Protocells
 Bridging Nonliving and Living Matter

edited by Steen Rasmussen, Mark A. Bedau, Liaohai Chen, David Deamer, David C. Krakauer, Norman H. Packard, and Peter F. Stadler
(C) 2009 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher.

For information about special quantity discounts, please email special_sales@mitpress.mit.edu
This book was set in Times New Roman and Syntax on 3B2 by Asco Typesetters, Hong Kong. Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data
Protocells : bridging nonliving and living matter / edited by Steen Rasmussen ... [et al.]. p. ; cm.

Includes bibliographical references and index.
ISBN 978-0-262-18268-3 (hardcover : alk. paper) 1. Artificial cells. 2. Life (Biology) I. Rasmussen, Steen.
[DNLM: 1. Cells. 2. Biogenesis. 3. Cell Physiology. 4. Models, Biological. QU 300 P967 2008] QH501.P76 2008
$576.8^{\prime} 3-\mathrm{dc} 22$ 2007049243
$\begin{array}{llllllllll}10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}$

Index

Ab initio methods, 248, 408-410, 414-415
Adaptive systems, 475, 514, 530-531
Aggregate growth, 73-77, 80, 90-91, 93-94, 114-$115,140,150,214,218,327-330$
Amino acids, 25, 31, 58-59, 234, 385, 442, 445, 571, 588, 590-591
Amphiphiles, 22-23,108, 140-142, 145, 218-221, 567. See also Fatty acids; Lipids; Membranes; Micelles; Phospholipids; Vesicles
Artificial cells, 19, 43, 117, 192-193, 253, 283, 563565, 641. See also Protocells
Artificial chromosome, 626-628
Artificial life (ALife), xvii 102, 478
Artificial selection, 103, 647
Astrobiology, xvii, 478, 565
Adenosine triphosphate (ATP), 25, 95, 353-355, 436, 462
Attractors, 181, 324-326, 441, 456, 542-549
Autocatalysis, 299-316, 320, 445-446, 456
Autocatalytic
cycles, 198, 456, 570, 573
networks, 488, 514, 548
processes, 49-50, 218
sequences, 484

Automata

cellular (CA), 198-199, 454, 547
chemical, 40, 93, 215, 481-512, 540-542, 552-560
evolving, 257-258
Autonomy, 502-504, 513-536
Autopoiesis, 50, 197-198, 502-504
Base stacking (p-stacking), 134, 601
Basins of attraction, 542-549
Biochemical alphabet, 525
Biomass, 213, 441, 465-471
Bioremediation, 631-632
Bottom-up approach, xv, 42, 72, 78-79, 83, 102104, 125, 347-348, 619. See also Top-down approach
Brownian
dynamics (BD), 219, 404, 416
motion, 538-540

CA. See Cellular automata
Capillary traveling wave reactor, 257-259
Cascading genetic networks, 60-61, 88-89, 104, 164-166
Catalytic networks, 72, 181-185, 244, 305, 488, 524
CATCH (cooperative amplification of templates by cross-hybridization), 84-85, 262, 377
Cell
cycle, 25-26, 118-119, 213, 618
extract, use of, 87-89
cell-like entities (CLEs), 477, 615-639 (see also Protocells)
minimal, 39-70, 186, 317, 353-354, 483, 564-565, 619
Cellular automata (CA), 198-199, 454, 547
Cellularization, 21-22, 371, 378-381, 513-514
Chemical cells, 540-542, 547-548, 552-560
Chemical dynamics, 537-562
Chemical kinetics, 419-424, 483-485, 489, 538
Chemical oscillators, 216, 538-541
Chemical sensors, 253, 479-480, 618, 630-635
Chemoton (chemical automaton), 40, 93, 215, 475, 481-512
Clay, 27, 86, 119-120, 489
CMC (critical micelle concentration), 50, 276, 387388
Coacervate, 5-9, 234-238
Cofactors, 166, 445-448, 594
Compartment. See Container
Compartmentalization, 372
Compartmentation
by electric fields, 96, 255-257, 268-269, 271281
in microsystems, 263-264, 271-272
Complementation strategies, 103, 255-257, 264265, 276-289
Complex fluids, 91-92, 478
Complex periodic oscillator, 539
Composome, 90-91, 181, 240-245
Constructor, 546-560
initial, 548-549

