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1 Introduction

1.1 Overview of Topics

This book is divided into three major sections: models for optimization, simulation

and sampling, and parameter-tuning. Though there is some overlap among these

topics, they provide a general framework for learning how one can formulate models

of biological systems, what techniques one has to work with those models, and how

to fit those models to particular systems.

The first section covers perhaps the most basic use of mathematical models in bio-

logical research: formulating optimization problems for biological systems. Examples

of models used for optimization problems include the molecular evolution models

generally used to formulate sequence alignment or evolutionary tree inference prob-

lems, energy functions used to predict docking between molecules, and models of

the relationships between gene expression levels used to infer genetic regulatory net-

works. We will start with this topic because it is a good way for those who already

have some computational background to get experience in reasoning about how to

formulate new models.

The second section covers simulation and sampling (i.e., how to select among pos-

sible system states or trajectories implied by a given model). Examples of simulation

and sampling questions we could ask are how a biochemical reaction system might

change over time from a given set of initial conditions, how a population might

evolve from a set of founder individuals, and how a genetic regulatory network

might respond to some outside stimulus. Answering such questions is one of the

main functions of models of biological systems, and this topic therefore takes up the

greatest part of the text.

The third section covers techniques for fitting model parameters to experimental

data. Given a data set and a class of models, the goal will be to find the best model

from the class to fit the data. A typical parameter-tuning problem would be to esti-

mate the interaction energy between any two amino acids in a protein structure

model by examining known protein structures. Parameter-tuning overlaps with



optimization, as finding the best-fit parameters for a model is often accomplished by

optimizing for some quality metric. There are, however, many specialized optimiza-

tion methods that frequently recur in parameter-tuning contexts. We will conclude

our discussion of parameter-tuning by considering how to evaluate the quality of

whatever fit we achieve.

1.2 Examples of Problems in Biological Modeling

To illustrate the nature of each of these topics, we can work through a few simple

examples of questions in biology that we might address through computational

models. In this process, we can see some of the issues that come up in reasoning

about a model.

1.2.1 Optimization

Often, when we examine a biological system, we have a single question we want to

answer. A mathematical model provides a way to precisely judge the quality of pos-

sible solutions and formulate a method for solving it. For example, suppose I have

a hypothetical group of organisms: a bacterium, a protozoan, a yeast, a plant, an

invertebrate, and a vertebrate. Our question is ‘‘What are the evolutionary relation-

ships among these organisms?’’ That may seem like a pretty straightforward ques-

tion, but it hides a lot of ambiguity. By modeling the problem, we can be precise

about what we are asking.

The first thing we need is a model of what ‘‘evolutionary relationships’’ look like.

We can use a standard model, the evolutionary tree. Figure 1.1 shows a hypothetical

(and rather implausible) example of an evolutionary tree for our organisms. Note

that by choosing a tree model, we are already restricting the possible answers to our

question. The tree leaves out many details that may be of interest to us, for example,

which genes are conserved among subsets of these organisms. It also makes assump-

tions, such as a lack of horizontal transfer of genes between species, that may be in-

accurate when understanding the evolution of these organisms. Nonetheless, we have

to make some assumptions to specify precisely what our output looks like, and these

Figure 1.1
Hypothetical evolutionary tree linking our example set of organisms.
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are probably reasonable ones. We have now completed one step of formalizing our

problem: specifying our output format.

We then must deal with another problem: even if our model specifies that our out-

put is a tree, we do not know which one. We cannot answer our question with cer-

tainty, so what we really want to find is the best answer, given the evidence available

to us. So, what is the evidence available to us? We might suppose that our evidence

consists of genetic sequences of some highly conserved gene or genetic region in

each organism. That means we assume we are given m strings on an alphabet

fA;C;T;Gg. Figure 1.2 is an example of such strings that have been aligned to

each other by inserting a gap (‘‘-’’) in one. We have now completed another step in

formalizing our problem: specifying our input format.

