists of various models that describe from di¤erent aspects

how the system should be designed. A standard widely accepted by the software in-

dustry for this purpose is UML. The builder’s perspective is based on the designer’s

perspective, but considers specific languages, technologies, and tools to be used and

defines the order of systems engineering activities. Changing perspectives is not al-

ways straightforward. For example, a designer has to consider the languages, tech-

nologies, and tools of the problem domain.

The order in which we represent an agent-oriented modeling process in this book

has been influenced by the systems engineering perspective. Di¤erent kinds of models

to be presented in Chapter 3 are to allow inclusion of di¤erent perspectives of the

system.

1.6 Emergent Behavior

Models proceed from the requirements of an owner to the design expertise of a de-

signer, and are then handed over to a developer to be implemented and deployed.

Implicit in this previous sentence, and indeed in our discussion in this chapter, has

been that building a multiagent system proceeds from the top down. If the three

stakeholders—the owner, the designer, and developer—are di¤erent people, it is

more natural for the order to proceed top-down. It is possible, though not advisable,

for development of a system to proceed from the bottom up. The developer can im-

plement a system, which can retrospectively be designed, and the underlying motiva-

tion and purpose be determined through use. This makes some sense if the three

perspectives are that of the same person, and the bottom-up approach essentially

becomes rapid prototyping. Otherwise, the owner is completely dependent on the

will of the developer.

18 Chapter 1

To contrast the top-down and bottom-up approaches, let us reconsider the exam-

ple of building a house. The top-down approach starts with the goal of building a

house with particular objectives. These days, for example, one objective might be to

be environmentally friendly. The objectives are explained to an architect, who comes

up with a design. The design is then fully specified and agreed upon and given to a

builder to construct. The bottom-up approach has builders starting to build. This is

presumably what happens in the insect world. Termites build quite complex nests for

the termite colony to live in, assembled from the bottom up. To the best of our

knowledge, there is no ‘‘head termite’’ with an overall plan. Rather, the nest emerges

from the simple behavior of the termites. This is sometimes called emergent behavior

or self-organizing behavior.

Emergent behavior is not just a feature of the insect world. City life or group cul-

ture is often emergent. Creative cities work by collocating a group of people and

hoping that synergies happen. Several successful cities have developed in this way

throughout history.

We are aware of two classes of agent-oriented applications in which an explor-

atory, bottom-up approach is natural, and in which there has been extensive re-

search. One is the field of mobile robots. Two of the agents discussed in section 1.2,

the Roomba vacuum cleaner and the AIBO robotic dog, are essentially mobile

robots. Vacuum cleaning can be approached both from the top down and from the

bottom up. Top-down, there is a clear overall goal of removing dust, especially from

carpets. At the design stage, deciding which agent cleans which surface needs to be

determined. Then appropriate devices are deployed. Bottom-up, a vacuuming device

is built. How well it works is factored in and other steps may be needed either to

improve the overall quality goal, or to augment the cleaning with other devices.

Roomba clearly fits in the bottom-up stage. Similarly, AIBO is a robotic pet

designed with particular capabilities that it is hoped are entertaining to the owners

that buy them. Although Sony, the manufacturer, clearly had design specifications,

once they are in an environment, they interact in their own way.

The second class of examples in which emergent behavior is interesting is that of

simulation and modeling. To give an example, suppose that one was holding a large

sport event with tens of thousands of attendees. One would like to know whether the

event was suitably hosted. One way to do this is to build a model and run it to see

what behaviors by attendees may emerge.

Many researchers have investigated ‘‘ant algorithms,’’ which are essentially

bottom-up explorations by simple agents to achieve an objective. Such algorithms

are interesting and worthy of further research. We do not explore them, or the larger

issue of emergent behavior, any further in this book. For additional information, the

reader is referred to De Wolf and Holvoet 2005.

Introduction 19

1.7 A Quick History of Programming Paradigms

We used the previous sections to set the development of agent concepts in context.

