
The pages contained within are not final 
and may include unedited text and are

 subject to change

Programmed Visions

Software and Memory

The MIT Press

Cambridge, Massachusetts

London, England

Wendy Hui Kyong Chun



© 2011 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or 

mechanical means (including photocopying, recording, or information storage and retrieval) 

without permission in writing from the publisher.

For information about special quantity discounts, please email special_sales@mitpress.mit.edu

This book was set in Stone Sans and Stone Serif by Toppan Best-set Premedia Limited. Printed 

and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Chun, Wendy Hui Kyong, 1969–

Programmed visions : software and memory / Wendy Hui Kyong Chun.

  p.  cm. — (Software studies)

Includes bibliographical references and index.

ISBN 978-0-262-01542-4 (hardcover : alk. paper)

1. Computer software—Development—Social aspects.  2. Software architecture—Social 

aspects.  3. Computer software—Human factors.  I. Title.

QA76.76.D47C565  2011

005.1—dc22

	 2010036044

10  9  8  7  6  5  4  3  2  1



﻿� v

Contents

Series Foreword  vii

Preface: Programming the Bleeding Edge of Obsolescence  xi

Introduction: Software, a Supersensible Sensible Thing  1

You  13

I  Invisibly Visible, Visibly Invisible  15

1  On Sourcery and Source Codes  19

Computers that Roar  55

2  Daemonic Interfaces, Empowering Obfuscations  59

II  Regenerating Archives  97

3  Order from Order, or Life According to Software  101

The Undead of Information  133

4  Always Already There, or Software as Memory  137

Conclusion: In Medias Res  175

Epilogue: In Medias Race  179

You, Again  181

Notes  183

Index  233



Introduction: Software, a Supersensible Sensible Thing

Debates over new media resonate with the parable of the six blind men and the ele-
phant. Each man seizes a portion of the animal and offers a different analogy: the 
elephant is like a wall, a spear, a snake, a tree, a palm, a rope. Refusing to back down 
from their positions since they are based on personal experience, the wise men engage 
in an unending dispute with each “in his own opinion / Exceeding stiff and strong / 
Though each was partly in the right, / And all were in the wrong!” The moral, accord-
ing to John Godfrey Saxe’s version of this tale, is: “So oft in theologic wars, / The 
disputants, I ween, / Rail on in utter ignorance / Of what each other mean, / And 
prate about an Elephant / Not one of them has seen!”1 It is perhaps irreverent to 
compare a poem on the incomprehensibility of the divine to arguments over new 
media, but the invisibility, ubiquity, and alleged power of new media (and technology 
more generally) lend themselves to this analogy. It seems impossible to know the 
extent, content, and effects of new media. Who can touch the entire contents of the 
World Wide Web or know the real size of the Internet or of mobile networks? Who 
can read and examine all time-based online interactions? Who can expertly move 
from analyzing social networking sites to Japanese cell phone novels to hardware 
algorithms to databases? Is a global picture of new media possible?

In response to these difficulties, many within the field of new media studies have 
moved away from specific content and technologies toward what seems to be common 
to all new media objects and moments: software. All new media objects allegedly rely 
on—or, most strongly, can be reduced to—software, a visibly invisible or invisibly 
visible essence. Software seems to allow one to grasp the entire elephant because it is 
the invisible whole that generates the sensuous parts. Based on and yet exceeding our 
sense of touch—based on our ability to manipulate virtual objects we cannot entirely 
see—it is a magical source that promises to bring together the fractured field of new 
media studies and to encapsulate the difference this field makes. To know software 
has become a form of enlightenment—a Kantian release from self-incurred tutelage.

This notion of knowing software as a form of enlightenment—as a way to com-
prehend an invisible yet powerful whole—is not limited to the field of new media 



2� Introduction

studies. Based on metaphor, software has become a metaphor for the mind, for 
culture, for ideology, for biology, and for the economy. Cognitive science, as Paul 
Edwards has shown, initially comprehended the brain/mind in terms of hardware/
software.2 Molecular biology conceives of DNA as a series of genetic “programs.” 
More broadly, culture itself has been posited as “software,” in opposition to nature, 
which is “hardware.”3 Although technologies, such as clocks and steam engines, 
have historically been used metaphorically to conceptualize our bodies and culture, 
software is unique in its status as metaphor for metaphor itself. As a universal 
imitator/machine, it encapsulates a logic of general substitutability: a logic of order-
ing and creative, animating disordering. Joseph Weizenbaum has argued that com-
puters have become metaphors for all “effective procedures,” that is, for anything 
that can be solved in a prescribed number of steps, such as gene expression and 
clerical work.4

