
1 Support Vector Machine Solvers

Léon Bottou

Chih-Jen Lin

Considerable efforts have been devoted to the implementation of an efficient opti-

mization method for solving the support vector machine dual problem. This chapter

proposes an in-depth review of the algorithmic and computational issues associated

with this problem. Besides this baseline, we also point out research directions that

are exploited more thoroughly in the rest of this book.

1.1 Introduction

The support vector machine (SVM) algorithm (Cortes and Vapnik, 1995) is prob-

ably the most widely used kernel learning algorithm. It achieves relatively robust

pattern recognition performance using well-established concepts in optimization

theory.

Despite this mathematical classicism, the implementation of efficient SVM solvers

has diverged from the classical methods of numerical optimization. This divergence

is common to virtually all learning algorithms. The numerical optimization lit-

erature focuses on the asymptotic performance: how quickly the accuracy of the

solution increases with computing time. In the case of learning algorithms, two

other factors mitigate the impact of optimization accuracy.

1.1.1 Three Components of the Generalization Error

The generalization performance of a learning algorithm is indeed limited by three

sources of error:

The approximation error measures how well the exact solution can be approxi-

mated by a function implementable by our learning system,

The estimation error measures how accurately we can determine the best function

implementable by our learning system using a finite training set instead of the

2 Support Vector Machine Solvers

unseen testing examples.

The optimization error measures how closely we compute the function that best

satisfies whatever information can be exploited in our finite training set.

The estimation error is determined by the number of training examples and by

the capacity of the family of functions (e.g., Vapnik, 1982). Large families of

functions have smaller approximation errors but lead to higher estimation errors.

This compromise has been extensively discussed in the literature. Well-designed

compromises lead to estimation and approximation errors that scale between the

inverse and the inverse square root of the number of examples (Steinwart and Scovel,

2007).

In contrast, the optimization literature discusses algorithms whose error decreases

exponentially or faster with the number of iterations. The computing time for each

iteration usually grows linearly or quadratically with the number of examples.

It is easy to see that exponentially decreasing optimization errors are irrelevant

in comparison to the other sources of errors. Therefore it is often desirable to use

poorly regarded optimization algorithms that trade asymptotic accuracy for lower

iteration complexity. This chapter describes in depth how SVM solvers have evolved

toward this objective.

1.1.2 Small-Scale Learning vs. Large-Scale Learning

There is a budget for any given problem. In the case of a learning algorithm,

the budget can be a limit on the number of training examples or a limit on the

computation time. Which constraint applies can be used to distinguish small-scale

learning problems from large-scale learning problems.

Small-scale learning problems are constrained by the number of training examples.

The generalization error is dominated by the approximation and estimation errors.

The optimization error can be reduced to insignificant levels since the computation

time is not limited.

Large-scale learning problems are constrained by the total computation time.

Besides adjusting the approximation capacity of the family of function, one can also

adjust the number of training examples that a particular optimization algorithm

can process within the allowed computing resources. Approximate optimization

algorithms can then achieve better generalization error because they process more

training examples (Bottou and LeCun, 2004). Chapters 11 and 13 present such

algorithms for kernel machines.

The computation time is always limited in practice. This is why some aspects of

large-scale learning problems always percolate into small-scale learning problems.

One simply looks for algorithms that can quickly reduce the optimization error

comfortably below the expected approximation and estimation errors. This has

been the main driver for the evolution of SVM solvers.

1.2 Support Vector Machines 3

1.1.3 Contents

The present chapter contains an in-depth discussion of optimization algorithms

for solving the dual formulation on a single processor. Algorithms for solving the

primal formulation are discussed in chapter 2. Parallel algorithms are discussed in

chapters 5 and 6. The objective of this chapter is simply to give the reader a precise

understanding of the various computational aspects of sparse kernel machines.

Section 1.2 reviews the mathematical formulation of SVMs. Section 1.3 presents

the generic optimization problem and performs a first discussion of its algorithmic

consequences. Sections 1.5 and 1.6 discuss various approaches used for solving the

SVM dual problem. Section 1.7 presents the state-of-the-art LIBSVM solver and

explains the essential algorithmic choices. Section 1.8 briefly presents some of the

directions currently explored by the research community. Finally, the appendix links

implementations of various algorithms discussed in this chapter.