Container, 25, 53, 73-74, 77-83, 90, 125-129, 140141, 144-151, 157-158, 197, 262-264, 285-289, 295-296, 465, 528-529, 615. See also Encapsulation
Contingency, 433-435, 457, 519, 528, 645
Continuously stirred tank rector (CSTR), 323, 538-541, 552
Copying fidelity, 261, 368-370, 568-569
Coupling (integration) of protocell components, 71, 101-105, 147-151, 181-189, 254-255, 281283, 295-298, 475, 532, 632-634
Cycle stoichiometry, 484-485, 495
Diffusion, 5, 24-26, 112-114, 146, 199, 202, 207, 215-216, 223-227, 264-265, 274, 494, 543, 548, 556, 599
Dipole interactions, 418-419
Dissipative structure, 435, 438, 454. See also Turing mechanism
DNA, 40-48, 64, 84-86, 95, 110, 172, 187-192, 235-239, 309, 340, 343-344, 379-380, 525-526, 585-587, 647
computing 270-290
viruses, 121-123
Doubling time, 149, 467-468
DPD (dissipative particle dynamics), 91, 129, 142, 219-221, 396-403, 416-418

Early cell ancestors, 537-540, 563-581
Eigen, Manfred, 81-82, 125, 170-171, 257-261, 369-370, 482, 491, 524, 568. See also Hypercycle; Quasispecies
Electronic billabong, 274
Electroosmosis, 272
Electrophoresis, 272, 278, 280
Emergent properties/emergence, 64-65, 129, 198199, 205-207, 238, 242-248, 317, 387, 419, 433-441, 451-453, 457, 503-509, 532, 549-550, 566-567, 575, 617
Emulsions, 56, 61-62, 145, 379-380
Encapsulation, 9, 22, 27-35, 42, 57, 59, 75, 87-90, 93-94, 120-121, 157, 161-166, 380, 620-626. See also Container; Membranes
Enzymes, 6-10, 29, 31-35, 62-65, 133, 179, 187189, 261, 299, 318-323, 360-363, 445, 469, 483-484, 488-490, 494, 541, 568-573, 599. See also Polymerase; Q beta
Ergodicity, 433-435, 452-456
Error threshold, 261, 330-332, 491-493, 568
Ethical concerns, 477, 620, 641-653
Eukaryotes, 23, 353, 464-466, 470, 522-524
Evolution 15, 19-21, 30, 34-35, 39-41, 52, 62-65, 81-85, 91-92, 101-105, 107-114, 121, 135, 154-166, 197-212, 233-237, 242-245, 247248, 253-263, 269, 283-289, 299, 317-318, 330-332, 341-342, 367-381, 434-435, 469, 482-487, 494-509, 514, 519-523, 528-532, 541-542, 559-560, 563-578, 615-619, 641-648

Evolutionary design method 103-104, 283-284
Evolvability, 39-41, 177-179, 184-186, 189-191, 269

Fan reactor, 262-263, 282
Fatty acids, 12, 23-24, 28-30, 49-50, 63-64, 112123, 127-130, 136-138, 145-151, 187-188, 393. See also Amphiphiles; Encapsulation; Lipids; Membranes; Micelles; Phospholipids; Vesicles
Feedback, 148, 305-306, 329-330, 528, 550. See also Hypercycle
loops, 285-286, 373, 618
positive, 445-448, 450
Fisher-Tropsch type synthesis, 589
Fisher waves, 258
Fission. See Vesicles, fission
Flow cytometry / FACS, 59-61, 159-165, 379380
Fluid mosaic model, 12, 24, 485
FPFA (field-programmable fluid arrays), 273
Function, 19-22, 44-48, 71-83, 101-105, 262, 349-352, 454-455, 469-471, 514, 527, 549-551, 560, 563-566, 572-578, 600, 615-635, 647
Fusion. See Vesicles, fusion
Gánti, Tibor, xiv, 40, 80, 93, 125, 22, 475, 481-512. See also Chemoton
GARD (Graded Autocatalysis Replication Domain) model, 239-245
Gels. See Hydrogels
Gene, 44-45, 133-135, 140-142, 295-297, 518, 583-587
expression, 330, 368, 574, 616-620, 626-631
linkage, 493, 518, 524
satellite, 524
Genome, 469-471
core/minimal, 43-47, 347-366, 523-524
synthetic, 565, 626-628
GFP, 31-34, 59-61, 87-88, 159-165, 192, 621. See also Protein, synthesis in liposomes
Giant vesicles, 49, 56, 59-61, 85-86, 192, 201
multilamellar, 85-86, 395
unilamellar (GUVs), 464-465, 624
Ginzburg-Landau (GL) models, 422-424
Gray-Scott model, 215-216
Group selection, 81, 475, 491-492
Haemophilus influenzae, 45, 349-350, 357, 577, 627
Huckel method, 410
Hydrogels, 255, 257, 267-268
Hydrogen bonding (H-bonding), 20, 22, 119, 386387, 418, 490, 506-507, 601, 625
Hydrophobic effect, 75, 79, 387, 419, 574, 576
Hydrothermal vents, 442-444, 448, 452, 589
Hypercycle, xiv, 81, 125, 170-171, 179, 183-185, 257, 261, 324, 369-371, 492-493, 524, 568
Hyperdynamics method, 426-427