The clarity offered by software as metaphor—and the empowerment allegedly 
offered to us who know software—however, should make us pause, because software 
also engenders a sense of profound ignorance. Software is extremely difficult to com-
prehend. Who really knows what lurks behind our smiling interfaces, behind the 
objects we click and manipulate? Who completely understands what one’s computer 
is actually doing at any given moment? Software as metaphor for metaphor troubles 
the usual functioning of metaphor, that is, the clarification of an unknown concept 
through a known one. For, if software illuminates an unknown, it does so through an 
unknowable (software). This paradox—this drive to understand what we don’t know 
through what we do not entirely understand—this book argues, does not undermine, 
but rather grounds software’s appeal. Its combination of what can be seen and not 
seen, can be known and not known—its separation of interface from algorithm, of 
software from hardware—makes it a powerful metaphor for everything we believe is 
invisible yet generates visible effects, from genetics to the invisible hand of the market, 
from ideology to culture.

Every use entails an act of faith, and this book tries to understand what 
makes this trust possible not in order to condemn and move “beyond” computer 
software and interfaces, but rather to understand how this combination of visibility 
and invisibility, of past experiences with future expectation, makes new media 
such a powerful thing for each and all. It also takes seriously new media’s modes 
of repetition and transmission in order to understand how they open up gaps 
for a future beyond predictions based on the past. Computers—understood as 
software and hardware machines—this book argues, are mediums of power. This 
is not only because they create empowered users, but also and most importantly, 
because software’s vapory materialization and its ghostly interfaces embody—
conceptually, metaphorically, virtually—a way to navigate our increasingly complex 
world.



Introduction� 3

How Soft Is Software?

Software is, or should be, a notoriously difficult concept. Historically unforeseen, 
barely a thing, software’s ghostly presence produces and defies apprehension, allowing 
us to grasp the world through its ungraspable mediation.

Computer scientist Manfred Broy describes software as “almost intangible, gener-
ally invisible, complex, vast and difficult to comprehend.” Because software is 
“complex, error-prone and difficult to visualize,” Broy argues, many of its “pioneers” 
have sought to make “software easier to visualize and understand, and to represent 
the phenomena encountered in software development in models that make the 
often implicit and intangible software engineering tasks explicit.”5 Software chal-
lenges our understanding not only because it works invisibly, but also because it is 
fundamentally ephemeral—it cannot be reduced to program data stored on a hard 
disk. Historian Michael Mahoney describes software as “elusively intangible. In 
essence, it is the behavior of the machines when running. It is what converts their 
architecture to action, and it is constructed with action in mind; the programmer 
aims to make something happen.”6 Consequently, software is notoriously difficult 
to study historically: most “archived” software programs can no longer be executed, 
and thus experienced, since the operating systems and machines, with which they 
merge when running, have disappeared. Although these systems can be emulated, 
what is experienced is a reconstruction.7 Hence, not only does software’s ephemeral-
ity make analysis difficult, so does the lack of clear boundaries between running 
programs and between running software and live hardware. Theorist Adrian MacK-
enzie aptly calls software a “neighbourhood of relations”; “in code and coding,” he 
argues, “relations are assembled, dismantled, bundled and dispersed within and 
across contexts.”8 Software “pioneers” Herman H. Goldstine and John von Neumann, 
in their 1940s explication of programming, similarly described it as “the technique 
of providing a dynamic background to control the automatic evolution of a 
meaning.”9

To be apprehended, software’s dynamic porousness is often conceptually trans-
formed into well-defined layers. Software’s temporality, in other words, is converted 
in part to spatiality, process in time conceived in terms of a process in space. Historian 
Paul Ceruzzi likens software to an onion, “with many distinct layers of software over 
a hardware core.”10 Application on top of operating system, on top of device drivers, 
and so on all the way down to voltage charges in transistors. What, however, is the 
difference between an onion’s layers and its core? Media archeologist Friedrich Kittler, 
taking this embedded and embedding logic to its limit, has infamously declared “there 
is no software,” for everything, in the end, reduces to voltage differences. More pre-
cisely, he contends, “there would be no software if computer systems were not  
surrounded . . . by an environment of everyday languages. This environment . . . since 