1.2 Support Vector Machines

The earliest pattern regognition systems were linear classifiers (Nilsson, 1965). A

pattern x is given a class y = ±1 by first transforming the pattern into a feature vec-

tor Φ(x) and taking the sign of a linear discriminant function ŷ(x) = w>Φ(x) + b.

The hyperplane ŷ(x) = 0 defines a decision boundary in the feature space.

The problem specific feature vector Φ(x) is usually chosen by hand. The pa-

rameters w and b are determined by running a learning procedure on a training

set (x1, y1) · · · (xn, yn).

Three additional ideas define the modern SVMs.

1.2.1 Optimal Hyperplane

The training set is said to be linearly separable when there exists a linear discrimi-

nant function whose sign matches the class of all training examples. When a training

set is linearly separable there usually is an infinity of separating hyperplanes.

Vapnik and Lerner (1963) propose to choose the separating hyperplane that

maximizes the margin, that is to say the hyperplane that leaves as much room as

possible between the hyperplane and the closest example. This optimum hyperplane

is illustrated in figure 1.1.

The following optimization problem expresses this choice:

min P(w, b) =
1

2
w2

subject to ∀i yi(w
>Φ(xi) + b) ≥ 1

(1.1)

Directly solving this problem is difficult because the constraints are quite complex.

The mathematical tool of choice for simplifying this problem is the Lagrangian

duality theory (e.g., Bertsekas, 1995). This approach leads to solving the following

4 Support Vector Machine Solvers

Figure 1.1 The optimal hyperplane separates positive and negative ex-
amples with the maximal margin. The position of the optimal hyperplane is
solely determined by the few examples that are closest to the hyperplane (the
support vectors.)

dual problem:

max D(α) =
n∑

i=1

αi −
1

2

n∑

i,j=1

yiαi yjαj Φ(xi)
>Φ(xj)

subject to

{
∀i αi ≥ 0,
∑

i yiαi = 0.

(1.2)

Problem (1.2) is computationally easier because its constraints are much simpler.

The direction w∗ of the optimal hyperplane is then recovered from a solution α∗

of the dual optimization problem (1.2).

w∗ =
∑

i

α∗
i yiΦ(xi).

Determining the bias b∗ becomes a simple one-dimensional problem. The linear

discriminant function can then be written as

ŷ(x) = w∗>x + b∗ =

n∑

i=1

yiαi Φ(xi)
>Φ(x) + b∗. (1.3)

Further details are discussed in section 1.3.

1.2.2 Kernels

The optimization problem (1.2) and the linear discriminant function (1.3) only

involve the patterns x through the computation of dot products in feature space.

There is no need to compute the features Φ(x) when one knows how to compute

the dot products directly.

1.2 Support Vector Machines 5

Instead of hand-choosing a feature function Φ(x), Boser et al. (1992) propose to

directly choose a kernel function K(x,x′) that represents a dot product Φ(x)>Φ(x′)

in some unspecified high-dimensional space.

The reproducing kernel Hilbert spaces theory (Aronszajn, 1944) precisely states

which kernel functions correspond to a dot product and which linear spaces are

implicitly induced by these kernel functions. For instance, any continuous deci-

sion boundary can be implemented using the radial basis function (RBF) kernel

Kγ(x, y) = e−γ‖x−y‖2

. Although the corresponding feature space has infinite di-

mension, all computations can be performed without ever computing a feature

vector. Complex nonlinear classifiers are computed using the linear mathematics of

the optimal hyperplanes.

1.2.3 Soft Margins

Optimal hyperplanes (section 1.2.1) are useless when the training set is not lin-

early separable. Kernel machines (section 1.2.2) can represent complicated decision

boundaries that accomodate any training set. But this is not very wise when the

problem is very noisy.

Cortes and Vapnik (1995) show that noisy problems are best addressed by

allowing some examples to violate the margin constraints in the primal problem

(1.1). These potential violations are represented using positive slack variables

ξ = (ξi . . . ξn). An additional parameter C controls the compromise between large

margins and small margin violations.

max
w,b,ξ

P(w, b, ξ) =
1

2
w2 + C

n∑

i=1

ξi

subject to

{
∀i yi(w

>Φ(xi) + b) ≥ 1− ξi
∀i ξi ≥ 0

(1.4)

The dual formulation of this soft-margin problem is strikingly similar to the dual

formulation (1.2) of the optimal hyperplane algorithm. The only change is the

appearance of the upper bound C for the coefficients α.