Individuality, 513-536. See also Autonomy; Autopoiesis
Information (replicator) chemistry, 29-30, 71-76, 80-82, 90-107, 237-243, 369-373, 376, 491, 585-586, 618
Information gap, 331
Infrabiology, 500-502, 508-509
Integration, 71, 101-105, 147-151, 254-255, 262, 276-277, 281-289, 502, 632-635
Interactomes, 101
Kinetics, 81, 91-92, 147-149, 177-178, 213-215, 230, 236, 240, 260-266, 279-280, 303, 309-310, 317-318, 321-326, 331-332, 419-423, 440441, 444-445, 483-485, 488-492, 527-528, 538, 543-545, 552-559, 570, 578

Langevin equation, 219, 221, 416. See also Brownian, motion
LANL Bug. See Los Alamos Bug
Last common ancestor (LCA), 564, 584-585, 587
Lattice artificial chemistry, 197-212
Lattice Boltzmann (LB) method, 419
Lattice gas molecular dynamics (LGMD), 90, 418419
Lattice molecular automaton (LMA), 198-199
Lattice Monte Carlo models, 199
Levels of selection, 215, 497-498, 517-518, 527
Life
criteria/definitions, 14, 39-41, 126, 243, 349, 470, 475, 481-483, 494-504, 513-517, 537, 583, 615-616, 619
minimal, 19-20, 22, 39-41, 47, 126-127, 169-170, 564. See also Minimal, cell; genome; metabolism
origin of, xvi, xix, 3-17, 39, 64-65, 109, 119-121, 125, 164-166, 169-172, 179-183, 197-198, 234-236, 246-247, 261, 299-300, 317-318, 378-381, 433-435, 451, 475-480, 481-485, 487-491, 497-500, 532-534, 537-539, 552, 566, 570, 575, 583-613
Ligase, 47, 111-112, 299, 320-322, 367-369, 379380, 572. See also Ligation
Ligation, 91, 126, 141-144, 150, 278-279, 301305, 309-314, 319-321, 341-342, 367, 379-381, 572
Line reactors, 258-261, 264-266
Lipids, 23-26. See also Amphiphiles;
Encapsulation; Fatty acids; Membranes; Micelles; Phospholipids; Protein, synthesis in liposomes; Vesicles
aggregates, 77, 80-83, 90-91, 102, 113, 126-127, $141,148,213-214,295-296,320,328,388-392$, 395-396, 401, 423-424
bilayers, 12, 22-29, 31-34, 53-54, 107, 143, 191192, 220-223, 241-242, 388, 391-395, 400-404, 485
biosynthesis of, 62-63, 80-87, 91, 93-94, 130, 135-136, 140-142, 144, 355
emulsions, 56, 61-62, 145, 282, 289, 378-380
interfaces, 49-50, 77, 92, 126-129, 141-144, 390392, 414, 575-578
protein synthesis in, 31, 64, 87-88, 157-168, 187, 192-193, 197
self-assembly, 20-24, 29, 80, 85, 90-94, 107-108, $129,148,213,276,385-406,418,575-577$
vesicles/liposomes, 12-13, 19-23, 26-35, 40-43, 48-65, 75-76, 80-92, 112-121, 145-151, 157168, 191-193, 213, 219-230, 370-371, 385-406, 395, 401-404, 417, 423-426, 464-465, 485, 494, 567, 621-626, 641-642. See also Vesicles
world, 90, 241-243
Los Alamos (LANL) Bug, 94-95, 125-155, 317320, 328, 407-414, 647