4� Introduction

a famous and twofold Greek invention, consists of letters and coins, of books and 
bucks.”11 Less controversially, Mahoney has argued that software “is an artifact of 
computing in the business and government sectors during the ’50s”; software, as Paul 
Ceruzzi and Wolfgang Hagen have shown, was not foreseen: the engineers building 
high-speed calculators in the mid-1940s did not plan or see the need for software.12

At first, software encompassed everything that was not hardware, such as services. 
The term soft, as this book elaborates, is gendered. Grace Murray Hopper claims that 
the term software was introduced to describe compilers, which she initially called 
“layettes” for computers; J. Chuan Chu, one of the hardware engineers for the ENIAC, 
the first working electronic digital computer, called software the “daughter” of Fran-
kenstein (hardware being the son).13 Software, as a service, was initially priced in terms 
of labor cost per instruction.14 Herbert D. Benington remarks that attendees at the 
1956 symposium on advanced programming methods for digital computers were hor-
rified that his Lincoln Laboratory group, working on what would become the ground-
breaking SAGE (Semi-Automatic Ground Environment) Air Defense System, could do 
no better than $50 per instruction. In that 1956 address Benington also stresses the 
growing importance of software: “our colleagues who build computers,” he notes, 
“have come to realize that a computer is not useful until it has been programmed.”15 
As this statement reveals, the word program, at that time, was predominantly a verb, 
not a noun.16

Legal battles over software copyrights and patents make clear the stakes of this 
transformation of software from a service, priced per instruction, to a thing. Not 
surprisingly, software initially was considered neither patentable nor copyrightable 
because of its functional, intangible, and “natural” status. The U.S. Supreme Court 
in 1972 first rejected engineers Gary Benson and Arthur Tabbot’s claim to patent 
an algorithm for converting digital into binary digits. It decided, as legal scholar 
Pamela Samuelson argues, that “mathematical innovations should be treated like 
scientific truths and laws of nature, and scientific truths and laws of nature are 
unpatentable subject matter.”17 Software algorithms, in other words, were “natural” 
mental processes, not artificial things. As Samuelson and as legal scholar Margaret 
Jane Radin both note, key to the eventual patenting of software was its transforma-
tion from a set of instructions to a machine.18 In 1981, the Supreme Court in 
Diamond v. Diehr, 450 U.S. 175 (1981) upheld the patenting of an algorithmic-based 
process for curing rubber because the algorithm resulted in a tangible physical 
process: it cured rubber. By 1994, the U.S. Court of Appeals Federal Circuit held in 
In re Alappat (1994) that all software was inherently machinic, since it changed the 
material nature of a computer: “a general purpose computer in effect becomes a 
special purpose computer once it is programmed to perform particular functions 
pursuant to instructions from program software.”19 A change in memory, it seems, 
a change in machine.



Introduction� 5

As a physical process, however, software would seem uncopyrightable.20 Copyright 
seeks to protect creative expression; as Radin notes, patents and copyrights were sup-
posed to be mutually exclusive: “Copyright is supposed to exclude works that are 
functional; patent is supposed to focus on functionality and exclude texts.”21 To 
address this contradiction, the U.S. Congress changed the law in 1975, so that expres-
sions, as opposed to the actual processes or methods, adopted by the programmer 
became copyrightable.22 The difference, however, between expression and methods 
has been difficult to determine, especially since the expression of software has not 
been limited to source code.

Further, copyright law insists on the tangibility of the copy, where a copy is a “fixa-
tion in a tangible medium of expression”—performances, in other words, were initially 
considered outside the purview of copyright.23 Although information is often consid-
ered to be immaterial, the forces behind copyrighting (and taxing) software stress the 
fact that, regardless of information’s ephemerality, information is always embodied; 
it always, as Matthew Kirschenbaum argues, leaves a trace.24 Indeed, digital informa-
tion has divorced tangibility from permanence, with “courts and commentators in the 
United States adopt[ing] the notion that the momentary arrangement of electrons in 
a computer memory, which we might have thought of as intangible information, 
amounts to a tangible physical object, a copy.”25 Since, as I have argued elsewhere, 
computer reading is a writing elsewhere, viewing the momentary arrangement of 
electrons in memory as a tangible copy technically makes all computer reading a 
copyright infringement. Indeed, this redefinition of copy as thing, as Radin notes, has 
had far-reaching consequences since “a great many activities that were not covered 
by copyright in the offline environment are being brought under copyright—that is, 
under control of an owner—in the online environment. . . . The physical analogy to 
browsing in a bookstore is obliterated by the more powerful assimilation of the activity 
involved in a physical object—the production of physical ‘copies’ by a computer.”26 
This definition also muddies questions of responsibility: given that every networked 
computer regularly downloads all materials in a network and then erases those not 
directly addressed to it, should everyone whose computer has unwittingly downloaded 
child pornography or pirated media be prosecuted?