max D(α) =

n∑

i=1

αi −
1

2

n∑

i,j=1

yiαi yjαj K(xi,xj)

subject to

{
∀i 0 ≤ αi ≤ C∑

i yiαi = 0

(1.5)

1.2.4 Other SVM Variants

A multitude of alternative forms of SVMs have been introduced over the years(see

Schölkopf and Smola, 2002, for a review). Typical examples include SVMs for

computing regressions (Vapnik, 1995), for solving integral equations (Vapnik, 1995),

for estimating the support of a density (Schölkopf et al., 2001), SVMs that use

6 Support Vector Machine Solvers

different soft-margin costs (Cortes and Vapnik, 1995), and parameters (Schölkopf

et al., 2000; C.-C. Chang and Lin, 2001). There are also alternative formulations of

the dual problem (Keerthi et al., 1999; Bennett and Bredensteiner, 2000). All these

examples reduce to solving quadratic programming problems similar to (1.5).

1.3 Duality

This section discusses the properties of the SVM quadratic programming problem.

The SVM literature usually establishes basic results using the powerful Karush-

Kuhn-Tucker theorem (e.g., Bertsekas, 1995). We prefer instead to give a more

detailed account in order to review mathematical facts of great importance for the

implementation of SVM solvers.

The rest of this chapter focuses on solving the soft-margin SVM problem (1.4)

using the standard dual formulation (1.5),

max D(α) =
n∑

i=1

αi −
1

2

n∑

i,j=1

yiαi yjαj Kij

subject to

{
∀i 0 ≤ αi ≤ C,∑

i yiαi = 0,

where Kij = K(xi,xj) is the matrix of kernel values.

After computing the solution α∗, the SVM discriminant function is

ŷ(x) = w∗>x + b∗ =
n∑

i=1

α∗
iK(xi,x) + b∗. (1.6)

The optimal bias b∗ can be determined by returning to the primal problem, or,

more efficiently, using the optimality criterion (1.11) discussed below.

It is sometimes convenient to rewrite the box constraint 0 ≤ αi ≤ C as a box

constraint on the quantity yiαi:

yiαi ∈ [Ai, Bi] =

{
[0, C] if yi = +1,

[−C, 0] if yi = −1.
(1.7)

In fact, some SVM solvers, such as SVQP2 (see appendix), optimize variables

βi = yiαi that are positive or negative depending on yi. Other SVM solvers, such

as LIBSVM (see section 1.7), optimize the standard dual variables αi. This chapter

follows the standard convention but uses the constants Ai and Bi defined in (1.7)

when they allow simpler expressions.

1.3.1 Construction of the Dual Problem

The difficulty of the primal problem (1.4) lies with the complicated inequality

constraints that represent the margin condition. We can represent these constraints

1.3 Duality 7

Equality Constraint

Box Constraints

Feasible
Polytope

Figure 1.2 Geometry of the dual SVM problem (1.5). The box constraints
Ai ≤ αi ≤ Bi and the equality constraint

P
αi = 0 define the feasible

polytope, that is, the domain of the α values that satisfy the constraints.

using positive Lagrange coefficients αi ≥ 0.

L(w, b, ξ,α) =
1

2
w2 + C

n∑

i=1

ξi −
n∑

i=1

αi (yi(w
>Φ(xi) + b)− 1 + ξi).

The formal dual objective function D(α) is defined as

D(α) = min
w,b,ξ

L(w, b, ξ,α) subject to ∀i ξi ≥ 0. (1.8)

This minimization no longer features the complicated constraints expressed by the

Lagrange coefficients. The ξi ≥ 0 constraints have been kept because they are easy

enough to handle directly. Standard differential arguments1 yield the analytical

expression of the dual objective function.

D(α) =

{ ∑
i αi − 1

2

∑
i,j yiαi yjαj Kij if

∑
i yiαi = 0 and ∀i αi ≤ C,

−∞ otherwise.

The dual problem (1.5) is the maximization of this expression subject to positivity

constraints αi ≥ 0. The conditions
∑

i yiαi = 0 and ∀i αi ≤ C appear as constraints

in the dual problem because the cases where D(α) = −∞ are not useful for a

maximization.

1. This simple derivation is relatively lenghty because many cases must be considered.

8 Support Vector Machine Solvers

The differentiable function

D(α) =
∑

i

αi −
1

2

∑

i,j

yiαi yjαj Kij

coincides with the formal dual function D(α) when α satisfies the constraints of

the dual problem. By a slight abuse of language, D(α) is also referred to as the

dual objective function.