Now we face another problem. There are many possible outputs consistent with

any input. So which is the best one? To answer that, our model needs to include

some measure of how well any given tree matches the data. A common way to this

is to assume some model of the process by which the input data may have been gen-

erated by the process of evolution. This model will then have implications for the

probability of observing any given tree. Let us propose some assumptions that will

let us define a formal model:

� Our gene is modified only by point mutations, changing one base at a time.
� Mutations are rare.
� Any one mutation (or insertion or deletion) is as likely to occur as any other.
� Mutations are selectively neutral, that is, they do not a¤ect the probability of the

organism’s surviving and reproducing.

Those are not exactly correct assumptions, but they may be reasonable approxi-

mations, depending on the characteristics of our problem. Given these assumptions,

we might propose that the best tree is the one that involves the fewest mutations be-

tween organisms. A model that seeks to minimize some measure of complexity of the

solution is called a parsimony model. Parsimony formulations often lead to recogniz-

able optimization problems. In this case, we can define an edit distance d between

Figure 1.2
A set of strings on the alphabet fA;C;T;Gg that have been aligned to each other.
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two strings s1 and s2 to be the minimum number of insertions, deletions, and base

changes necessary to convert one string into the other. Then our solution to the prob-

lem will consist of a tree with leaves labeled with our input strings and with internal

nodes labeled with other strings such that the sum of the edit distances across all

edges in the tree is minimized. We have now accomplished the third task in formaliz-

ing our problem: specifying a metric for it.

Now that we have the three components of our formal specification—an input for-

mat, an output format, and a metric—we have specified our model well enough to

formulate a well-defined computational optimization problem. We can take the

same problem we specified informally above and write it more formally as follows:

Input A set S of strings on the alphabet S ¼ fA;C;T;Gg representing our DNA

sequences to be examined

Output A tree T ¼ ðV ;EÞ with jSj leaves LJV and an assignment of string tags

to nodes t : V ! S� satisfying the constraint Es A Sbl A L s.t. tðlÞ ¼ s (read as ‘‘for

all strings s in set S, there exists a leaf node l from set L such that the tag of l, tðlÞ,
is the string s’’)

Metric
P

ðu; vÞ AE dðtðuÞ; tðvÞÞ (read as ‘‘the sum over all edges u to v in the edge set

E of the edit distance between the tag of u, tðuÞ and the tag of v, tðvÞ’’) is minimized

over trees T and tag assignments t.

In other words, we want to find the tree whose leaves are labeled with the

sequences of our organisms and whose internal nodes are labeled with the sequences

of presumed common ancestors such that we minimize the total number of base

changes over all pairs of sequences sharing an edge in the tree. This does not yet tell

us how to solve the problem, but it does at least tell us what problem to solve. Later

in the book, we will see how we might go about solving that problem.

1.2.2 Simulation and Sampling

Another major use of models is for simulation. Usually, we use simulations when we

are interested in a process rather than a single outcome. Simulating the process can

be useful as a validation of a model or a comparison of two di¤erent models. If we

have reason to trust our model, then simulation can further be used to explore how

interventions in the model might a¤ect its behavior. Simulations are also useful if the

long-term behavior of the model is hard to analyze by first principles. In such cases,

we can look at how a model evolves and watch for particularly interesting but un-

expected properties.

As an example of what one might do with simulation, let us consider an issue

motivated by protein structure analysis. Suppose we are given the structure of a pro-

tein and we wish to understand whether we can mutate the protein in some way that

increases its stability. Simulations can provide a way to answer this sort of question.
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Our input can be assumed to be a protein sequence (i.e., a string of amino acids).

More formally, our input is a string s A S� (‘‘S�’’ is a formal notation for a string of

zero or more characters from the alphabet S), where S ¼ fA;C;D;E;F ;G;H; I ;K ;

L;M;N;P;Q;R;S;T ;V ;W ;Yg.
If we want to answer this question, we first need a model for the structure of our

protein. For the purposes of this illustration, we will use a common form of simpli-

fied model called a lattice model. In a lattice model, we treat a protein as a chain of

beads sitting at points on a regular grid. To simplify the illustration, we will represent

this as a two-dimensional structure sitting on a square grid. In practice, much more

flexible lattices are available that better capture the true range of motion of a protein

backbone. Lattice models tend to be a good choice for simulations involving protein

folding because they are simple enough to allow nontrivial rearrangements to occur

on a reasonable time scale. They are also often used in optimizations related to pro-

tein folding because of the possibility of enumerating discrete sets of conformations

in them. Our model of the protein structure is, then, a self-avoiding chain on a 2-D

square lattice (see figure 1.3).