These changes, brought about by the “hardening” of software as textual or machinic 
thing through memory, point toward a profound change in our understanding of what 
is internal and external, subject and object. According to Radin, “the distinction 
between tangible objects and intangible information is a distinction upon which 
much of our modern understanding of the world was built, and hence, from which a 
great many legal categorizations derive,” for this traditional distinction “owes much 
to the ‘modernist’ dichotomies of the Enlightenment—between subject and object, 
between autonomous persons and heteronomous things.”27 The notion of intellectual 
property, which seems to break this dichotomy, was initially a compromise, she  



6� Introduction

contends, between the Enlightenment notion that the intellect was internal and 
property external.28 (It is not simply, though, that information was once inside a 
person and then externalized, but also that information was considered inseparable 
from a person. Symptomatically, the meaning of information has moved from “the 
action of informing . . . the formation or moulding of the mind or character, training, 
instruction, teaching” to “knowledge communicated concerning some particular fact, 
subject, or event.”29) Crucially, Radin argues that the information age has compro-
mised the compromise of intellectual property, since, by breaking down the distinc-
tion between tangibility and intangibility, it makes it possible to conceive information, 
whether internal or external, as always external to the self (hence the patentability of 
DNA). As I’ve argued elsewhere, the Internet and computers—which have offered 
enlightenment for all—have exploded enlightenment by literalizing it.

Software as thing has led to all “information” as thing. Software as thing recon-
ceptualizes society, bodies, and memories in ways that both compromise and extend 
the subject, the user. Importantly, software as thing cannot be reduced to software as 
a commodity: software as “thing” is a return to older definitions of thing as a “gath-
ering,” as pertaining to anything related to “man.”30 Treating software as a thing 
means treating it, again, as a neighborhood, as an amalgamation. It also means think-
ing through its simultaneous ambiguity and specificity. Further, it means thinking 
beyond this legal history, this legal framework, toward the historical and theoretical 
stakes of the reemergence of things as relations. Indeed, this book argues that the 
remarkable process by which software was transformed from a service in time to a 
product, the hardening of relations into a thing, the externalization of information 
from the self, coincides with and embodies larger changes within what Michel  
Foucault has called governmentality. Software as thing is a response to and product of 
changing relations between subjects and objects, of challenges brought about by 
computing as a neoliberal governmental technology.

Soft Government

According to Foucault, governmentality and government broadly encompass acts 
and institutions that govern, or steer, conduct and thus cannot be reduced to the 
state. (Not coincidentally, the term cybernetics is derived from the Greek term “kyber-
nete” for governing.) As Colin Gordon notes, government for Foucault is “the conduct 
of conduct,” that is, “a form of activity aiming to shape, guide or affect the conduct 
of some person or persons.” Governmentality could concern “the relation between 
self and self, private interpersonal relations involving some form of control or guid-
ance, relations within social institutions and communities and, finally, relations 
concerned with the exercise of political sovereignty.”31 The move from the Enlight-
enment, with its dichotomy of subjects and objects, to our current compromised 



Introduction� 7

situation corresponds to a transition from liberal to neoliberal governmentality (and, 
even further, to a neoconservative one).

Liberal governmentality, which emerged during the eighteenth century, is an “eco-
nomic government”: government that embraces both liberal political economy and 
the principle of noninterference. It is based on two principles: the principle of blind 
self-interest and the principle of freedom. According to its vision, actors, who cannot 
know the whole picture, blindly and freely follow their own self-interests so that “the 
invisible hand of the market” can magically incorporate their actions into a system 
that benefits all. This unknowability is fundamental, for it enables a transition from 
sovereign to liberal forms of governmentality. The liberal market undermines the 
power of the monarch by undermining his or her knowledge: no one can have a 
totalizing view. It also consumes freedom: it both produces freedom and seeks to 
control it.32 Liberal governmentality also makes possible biopolitical power—a collec-
tion of institutions and actions focused on “taking care” of a population, rather than 
a territory, focused on masses rather than on sovereign subjects.