The formal definition (1.8) of the dual function ensures that the following

inequality holds for any (w, b, ξ) satisfying the primal constraints (1.4) and for

any α satisfying the dual constraints (1.5):

D(α) = D(α) ≤ L(w, b, ξ,α) ≤ P(w, b, ξ) . (1.9)

This property is called weak duality : the set of values taken by the primal is located

above the set of values taken by the dual.

Suppose we can find α∗ and (w∗, b∗, ξ∗) such that D(α∗) = P(w∗, b∗, ξ∗). In-

equality (1.9) then implies that both (w∗, b∗, ξ∗) and α∗ are solutions of the primal

and dual problems. Convex optimization problems with linear constraints are known

to have such solutions. This is called strong duality.

Our goal is now to find such a solution for the SVM problem.

1.3.2 Optimality Criteria

Let α∗ = (α∗
1 . . . α

∗
n) be a solution of the dual problem (1.5). Obviously α∗ satisfies

the dual constraints. Let g∗ = (g∗1 . . . g
∗
n) be the derivatives of the dual objective

function in α∗.

g∗i =
∂D(α∗)

∂αi
= 1− yi

n∑

j=1

yjα
∗
j Kij (1.10)

Consider a pair of subscripts (i, j) such that yiα
∗
i < Bi and Aj < yjα

∗
j . The

constants Ai and Bj were defined in (1.7).

Define αε = (αε
1 . . . α

ε
n) ∈ R

n as

αε
k = α∗

k +





+ε yk if k = i,

−ε yk if k = j,

0 otherwise.

The point αε clearly satisfies the constraints if ε is positive and sufficiently small.

Therefore D(αε) ≤ D(α∗) because α∗ is solution of the dual problem (1.5). On the

other hand, we can write the first-order expansion

D(αε)−D(α∗) = ε (yig
∗
i − yjg

∗
j) + o(ε).

Therefore the difference yig
∗
i − yjg

∗
j is necessarily negative. Since this holds for all

pairs (i, j) such that yiα
∗
i < Bi and Aj < yjα

∗
j , we can write the following necessary

1.3 Duality 9

optimality criterion:

∃ρ ∈ R such that max
i∈Iup

yig
∗
i ≤ ρ ≤ min

j∈Idown

yjg
∗
j , (1.11)

where Iup = { i | yiαi < Bi } and Idown = { j | yjαj > Aj }.
Usually, there are some coefficients α∗

k strictly between their lower and upper

bounds. Since the corresponding ykg
∗
k appear on both sides of the inequality, this

common situation leaves only one possible value for ρ.

We can rewrite (1.11) as

∃ρ ∈ R such that ∀k,
{

if ykg
∗
k > ρ then ykα

∗
k = Bk,

if ykg
∗
k < ρ then ykα

∗
k = Ak,

(1.12)

or, equivalently, as

∃ρ ∈ R such that ∀k,
{

if g∗k > ykρ then α∗
k = C,

if g∗k < ykρ then α∗
k = 0.

(1.13)

Let us now pick

w∗ =
∑

k

ykα
∗
kΦ(xk), b∗ = ρ, and ξ∗k = max{0, g∗k − ykρ}. (1.14)

These values satisfy the constraints of the primal problem (1.4). A short derivation

using (1.10) then gives

P(w∗, b∗, ξ∗)−D(α∗) = C

n∑

k=1

ξ∗k −
n∑

k=1

α∗
kg

∗
k =

n∑

k=1

(Cξ∗k − α∗
kg

∗
k) .

We can compute the quantity Cξ∗k − α∗
kg

∗
k using (1.14) and (1.13). The relation

Cξ∗k − α∗
kg

∗
k = −ykα

∗
kρ holds regardless of whether g∗k is less than, equal to, or

greater than ykρ. Therefore

P(w∗, b∗, ξ∗)−D(α∗) = −ρ
n∑

i=1

yiα
∗
i = 0. (1.15)

This strong duality has two implications:

Our choice for (w∗, b∗, ξ∗) minimizes the primal problem because inequal-

ity (1.9) states that the primal function P(w, b, ξ) cannot take values smaller

than D(α∗) = P(w∗, b∗, ξ∗).