If we want to study protein energetics, we need a model of the energy of any par-

ticular structure. Lattice models are commonly used with contact potentials that as-

sign a particular energy to any two amino acids that are adjacent on the lattice but

not in the protein chain. For example, in the model protein above, we have two con-

tacts, S to L at the top and D to K at the bottom. These are shown as thick dashed

lines in figure 1.3. On more sophisticated lattices, these potentials might vary with

distance between the amino acids or their orientations relative to one another, but

we will ignore that here.

As a first pass at solving our problem, we might simply stop here and say that we

can estimate the stability e¤ect of an amino acid change by looking at the change

in contact energies it produces. For example, suppose our model specifies a contact en-

ergy of þ1 kcal/mol for contact between S and L and �1 kcal/mol for contact

Figure 1.3
A hypothetical protein folded on a lattice. Solid lines represent the path of the peptide backbone. Thick
dashed lines show contacts between amino acids adjacent on the lattice but not on the backbone. Thin
dashed lines show the lattice grid. (a) Initial conformation of the protein. (b) Alternative conformation
produced by pivoting around the arginine (R) amino acid.
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between S and T. Then we might propose that if the conformation in figure 1.3(a) is

our protein’s native (normal) state, then mutating L to T will increase stability (re-

duce energy) by 2 kcal/mol. We might then propose to solve the problem by attempt-

ing substitutions at all positions until we find the set of amino acids with the lowest

possible energy summed over all contacts. This first-pass solution is problematic,

though, in that it neglects the fact that an amino acid change which stabilizes the na-

tive conformation might also stabilize nonnative conformations. The change might

thereby reduce the time spent in the native state even while reducing the native state’s

intrinsic energy.

We therefore need some way to study how the protein might move under the con-

trol of our energy model. There are many move sets for various lattices that attempt

to capture how a protein chain might bend. A move set is a way of specifying how

any given conformation can be transformed into other conformations. Figure 1.4

shows an example of a possible move for a move set. Anywhere we observe a subset

of a conformation matching the left pattern, it would be legal to transform it to

match the right pattern, and vice versa. This move alone would be insu‰cient to cre-

ate a realistic folding model, but it might be part of a larger set allowing more free-

dom of movement. For this small example, though, we will assume a simpler move

set. We will say that a single move of a protein consists of choosing any one bond in

the protein and bending it to any arbitrary position that does not produce collisions

in the chain. We can get from any chain configuration to any other by some sequence

of these single-bond bends. For example, we could legally change our chain configu-

ration in figure 1.3(a) into that in figure 1.3(b) by pivoting 90� at the S-R-K bend.

We would not be able to pivot an additional 90�, though, because that would create

a collision between the M and D amino acids.

The move set only tells us which moves are allowed, though, not which are

likely. We further need a model of dynamics that specifies how we select among

di¤erent legal moves at each point in time. One common method is the Metropolis

criterion:

Figure 1.4
An example of a lattice move. X stands for any possible amino acid, and the ellipses stand for any possible
conformation of the chain outside of a local region of interest. This move indicates that a 180� bend of
four residues can be flipped about the surrounding backbone.
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1. Pick uniformly at random among all possible moves from the current conforma-

tion C1 to some neighboring conformation C2.

2. If the energy of C2 is less than the energy of C1, accept the move and change to

conformation C2.

3. Otherwise, accept the move with probability e�ðEðC2Þ�EðC1ÞÞ=kBT , where T is the ab-

solute temperature and kB is Boltzmann’s constant.

4. If the move is not yet accepted, reject the move and remain in conformation C1.

This method produces a sequence of moves with some nice statistical properties that

we will cover in more depth in chapter 9. The choice of this model of dynamics once

again involves a substantial oversimplification of how a chain would really fold, but

it is a serviceable model for this example. This completes a model, if not a very good

model, of how a protein chain will move over time.