Historically, computers, human and mechanical, have been central to the manage-
ment and creation of populations, political economy, and apparatuses of security.33 
Without them, there could be no statistical analysis of populations: from the process-
ing of censuses to bioinformatics, from surveys that drive consumer desire to social 
security databases. Without them, there would be no government, no corporations, 
no schools, no global marketplace—or, at the very least, they would be difficult to 
operate. Tellingly, the beginnings of IBM as a corporation—the Herman Hollerith’s 
Tabulating Machine Company—dovetails with the mechanical analysis of the U.S. 
census.34 Before the adoption of these machines in 1890, the U.S. government had 
been struggling to analyze the data produced by the decennial census (the 1880 census 
taking seven years to process). Crucially, Hollerith’s punch-card-based mechanical 
analysis was inspired by the “punch photograph” used by train conductors to verify 
passengers.35 Similarly, the Jacquard Loom, a machine central to the industrial revolu-
tion, inspired (via Charles Babbage’s “engines”) the cards used by the MARK1, an early 
electromechanical machine. Scientific and industrial projects linked to governmental-
ity also drove the need for data analysis: eugenics projects that demanded vast statisti-
cal analyses, nuclear weapons that depended on solving difficult partial differential 
equations.36

Importantly, though, computers in the period this book focuses on (post-World 
War II) coincide with the emergence of neoliberalism. As well as control of “masses,” 
computers have been central to processes of individualization or personalization. 
Neoliberalism, according to David Harvey is “a theory of political economic practices 
that proposes that human well-being can best be advanced by liberating individual 
entrepreneurial freedoms and skills within an institutional framework characterized 
by strong private property rights, free markets, free trade.”37 Although neoliberals, 



8� Introduction

such as the Chicago School economist Milton Friedman, claim merely to be resusci-
tating classical liberal economic theory, Foucault argues that neoliberalism differs from 
liberalism in its stance that the market be “the principle, form, and model for a 
state.”38 Tying together individual economic and political freedom has been key to 
its success: competitive capitalism, Friedman writes, “is a system of economic freedom 
and a necessary condition for political freedom.”39 Harvey argues that neoliberalism 
has thrived by creating general “culture of consent”—even though it has harmed 
most people economically by fostering incredible income disparities. In particular, it 
has incorporated progressive 1960s discontent with government and, remarkably, 
dissociated this discontent from its critique of capitalism and corporations.

In a neoliberal society, the market has become an ethics—it has spread everywhere 
so that all human interactions, from motherhood to education, are discussed as eco-
nomic “transactions” that can be assessed in individual cost–benefit terms. The market, 
as Margaret Thatcher argued, “change[s] the soul”40 by becoming, Foucault argues, the 
“grid of intelligibility” for everything.41 This transforms the homo oeconomicus—the 
individual who lies at the base of neoliberalism—from “the [liberal] man of exchange 
or man the consumer” to “the man of enterprise and consumption.”42 It rests on the 
“proposition that both parties to an economic transaction benefit from it, provided the 
transaction is bi-laterally voluntary and informed.”43 It focuses on discourses of empower-
ment in which the worker does not simply own his/her labor, but also possesses his/
her own body as a form of “human capital.”44 Since everyone is in control of this form 
of capital—the body—neoliberalism relies on voluntary, individual actions.45 Thus, 
this changed man who has imbibed the market ethic is thus “eminently governable, 
for homo oeconomicus is shaped through “rational” and empowering management 
techniques that make him “self-organized” and “self controlling.”46