The optimality criteria (1.11—1.13) are in fact necessary and sufficient. Assume

that one of these criteria holds. Choosing (w∗, b∗, ξ∗) as shown above yields the

strong duality property P(w∗, b∗, ξ∗) = D(α∗). Therefore α∗ maximizes the dual

because inequality (1.9) states that the dual function D(α) cannot take values

greater than D(α∗) = P(w∗, b∗, ξ∗).

The necessary and sufficient criterion (1.11) is particularly useful for SVM

10 Support Vector Machine Solvers

solvers (Keerthi et al., 2001).

1.4 Sparsity

The vector α∗ solution of the dual problem (1.5) contains many zeros. The SVM

discriminant function ŷ(x) =
∑

i yiα
∗
iK(xi,x)+b∗ is expressed using a sparse subset

of the training examples called the support vectors (SVs).

From the point of view of the algorithm designer, sparsity provides the oppor-

tunity to considerably reduce the memory and time requirements of SVM solvers.

On the other hand, it is difficult to combine these gains with those brought by

algorithms that handle large segments of the kernel matrix at once (chapter 8). Al-

gorithms for sparse kernel machines, such as SVMs, and algorithms for other kernel

machines, such as Gaussian processes (chapter 9) or kernel independent component

analysis (chapter 10), have evolved differently.

1.4.1 Support Vectors

The optimality criterion (1.13) characterizes which training examples become sup-

port vectors. Recalling (1.10) and (1.14),

gk − ykρ = 1− yk

n∑

i=1

yiαiKik − ykb
∗ = 1− yk ŷ(xk). (1.16)

Replacing in (1.13) gives
{

if yk ŷ(xk) < 1 then αk = C,

if yk ŷ(xk) > 1 then αk = 0.
(1.17)

This result splits the training examples into three categories:2

Examples (xk, yk) such that yk ŷ(xk) > 1 are not support vectors. They do not

appear in the discriminant function because αk = 0.

Examples (xk, yk) such that yk ŷ(xk) < 1 are called bounded support vectors

because they activate the inequality constraint αk ≤ C. They appear in the

discriminant function with coefficient αk = C.

Examples (xk, yk) such that yk ŷ(xk) = 1 are called free support vectors. They

appear in the discriminant function with a coefficient in range [0, C].

Let B represent the best error achievable by a linear decision boundary in the chosen

feature space for the problem at hand. When the training set size n becomes large,

2. Some texts call an example k a free support vector when 0 < αk < C and a bounded
support vector when αk = C. This is almost the same thing as the above definition.

1.4 Sparsity 11

one can expect about Bn misclassified training examples, that is to say yk ŷ ≤ 0. All

these misclassified examples3 are bounded support vectors. Therefore the number

of bounded support vectors scales at least linearly with the number of examples.

When the hyperparameter C follows the right scaling laws, Steinwart (2004) has

shown that the total number of support vectors is asymptotically equivalent to

2Bn. Noisy problems do not lead to very sparse SVMs. Chapter 12 explores ways

to improve sparsity in such cases.

1.4.2 Complexity

There are two intuitive lower bounds on the computational cost of any algorithm

that solves the SVM problem for arbitrary kernel matrices Kij .

Suppose that an oracle reveals which examples are not support vectors (αi = 0),

and which examples are bounded support vectors (αi = C). The coefficients of the

R remaining free support vectors are determined by a system of R linear equations

representing the derivatives of the objective function. Their calculation amounts to

solving such a system. This typically requires a number of operations proportional

to R3.

Simply verifying that a vector α is a solution of the SVM problem involves

computing the gradient g of the dual and checking the optimality conditions (1.11).

With n examples and S support vectors, this requires a number of operations

proportional to n S.

Few support vectors reach the upper bound C when it gets large. The cost is then

dominated by the R3 ≈ S3. Otherwise the term n S is usually larger. The final

number of support vectors therefore is the critical component of the computational

cost of solving the dual problem.

Since the asymptotic number of support vectors grows linearly with the number of

examples, the computational cost of solving the SVM problem has both a quadratic

and a cubic component. It grows at least like n2 when C is small and n3 when C

gets large. Empirical evidence shows that modern SVM solvers come close to these

scaling laws.

1.4.3 Computation of the Kernel Values

Although computing the n2 components of the kernel matrix Kij = K(xi,xj) seems

to be a simple quadratic affair, a more detailled analysis reveals a much more

complicated picture.