Macrostates, 517-518
Mass/power relationship, 465-467
Maxwell's demon, 528-534
Medical applications, 477, 565, 615, 634, 643
Meinhardt, H., 215
Membranes, 3, 12-13, 22-29, 53-58, 62, 80-88, 107-109, 112-121, 158-161, 191-193, 197212, 214-215, 221-230, 267-268, 282-283, 327-330, 371-372, 391-396, 403-404, 421426, 482, 485-487, 490, 499, 575-577, 617, 624-628
permeability, $25-27,30-35,41,46,53-58,112-$ 114, 141, 494, 617, 624
proteins, 24-25, 62, 391, 575-577
Metabolic hypercycle, 370-371. See also Hypercycle; Metabolism
Metabolic path length, 355-362
Metabolism, 7-8, 39-40, 75-80, 93-95, 125-130, 137, 140-141, 200-205, 214-215, 280-283, 295-297, 349-363, 433-460, 494-509, 542, 550-552, 567-573
core/minimal, 215, 354-363, 433-460, 475, 479, 482
metabolic cycle, 94, 137, 198, 297, 486
metabolic network, 235, 353, 355-361, 441, 452453, 494, 572
Metabolism-first scenario 451-453
Metastable, 114-115, 427, 441
Micelles, 20-21, 49-51, 75-76, 91-94, 113-117, 145-146, 213, 241-242, 276, 279-280, 385-391, 399-400, 471-472, 647
Micro-electricomechanical devices (MEMS), 103, 633-634
Microfluidics, 95-96, 103, 126, 150, 253-294, 424, 632
Miller-Urey experiment, 234, 442-443, 488, 585
Minimal
cell, 34, 39-70, 186, 317, 353-354, 564-565, 619, 623
genome, 43-48, 347-366

Minimal (cont.)
life, 19-20, 22, 39-41, 47, 126-127, 169-170, 564
metabolism, 215, 354-363, 433-460, 475, 479, 482
RNA cell, 40-42, 94, 526, 568-569
Minority-controlled state, 175-178
MM (molecular mechanics)/MD (molecular dynamics), 410-414
Module, 76, 271-274, 506, 514-515, 630-632
Molecular Dynamics methods, 142, 198-199, 218, 248, 396, 408-416, 418-420, 425
Monte Carlo methods, 199, 201, 396
Multiscale methods, 424-427
Mutualism, 354, 370, 533
Mycoplasma genitalium, 44-47, 350-351, 464, 627
NASBA (nucleic acid sequence-based amplification), 373, 376
Natural selection, 20, 102-103, 215, 233, 456, 491492, 528-532, 585
NDO (neglect of differential overlap), 410
Network catalysis, 445
Niche, 441, 452, 533, 617
Nonenzymatic template scheme, 265. See also Kiedrowski
Nongenomic, 241, 569-573
evolution, 572
Nucleic acids, 55, 72, 81, 107-111, 117-121, 235236, 296, 299-303, 318-320, 367-369, 491, 295, 520-521, 568, 600-603. See also DNA, PNA, RNA
Nucleosides, 133, 339, 586, 596-597, 599
Nucleotides, 41, 109-112, 233-234, 525, 530, 586, 597-598

Omega machine, 253-294
Oparin, A. I., 7-10, 234-235, 299, 451, 485, 495, 584
Open chemical systems, 542-545
Open-ended evolution, xvi, 245, 330, 505, 547, 548, 557-559, 645, 648
Organelles, 241, 464-466, 518-519
Oxidation-reduction reactions, 19, 25, 79, 82, 87, 96, 126, 128, 131-135, 273, 281, 368, 439, 444, 446, 461-462, 628-629

P-stacking, 134, 601
PACE (Programmable Artificial Cell Evolution), 253, 289
Parasites, 43, 77, 80, 213, 254, 262, 296-297, 350351, 445, 450, 456, 464, 513
parasite problem, 82, 171-173, 183-184, 331, 367-384
Permeation problem, 494
Phospholipids, 12, 23, 26, 31-32, 63, 107-108, 119, $141-142,145,147,397,567$
bilayers, 12, 22-29, 31-34, 53-56, 107, 143, 191192, 220-223, 241-242, 388, 391-395, 400-404, 485
interfaces, 141-142, 150