We mentioned in section 1.2 that agents connote intelligent assistance. The desire to

create intelligence in a computer has been a constant theme for computing, dating

back to Alan Turing, the father of computer science. Sixty years of research on com-

puting, fifty years of research in AI, and forty years of research in software engineer-

ing are all relevant to how agents are conceptualized and deployed. We give a brief

history here.

Early computing research focused on programming, not modeling. The earliest

programming languages reflected a procedural view of the computer world. Pro-

grammers wrote instructions in the languages for the computer, which was envisaged

as a machine for executing a sequence of instructions. Analysts, perhaps loosely

equivalent to modelers, used flow charts to represent the instructions that needed to

be followed at a more abstract level.

Early computer languages, such as Fortran and COBOL, typify the procedural

view. A business application written in COBOL could be viewed as a collection of

financial agents cooperating to produce a business report. The analyst, however,

had to specify the complete control flow for the coder, and there was no advantage

in the agent perspective. It is worth noting that the SWARMM system mentioned

earlier in this chapter superseded a system written in Fortran. It was hard to main-

tain the Fortran system and very di‰cult to engage with the end users—the pilots.

The agent-oriented system worked much better.

Object orientation is an alternate to the procedural view of computing. It views a

program as a collection of objects sending messages to each other rather than as a

sequential list of instructions. Though object-oriented languages such as Simula

appeared as early as the 1960s, the popularity of object-oriented computing grew

through Smalltalk and especially Cþþ only in the 1980s. By the 1990s, object orien-

tation had become the preferred paradigm for developing applications for a distrib-

uted, complex world.

It is plausible to view agent-oriented computing as an extension of object-oriented

computing. Amusingly, agents have been described as ‘‘objects on steroids.’’ Such a

description, however, is not helpful for developers, or politically correct in a climate

of cracking down on drugs in sport. In our experience teaching programming, trying

to understand one paradigm in terms of another often limits one’s understanding. In-

deed, some of the models to be described in chapter 3 were prompted by a need to

di¤erentiate them from object-oriented models that students were using without

gaining an appreciation of how to think from an agent perspective. So although we

do appropriate some object-orientation notation in our models, we downplay the

20 Chapter 1

connection between the agent-oriented and object-oriented ways of thinking in this

book.

The meteoric rise of the Internet’s popularity and the need to deploy applications

on a variety of platforms led to the emergence and popularity of Java. To some

extent, Java is an object-oriented applications development language, in contrast to

Cþþ, which is more of an object-oriented systems development language. Java’s

simplification of network interactions has made it popular for developing agent

applications, as has its platform independence. It is no coincidence that most of the

agent programming languages described in chapter 5 are built on Java.

Having described Java as a language suitable for developing applications, we

briefly mention scripting languages. These languages make it quick to develop and

deploy applications. Some have been developed for agents such as the now-defunct

Telescript and Aglets from IBM. Using a scripting language tends to discourage

thinking in terms of systems and models. Although we are not averse to people using

scripting languages, such languages are not relevant to the book and are not dis-

cussed further.

We turn now to another programming paradigm: declarative programming. The

declarative paradigm has been influential in agent research. It is connected with the

body of work in formalizing agent behavior using various logics. Early researchers in

AI advocated the physical symbol system hypothesis, that a machine manipulating

physical symbols had the necessary and su‰cient means to be intelligent and exhibit

intelligent behavior. Lisp was an early programming language that was adopted in

applications that manipulated symbols.

Predicate logic was natural to use when taking a symbolic view. A prototypical AI

project conducted from 1966 to 1972 at the Artificial Intelligence Center at what was

then the Stanford Research Institute in the United States is illustrative. The project

centred on a mobile robot system nicknamed Shakey. Shakey moved around in a

physical environment consisting of makeshift ‘‘rooms’’ and blocks that could be

pushed from room to room. Shakey can definitely be considered an agent.