Relatedly, “user-friendly” computer interfaces have been key to empowering and 
creating “productive individuals.” As Ben Shneiderman, whose work has been key to 
graphical user interfaces (GUIs) has argued, these interfaces succeed when they move 
their users from grudging acceptance to feelings of mastery and eagerness.47 Moreover, 
this book argues, interfaces—as mediators between the visible and the invisible, as a 
means of navigation—have been key to creating “informed” individuals who can 
overcome the chaos of global capitalism by mapping their relation to the totality of 
the global capitalist system. (Conversely, the ability to track both individuals and 
totalities at the same time, through the data traces produced through our mappings.) 
The dream is: the resurgence of the seemingly sovereign individual—the subject driven 
to know, driven to map, to zoom in and out, to manipulate, and to act. The dream 
is: the more that an individual knows, the better decisions he or she can make. 
Goldman Sachs and other investment companies, for instance, invest millions of 
dollars on computer programs that can analyze data and execute trades milliseconds 
faster than their competition. This “informing” is thus intriguingly temporal. New 
media empowers individuals by informing them of the future, making new media the 



Introduction� 9

future. “The future,” as William Gibson famously and symptomatically quipped, “is 
already here. It’s just not very evenly distributed.”48 This future—as something that 
can be bought and sold—is linked intimately to the past, to computers as capable of 
being the future because, based on past data, they shape and predict it.49 Computers 
as future depend on computers as memory machines, on digital data as archives that 
are always there. This future depends on programmable visions that extrapolate the 
future—or, more precisely, a future—based on the past. As chapter 1 elaborates, com-
puters, understood as software and hardware machines, have made possible a dream 
of programmability—a return to a world of Laplaceian determinism in which an all-
knowing intelligence can comprehend the future by apprehending the past and 
present. They have done so through a conflation of words with things that both 
externalizes knowledge and creates a position from which a subject can try to “hack” 
the invisible hands and laws that drive the system.

This book, therefore, links computers to governmentality neither at the level of 
content nor in terms of the many governmental projects that have been enabled by 
computers, but rather at the level of their architecture and their logic.50 Computers 
embody a certain logic of governing or steering through the increasingly complex 
world around us. By individuating us and also integrating us into a totality, their 
interfaces offer us a form of mapping, of storing files central to our seemingly sover-
eign—empowered—subjectivity. By interacting with these interfaces, we are also 
mapped: data-driven machine learning algorithms process our collective data traces 
in order to discover underlying patterns (this process reveals that our computers are 
now more profound programmers than their human counterparts). This logic of 
programmability, it also argues, is not limited to computer technology; it also stems 
from and bleeds elsewhere, in particular modern genetics, with its conceptual forma-
tions of codes and programs as central to inheritance. Crucially, though, this knowl-
edge is also based on a profound ignorance or ambiguity: our computers execute in 
unforeseen ways, the future opens to the unexpected. Because of this, any pro-
grammed vision will always be inadequate, will always give way to another future. 
The rest of this book unpacks this temporality and the odd combination of visibility 
and invisibility these visions enable.

In part I, chapters 1 and 2 focus on how software is invisibly visible. Chapter 1 
argues that software emerged as a thing—as an iterable textual program—through an 
axiomatic process of commercialization and commodification that has made code 
logos: a word conflated with and substituting for action. This formulation of instruc-
tion as source—source code as fetish—is crucial to understanding the power and thrill 
of programming, in particular the fantasy of the all-powerful programmer, a subject 
with magical powers to transform words into things. This separation of code from 
execution, however, itself a software effect, is also constantly undone, historically 
and theoretically. Thus, it concludes by analyzing how code as fetish can open up 
surprising detours and ends.



10� Introduction

Chapter 2 analyzes how this invisibly visible (or visibly invisible) logic works at the 
level of the interface, at the level of “personal computing.” It investigates the extent to 
which this paradoxical combination of rational causality and profound ignorance 
grounds the computer as an attractive model for the “natural” world. Looking both at 
the use of metaphor within the early history of human–computer interfaces and at the 
emergence of the computer as metaphor, it contends that real-time computer inter-
faces are a powerful response to, and not simply an enabler or consequence of, post-
modernism and neoliberalism. Both conceptually and thematically, these interfaces 
offer a simpler, more reassuring analog of power, one in which the user takes the place 
of the sovereign “source,” code becomes law, and mapping produces the subject.

Chapters 3 and 4 of part II examine the intertwining of computer technology and 
biology, specifically the emergence of memory and its importance to notions of pro-
grammability. Through this focus on the relation between biology and computing 
technology, part II explores how software, as an axiomatic, came to embody the logic 
of the “always already there.” By exploring the ways in which biology and computer 
technology have been reduced to complementary strands of a double helix, chapters 
3 and 4 embed computer technology within the larger epistemic field of program-
mability, a larger drive for “permanence” that conflates memory with storage and 
conflates the ephemeral with the enduring, or rather turns the ephemeral into the 
enduring (the enduring ephemeral) through a process of constant regeneration.