Photosensitizers, 127-138, 145-146, 296
Photosynthesis, 447, 461-463, 479
PNA (peptide nucleic acid), 40, 104, 126-155, 296, 276-279, 319-320, 337-346, 410-411, 414, 420-422, 426, 602-606
Polymers/polymerization, 19-25, 53-54, 57-58, $74-75,82-91,107-108,117-121,125-126$, 150, 157-158, 172-174, 233-234, 237-238, 243-244, 295-296, 328-332, 385, 418, 440, 486, 491, 499-501, 503-508, 547-548, 567-572, 585, 591-593, 597-601, 604-607
Polymerase chain reaction (PCR) 32, 56-57, 84, 163, 187, 277-278, 308-309, 318, 380-381
Polymerases, 30-35, 47-48, 59-61, 64, 8-91, 9394, 111-112, 277-278, 368, 376, 522-524
DNA polymerases, 187-191, 522
RNA polymerases, 56, 164-166, 235, 372-374, 380-381, 527, 621, 629-632
Polymerosomes, 625-626
Polysaccharides, 385, 443, 448, 553, 571, 594-598, 603
Polyols, 594
Polypeptide. See Protein
Potential energy, 396-397, 415, 418, 423, 427
Power (metabolic), 465-471
Prebiotic synthesis, 119-120, 140-141, 381, 337340, 367, 476, 583-613
Primordial atmosphere, 234, 442, 566, 585-590
Product inhibition, 142, 147, 150, 278, 296, 300302, 309, 314, 318, 331, 340
Programmablity of protocells, 253-256, 271, 479
Prokaryotes, 43, 461, 464-466, 470, 522, 534, 627
Protein, 19, 21, 29-32, 40-48, 95, 101, 172, 187189, 192-193, 238, 244, 248, 255, 338, 351-354, 358, 385-387, 415, 461, 464, 469-470, 525-528, 531, 572-578, 586, 598
folding, 21, 44, 248, 352, 455, 531, 573, 627
synthesis in liposomes, 58-64, 87-89, 157-168, 192-193, 197, 624 (see also GFP)
Protobiology, 485-487, 500-502, 564-569, 573, 576-578
Protocell precursors, 103, 107, 112, 114, 117-118
Protogene, 125, 133, 135, 140, 205, 320, 372
Protometabolism, 129, 295-297, 435, 445, 452453, 471. See also Metabolism
PURE system (protein synthesis using recombinant elements), 629-630
Purines, 442-447, 452-453, 591-593, 596, 606
Pyrimidines, 442-447, 452-453, 593-596, 605
Q beta replicase, 32, 56-57, 82-84, 318-322, 372
QM/MM (quantum mechanics/molecular mechanics), 413-415
Quasispecies, 296, 327, 369
Reaction kinetics. See Kinetics
Reaction-diffusion, 81, 91, 125, 171, 214-215, 257, 260, 264
Reconfigurable microsystems, 269-273, 285, 288

Redox reactions. See Oxidation-reduction reactions
Reductive TCA cycle, 440-451
Replicase, 41, 94, 111-112, 118, 308-311, 317-322, 330-331, 367-372, 376, 490-494, 568-569. See also Q beta replicase
Replication, 28, 46, 50-51, 56-58, 81-82, 85, 94, 107-112, 118-121, 140-143, 144-145, 158, 170-181, 191-193, 213-231, 257-265, 275285, 287, 317-336, 340-341, 369-373, 376-378, 487-491, 493, 519-524, 583-585, 605-607
cycle, 120, 141, 187-189, 213, 255, 299-301, 309, 312, 328, 482
dynamics, 81-82, 91-92, 141, 214-215, 230, 279, 296, 317-336
enzyme-catalyzed, 170-172, 186, 201, 318, 323
template-directed/self-replication, 76, 126-127, 147-149, 191-192, 234-237, 239-241, 255, 262, 265, 277, 299-316, 337, 367-368, 491, 568-573, 578, 598
Replicator, 81-82, 91-92, 118, 140-141, 214-215, 296-297, 300, 306-308, 311-314, 317-336, 367-384, 491-495, 583-587
equations, 323-330
Respiration, 461-462
Ribozymes, 30, 34, 41-42, 81, 84, 94, 109, 111-$112,118,299,317,320-321,331,367-368,373$, 378-381, 491-492, 521, 568-569, 586
RNA, 21, 31-35, 40-42, 84-89, 93-95, 187, 192193, 233-239, 257-259, 340, 349, 469, 525, 568-569, 585-587, 598-599, 604. See also Nucleic acids; Polymerase, RNA; Q beta replicase
catalytic, 41-42, 111-114, 170-171, 233, 299, 453, 491, 521 (see also Ribozymes)
cells, 93-95
viruses, 521, 526-527 (see also Viruses)
world, xvi, xix, 41,140-141, 233-237, 244, 299, $339,367-453,501-503,520-521,568-569$, 586-587
Ru-bpy, 130-138, 145-147
SDA, 260, 263, 277
Selection, 20-21, 62, 81, 84, 102-105, 117, 120121, 157-159, 163-165, 177-178, 185-193, 205, 215, 218, 233-237, 243, 257-258, 269-$271,300,306-309,317,324,327,330-331$, 341-342, 372, 378-381, 446, 456, 491-492, 497-498, 505, 516-520, 527-534, 558, 568, 585, 647
Self-assembly/self-organization, $10-12,14-15,20-$ 23, 49-52, 75-76, 90-94, 107-108, 127-129, $144-145,214,257,260-261,300,367,476-478$, 491, 528, 566, 573-578, 585-587, 621-623
of lipids, $20-24,29,80,85,90-94,107-108,129$, $148,213,276,385-406,418,575-577$
of metabolism, 433-460, 570
of nucleic acids, 585-587
Self-repair, 39, 46, 454-455, 476-477, 556, 559, 616, 643