Part of the project involved Shakey formulating and executing plans to move

blocks from room to room. Shakey’s world was described in terms of logic formulae

such as in(room1,shakey), denoting that Shakey was in room 1. The planning

problem for Shakey was to move blocks from room to room. Knowing which room

the robot was in was a challenge for the vision system of the time, but that need

not concern us here. The planning problem was formulated in terms of STRIPS

(Stanford Research Institute Problem Solver) operators. Operators were expressed

in terms of preconditions, which needed to be true if the operator were applicable,

and postconditions, which became true after the operator was executed. For exam-

ple, an operator’s instruction move(block1, room1, room2) might be invoked to

Introduction 21

move block1 from room 1 to room 2. The precondition would be that Shakey was in

room 1, and the postcondition that Shakey was in room 2 and no longer in room 1.

Of course, the operators were expressed more generically. Planning was stringing to-

gether a sequence of operators that could achieve a desired state. STRIPS, the plan-

ning approach, is intuitive, and has been influential in AI.

Shakey’s system is declarative, in the sense that the system developer merely

expressed (declared) a set of operators. The underlying planning was left to the sys-

tem. Declarative programming is ideal in theory. In practice, how the operators are

expressed can have considerable influence on the e¤ectiveness of the planner. The

analogous declarative view of systems is to express a series of axioms as statements

of logic, and leave it to an underlying theorem prover to draw the conclusions or

reason appropriately. How axioms are expressed a¤ects how well a system may

perform.

Around the time of the Shakey project, experiments with theorem proving led to

the development of the programming language Prolog. Prolog is a good language

for many AI applications. In particular, Prolog is useful for prototyping logic reason-

ing systems. Several of the agent programming languages described in chapter 5

build on Prolog, or are at least influenced by it.

Formulating statements in logic and relying on an underlying theorem prover to

prove whether they are correct or to generate a plan is orthogonal to the concerns

of this book. Declarative programming is a good paradigm. Being precise in one’s

knowledge is to be commended. Also, it would be helpful, as many researchers advo-

cate, to delegate the reasoning to some interpreter. However, considering the execu-

tion as proving a theorem masks the systems approach of how agents interact and

whose responsibilities and what constraints there are, which is how we model sys-

tems. So despite the large amount of research in logic, we do not take that focus

here.

There was a strong reaction to the declarative view of intelligence in the 1980s.

The contrasting view was a reactive approach to achieve intelligence. The idea is

to build more intelligent activities on top of core functionalities. An analogy can

be made with human learning. Infants learn to walk and talk in their first years.

Greater intelligence comes later, built on top of our skills in walking and talking.

Our robust intelligence depends to a great degree on the robustness of the underlying

mechanism. This book is not, however, a book about intelligence, but rather about

models, and how they can be developed top-down as part of a systems engineering

life cycle.

To summarize the chapter, we advocate conceiving of the world in which software

must operate as a multiagent system operating in an environment subject to rules and

policies. There will be models to reflect important aspects of multiagent systems to

22 Chapter 1

aid understanding. The conceptual space that we look at will be discussed in more

detail in chapter 2. The models themselves will be presented in chapter 3, and applied

in later chapters.

1.8 Background

The background section at the end of each chapter is where we will supply more

detailed information about the references cited in each chapter, a more informal

way of handling references than footnotes. It also serves as a place for suggesting

further reading. Needless to say, the size and style of the background section will

vary from chapter to chapter.

This first chapter sets the scene for agents. The agent paradigm has become much

more prevalent over the past decade. For example, the agent metaphor is used as the

unifying image for AI in the leading AI textbook by Russell and Norvig (2002).

In the late 1990s, there was a spate of survey articles about intelligent agents,

which make useful additional readings. Two of the better known examples are Wool-

dridge and Jennings 1995 and Nwana 1995. The one most useful in our experience

for graduate students is Wooldridge 1999.