We are now ready to formulate our initial question more rigorously. We can pro-

pose to estimate the stability of the chain as follows:

1. Place the chain into its native configuration.

2. Select the next state according to the Metropolis criterion.

3. If it is in the native configuration, record a hit; otherwise, record a miss.

4. Return to step 2.

We can run this procedure for some predetermined number of steps and use the frac-

tion of hits as a measure of the stability of the protein. We can repeat this experiment

for each mutation we wish to consider. A mutation that yields a higher percentage of

hits than the original sequence over a su‰ciently long simulation run is inferred to be

more stable. A mutation that yields a lower percentage of hits is inferred to be less

stable. This example thus demonstrates how we might use simulation to solve a bio-

logical problem.

An issue closely related to simulation is sampling: choosing a state according to

some probability distribution. For example, instead of simulating a trajectory from

the native state, we might repeatedly sample from the partition function defined by

the energies of the states of our protein sequence. That is, we might have some prob-

ability distribution over possible configurations of the protein defined by the relative

energies of the folds, then repeatedly pick random configurations from this distribu-

tion. We could then ask what fraction of states that we sample are the native state.

This is actually closer to what we really want to do to solve our problem, although if

we look at a lot of steps of simulation, the two approaches should converge on the

same answers. In fact, simulation is often a valid way to perform sampling, although

there may be much more e‰cient ways for some problems. For a short amino acid

chain like this, for example, it might be feasible to analytically determine the proba-

bility distribution of states, given our model.
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1.2.3 Parameter-Tuning

The final area of modeling and simulation we will consider is how to fit a general

class of model to a specific set of data. Whether we are using a model for simulation

or optimization, we will commonly have a general format for input and output, but

some unknown parameters are needed to translate one to the other. We may also

have a set of examples from which to learn the missing parameters. We then wish to

establish the function relating inputs to outputs. A model lets us constrain the space

of possible functions and judge which among the allowed ones are better explana-

tions than others. That in turn lets us formulate a precise computational problem.

For example, suppose we want to learn about the function of a novel protease we

have identified. A protease is a protein that cuts other proteins or peptides. It usually

has some specificity in selecting the sites at which it cuts other proteins. That is, if it is

presented with many copies of the same protein, there are some sites it will cut fre-

quently and some it will cut rarely or not at all. Suppose we have the following

examples of how the protease cleaves some known peptides:

SIVVAKSASK ! SASIVVAK þ SASK

HEPCPDGCHSGCPCAKTC ! H þ EPCPDGCH þ SGCPCAKTC:

We can treat these examples as the input to a parameter-fitting problem. More for-

mally, we can say our input is a set of strings on the alphabet of amino acids

S ¼ fA;C;D;E;F ;G;H; I ;K ;L;M;N;P;Q;R;S;T ;V ;W ;Yg

and a set of integer cut sites in each string. Our goal is to predict how this protease

will act on novel sequences. Typically, we would answer this by assuming a class of

models based on prior knowledge about our system, with some unspecified parame-

ters distinguishing particular members of the class. We would then try to determine

the parameters of the specific model from our class that best explain our observed

data. We can then use the model with that parameter assignment to make predictions

about how the protease will act on novel sequences.

We first need to define our class of models. A good way to get started is to ask

what we know about proteases in general. Proteases usually recognize a small motif

close to the cut site. The closer a residue is to the cut site, the more likely it is to be

important to deciding where the cut occurs. A good model then may assume that the

protease examines some window of residues around a potential cut site and decides

whether or not to cut based on the residues in that window. The parameter-tuning

problem for such a model consists of identifying the probability of cutting for any

specific window. If we have a lot of training data, we may assume that the protease

can consider very complicated patterns. Since our data are very sparse, though, we
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probably need to assume the motif it recognizes is short and simple. That assumption

is not necessarily true, and if it is not, then we will not be able to learn our model

without more data. Many known proteases cut exclusively on the basis of the residue

immediately N-terminal of the cut site, so for this example we will assume that the

window examined consists only of that one residue.

Using these basic assumptions, we can create a formal model for cut-site predic-

tion. As a first pass, we can assume that the probability of cutting at a given site is

a function of the amino acid immediately N-terminal from that site. More formally,

then, our class of models is the set of mappings from amino acids to cut probabilities,

f : fA;C;D;E;F ;G;H; I ;K ;L;M;N;P;Q;R;S;T ;V ;W ;Yg ! ½0; 1�:

The parameters of the model are then the 20 values f ðAÞ; f ðCÞ; . . . ; f ðYÞ defining

the function over the amino acid alphabet. This may be an acceptable model if we

have su‰cient data available to estimate all of these values. In this case, though,

our training data are so sparse that we do not have any examples of some amino

acids with which to estimate cut probabilities. So how do we predict their behavior?