Chapter 3 argues that software was not foreseen, because the drive for software—for 
an independent program that conflates legislation with execution—did not arise solely 
from within the field of computation, but also from early Mendelian genetic and eugen-
ics. Through a reading of Erwin Schrödinger’s What Is Life, it contends that Mendelian 
genetics and software envision a return to a reductionist, mechanistic understanding 
of life, in which the human body becomes an archive. This chapter thus complicates 
the standard narrative within the history of science that the notion of a program was 
adapted by biologists from computer science, a narrative that rather remarkably treats 
software as through it always already existed. It also shows how computers, not just in 
terms of content but also of form, are deeply intertwined with questions of biopower.

The final chapter takes up this intertwining of biology and computer technology, 
specifically in terms of memory and transmission. Revising the running hypothesis of 
the first three chapters, chapter 4 shows how digital hardware, which grounds soft-
ware, is itself axiomatic. Through the reading of early work on neural nets and of John 
von Neumann’s work on automata, it reveals how logical hardware reduces events to 
words. Analyzing the importance of the analog to conceptualizing the digital, it argues 
that the digital emerged as a clean, precise logic through an analogy to an analogy. 
Crucially, it argues that computer memory, as a constantly regenerating and degenerat-
ing archive, does not simply erase human agency, but rather makes possible new 
dreams of human intervention and responsibility.



Introduction� 11

As this synopsis hopefully makes clear, understanding software as a thing does 
not mean denigrating software or dismissing it as an ideological construction that 
covers over the “truth” of hardware. It means engaging its odd materializations and 
visualizations closely and refusing to reduce software to codes and algorithms—
readily readable objects—by grappling with its simultaneous ambiguity and specificity. 
As Bill Brown has influentially argued, things designate “the concrete yet ambiguous 
within the everyday,” that is, the thing “functions to overcome the loss of other 
words or as a place holder for some future specifying operation. . . . It designates 
an amorphous characteristic or a frankly irresolvable enigma. . . . Things is a word 
that tends, especially at its most banal, to index a certain limit or liminality, to 
hover over the threshold between the nameable and unnameable, the figureable 
and unfigureable, the identifiable and unidentifiable.”51 Things thus “lie both at 
hand and somewhere outside the theoretical field, beyond a certain limit, as a rec-
ognizable yet illegible remainder or as the entifiable that is unspecifiable.”52 Because 
things simultaneously name the object and something else, they are both reducible 
to and irreducible to objects.53 Whereas we “look through objects (to see what they 
disclose about history, society, nature, or culture—above all, what they disclose about 
us),” we “only catch a glimpse of things.”54 We encounter, but do not entirely 
comprehend, things. According to Brown:55

A thing . . . can hardly function as a window. We begin to confront the thingness of objects 

when they stop working for us: when the drill breaks, when the car stalls, when the windows 

get filthy, when their flow within the circuits of production and distribution, consumption 

and exhibition, has been arrested, however momentarily. The story of objects asserting them-

selves as things, then, is the story of a changed relation to the human subject and thus the 

story of how the thing really names less an object than a particular subject-object relation.56

Crucially, this effort to rethink, and indeed theorize things, is intimately intertwined 
with media: Martin Heidegger begins “The Thing” by outlining the shrinking of time 
and space due to “instant information” (television being the peak of this abolition of 
every possibility of remoteness); Brown argues, “if the topic of things attained a new 
urgency in the closing decades of that [twentieth] century, this may have been a 
response to the digitization of our world—just as, perhaps, the urgency in the 1920s 
was a response to film.”57

This book sees this renewed interest in things, things which always seem to be 
disappearing, not simply as an effect of new media on other “things,” but rather as 
central to the temporality of new media itself. New media, like the computer technology 
on which it relies, races simultaneously toward the future and the past, toward the bleeding 
edge of obsolescence. Software as thing is inseparable from the externalization of 
memory, from the dream and nightmare of an all-encompassing archive that con-
stantly regenerates and degenerates, that beckons us forward and disappears before 
our very eyes.