A common approach to introducing agents is to spend time discussing definitions.

The amusing definition of ‘‘objects on steroids’’ mentioned in this chapter has been

introduced by Parunak (2000, p. 13). For those readers seeking a more extensive dis-

cussion of definitions, we recommend the article by Franklin and Graesser (1997). In

this book, we have not agonized over the definition of an agent. In classes, votes are

taken on what people regard as agents. There is always diversity, and usually some

change of opinion by the end of the class. Indeed, a popular examination question

used in the University of Melbourne agent class is why does it not matter that there

is no exact agreed-upon definition of an agent.

The digital pet Web sites for Neopets, Webkinz, and Petz4fun mentioned in

the chapter are http://www.neopets.com, http://www.webkinz.com, and http://www

.petz4fun.com, respectively.

The analogy between constructing a building and developing a software system is

by John Zachman (1987).

UML is defined in OMG 2007.

A place to read more about the SWARMM system is Heinze et al. 2002. More

information about the STOW-97 simulation can be found in Laird et al. 1998.

Our understanding of the role of agents in the film trilogy Lord of the Rings

came from footage on the extended DVDs of the movies. In fact, the film pro-

ducer Peter Jackson explaining agents is the best endorsement of agents that we

have seen.

Introduction 23

The leading proponent of the reactive approach to intelligence is Rodney Brooks.

One of the most well-known papers by him is Brooks 1991.

Another influential critic of classical AI in the 1980s was Terry Winograd. He pub-

lished a book with Fernando Flores entitled Understanding Computers and Cognition

(1986) that argued that there were limits to computer intelligence and that computers

should be used to facilitate human communication. Although we don’t explore the

connection, philosophically, our holistic view of multiagent systems and thinking

about roles, responsibilities, and constraints are in keeping with this Winograd and

Flores philosophy. Their philosophy also influenced William Clancey, who devel-

oped a theory of activity that we draw on in chapters 2 and 3.

Having given the references, we’d like to comment on the following. Many of the

references were acquired by searching the Web using Google. For example, the defi-

nitions of models were extracted from the answers generated from typing the ques-

tion ‘‘What is a model?’’ into Google. The exercise was interesting and illustrates

well the diversity of the use of a common English word across a range of fields. We

encourage readers to try such searches for themselves.

Several of the sources were adapted or quoted directly from Wikipedia articles.

Wikipedia’s status as a reference of record is admittedly controversial. However, it

typically reflects popular opinion, supports the impression that we are imparting of

complex distributed sociotechnical systems, and is appropriate for our purposes in

this chapter. It would be fun to discuss why aspects of Wikipedia are controversial

relating to authorship and the ability to change records, but that is beyond the scope

of this book.

The Wikipedia references on e-commerce and intelligent homes are respectively

Wikipedia 2006a and 2006b. The Wikipedia reference on computer viruses is Wiki-

pedia 2006c.

Exercises for Chapter 1

1. Discuss which of the following you would consider an agent, and explain why or

why not. If you are unfamiliar with the example, try looking it up on the Internet.

� The Furby toy

� The Australian device for autonomously cleaning swimming pools, known as a

Kreepy Krauly

� An unmanned aerial vehicle (UAV)

� A search engine such as Google

2. Identify the various agents involved in the following:

� A book publishing company

24 Chapter 1

� A university

� A church or your local religious organization

� Australia, Estonia, or a country of your choice

3. Search the Internet for an application of agents in an area of personal interest.

4. The robotic soccer competition was augmented by having a competition, called

RoboCup Rescue, for teams of robots working in a rescue site. This was partly trig-

gered by the devastation caused by the Kobe earthquake in 1995. Discuss what needs

to be modeled to make such a competition useful. What features should be included

in a model?

5. Consider what would be useful to model in the transportation system of your city.

Introduction 25

	0262013118pref1
	0262013118forw1
	Sterling_00_FM_i-xx

	Sterling_02_Ch01_003-026