Once again, to answer this sort of question we have to ask what we know about our

system. Specifically, what do we know about amino acids that might help us reduce

the parameter space? One useful piece of information is that some amino acids are

more chemically similar than others, and they can be roughly grouped into categories

by chemical properties. Typical categories are hydrophobic (H), polar (P), basic (B),

acidic (A), and glycine (G). If we then classify our amino acids into these groups, we

end up with the following inputs:

PHHHHBPHPB ! PHHHHB þ PHPB

BAPHPAGHBPGHHHHBPH ! Bþ APHPAGHBþ PGHHHHBPH

We now have five parameters to fit in this model: f ðHÞ, f ðPÞ, f ðBÞ, f ðAÞ, and
f ðGÞ, that is, the probabilities of cutting after each amino acid class. In this simple

model, the procedure for fitting our model to the data is straightforward: count the

fraction of times a particular residue class is followed by a cut site. This procedure

gives us the following parameters:

f ðHÞ ¼ 0

f ðPÞ ¼ 0

f ðBÞ ¼ 0:75

f ðAÞ ¼ 0

f ðGÞ¼ 0

1.2 Examples of Problems in Biological Modeling 9



That answers our general question about the rules determining the behavior of this

protease. In particular, we have derived what are known as maximum likelihood esti-

mates of the parameters, which means these are the parameter values that maximize

the probability of generating the observed outputs from our model. If we want to get

more sophisticated, we can also consider how much confidence to place in our

parameters based on the amount of data used to determine each one. We will also

need to consider issues of validating the model, preferably on a di¤erent data set

than the one we used to train it. We will neglect such issues for now, but return to

them in chapter 24.

References and Further Reading

Though I am not aware of any references on the general subject matter of this chap-

ter, the specific examples are drawn from a variety of sources in the literature. Evo-

lutionary tree-building is a broad field, and there are many fine references to the

general topic. Three excellent texts for the computationally savvy reader are Felsen-

stein [1], Gusfield [2], and Semple and Steel [3]. The notion of a parsimony-based

tree, as we have examined it here, first appeared in the literature in a brief abstract

by Edwards and Cavalli-Sforza [4]. There are many computational methods now

available for inferring trees by parsimony metrics, and the three texts cited above

([1], [2], [3]) are all good references for these methods. We will see a bit more about

them in chapters 2 and 3.

The use of lattice models for protein-folding applications was developed in a paper

by Taketomi et al. [5], the first of a series introducing a general class of these lattice

models that became known as Gō models. The specific example of a lattice move

presented in figure 1.4 was introduced in a paper by Chan and Dill [6] as part of a

move set called MS2. The Metropolis method, which we will cover in more detail in

chapter 9, is one of the most important and widely used of all methods for sampling

from complicated probability distributions. It was first proposed in an influential pa-

per by Metropolis et al. [7].

The problem of predicting proteolytic cleavage sites is not nearly as well studied as

evolutionary tree-building or protein-folding, but nonetheless has its own literature.

The earliest reference to the computational problem of which I am aware is a paper

by Folz and Gordon [8] introducing algorithms for predicting the cleavage of signal

peptides. Much of the current interest in the problem arises from its importance in

some specific medical contexts. One of these is understanding the activity of the

human immunodeficiency virus (HIV) protease, a protein that is critical to the HIV

life cycle and an important target of anti-HIV therapeutics. A review by Chou [9]

o¤ers a good discussion of the problem and methods in that context. Another impor-
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tant application is prediction of cleavage by the proteasome, a molecular machine

found in all living cells. The proteasome is used for general protein degradation, but

has evolved in vertebrates to play a special role in the identification of antigens by

the immune system. Its specificity has therefore become important to vaccine design,

among other areas. Saxová et al. [10] conducted a survey and comparative analysis

of the major prediction methods for proteasome cleavage sites, which is a good place

to start learning more about that application.
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