Self-reproduction, 49-53, 62-64, 385, 477, 560. See also Replication
Self-replication. See Replication, template-directed/self-directed
Semiempirical methods, 409-412
Sensitizer molecule, 87, 91, 94, 128-145, 420-422
Side reaction problem, 235, 254, 450, 487-491
Small-molecule catalysis, 444-445, 452
Soft materials, 478-480
Solvent effects, 141-142, 272, 343, 387, 403-404, 416, 573-574, 601. See also Hydrophobic effect
Spatiotemporal organization, 215, 237, 476, 538540
Standing waves, 262-263, 437
Steady state, 216, 345, 329, 456, 542-546, 549-551, 616, 618
Stochastic (error) corrector model (SCM), 177179, 264, 330, 491-493, 498
Stoichiometric freedom, 502-508
Sufficient statistics, 515-516
Sugars. See Polysaccharides
Sulphobes, 4
Synthetic biology, xvii, 39-41, 64, 169, 254, 277, 477, 619, 647-649
Synthetic nucleobase, 134
Systems biology, 40, 101, 187, 233, 248, 477-478
Template concentration dependence, 263, 265, 275, 302-304, 318
Template-directed replication. See Replication, template-directed/self-replication
Template-induced properties, 262
Thermodynamic equilibrium, 537, 540-541, 550, 553, 559-560, 574
Thermodynamics (of protocells), 77, 126-129, 141, 242, 304-305, 317, 320, 390, 418, 426-427, 433, $436,440,517,529-533,537,540-542,553,570$, 574, 576, 578. See also Macrostates
Top-down approach, xv, 42, 72, 83, 102-103, 347366, 477, 619. See also Bottom-up approach
Traveling waves, 215, 257-263, 437-438
Turing mechanisms, 435,
Turing patterns/structures, 215-216, 257, 540, 548, 556-557

UV, 268, 311, 488, 589-590, 593
spectroscopy, 139, 311
Van der Waals interactions, 24, 390, 415
Vesicles, 22-23, 26-35, 48-64, 75-76, 84-89, 9395, 112-121, 145-148, 191-192, 197, 201, 213, 280-282, 329, 370-371, 379-380, 385-406, 464-465, 567, 623-626. See also Amphiphiles; Encapsulation; Fatty acids; Lipids; Membranes; Micelles; Phospholipids
growth and division of, 113-116, 191-192, 197, 204, 213, 219-229, 282, 370-371, 417-419
multilamellar, 28, 161, 388-389, 464-465

Vesicles (cont.)
shape transformation, 223, 402-404, 423-424
unilamellar, 60, 388-390, 395, 403, 464, 621
GUVs (giant unilamellar vesicles), 464, 624
Vesiculation, 51-52, 146, 387, 402-403
Viable systems model, 542
Viruses, 88-89, 464, 476, 513-536, 618
genome, 347, 516, 524-527
origin/phylogeny of, 520-524