Computing kernels is expensive — Computing each kernel value usually involves

3. A sharp-eyed reader might notice that a discriminant function dominated by these Bn
misclassified examples would have the wrong polarity. About Bn additional well-classified
support vectors are needed to correct the orientation of w.

12 Support Vector Machine Solvers

the manipulation of sizable chunks of data representing the patterns. Images

have thousands of pixels (e.g., Boser et al., 1992). Documents have thousands of

words (e.g., Joachims, 1999a). In practice, computing kernel values often accounts

for more than half the total computing time.

Computing the full kernel matrix is wasteful — The expression of the gradi-

ent (1.10) only depend on kernel values Kij that involve at least one support vector

(the other kernel values are multiplied by zero). All three optimality criteria (1.11,

1.12, and 1.13) can be verified with these kernel values only. The remaining kernel

values have no impact on the solution. To determine which kernel values are actu-

ally needed, efficient SVM solvers compute no more than 15% to 50% additional

kernel values (Graf, personal communication). The total training time is usually

smaller than the time needed to compute the whole kernel matrix. SVM programs

that precompute the full kernel matrix are not competitive.

The kernel matrix does not fit in memory — When the number of examples grows,

the kernel matrix Kij becomes very large and cannot be stored in memory. Kernel

values must be computed on the fly or retrieved from a cache of often accessed

values. The kernel cache hit rate becomes a major factor of the training time.

These issues only appear as “constant factors” in the asymptotic complexity of

solving the SVM problem. But practice is dominated by these constant factors.

1.5 Early SVM Algorithms

The SVM solution is the optimum of a well-defined convex optimization problem.

Since this optimum does not depend on the details of its calculation, the choice

of a particular optimization algorithm can be made on the sole basis4 of its com-

putational requirements. High-performance optimization packages, such as MINOS

and LOQO (see appendix), can efficiently handle very varied quadratic program-

ming workloads. There are, however, differences between the SVM problem and the

usual quadratic programming benchmarks.

Quadratic optimization packages were often designed to take advantage of sparsity

in the quadratic part of the objective function. Unfortunately, the SVM kernel

matrix is rarely sparse: sparsity occurs in the solution of the SVM problem.

The specification of an SVM problem rarely fits in memory. Kernel matrix

coefficients must be cached or computed on the fly. As explained in section 1.4.3,

vast speedups are achieved by accessing the kernel matrix coefficients carefully.

Generic optimization packages sometimes make extra work to locate the optimum

with high accuracy. As explained in section 1.1.1, the accuracy requirements of a

learning problem are unusually low.

4. Defining a learning algorithm for a multilayer network is a more difficult exercise.

1.5 Early SVM Algorithms 13

Using standard optimization packages for medium-sized SVM problems is not

straightforward (section 1.6). In fact, all early SVM results were obtained using

adhoc algorithms.

These algorithms borrow two ideas from the optimal hyperplane literature (Vap-

nik, 1982; Vapnik et al., 1984). The optimization is achieved by performing succes-

sive applications of a very simple direction search. Meanwhile, iterative chunking

leverages the sparsity of the solution. We first describe these two ideas and then

present the modified gradient projection algorithm.

1.5.1 Iterative Chunking

The first challenge was, of course, to solve a quadratic programming problem whose

specification does not fit in the memory of a computer. Fortunately, the quadratic

programming problem (1.2) has often a sparse solution. If we knew in advance

which examples are support vectors, we could solve the problem restricted to the

support vectors and verify a posteriori that this solution satisfies the optimality

criterion for all examples.

Let us solve problem (1.2) restricted to a small subset of training examples called

the working set. Because learning algorithms are designed to generalize well, we

can hope that the resulting classifier performs honorably on the remaining training

examples. Many will readily fulfill the margin condition yi ŷ(xi) ≥ 1. Training

examples that violate the margin condition are good support vector candidates.

We can add some of them to the working set, solve the quadratic programming

problem restricted to the new working set, and repeat the procedure until the

margin constraints are satisfied for all examples.

This procedure is not a general-purpose optimization technique. It works effi-

ciently because the underlying problem is a learning problem. It reduces the large

problem to a sequence of smaller optimization problems.

1.5.2 Direction Search

The optimization of the dual problem is then achieved by performing direction

searches along well-chosen successive directions.

Assume we are given a starting point α that satisfies the constraints of the

quadratic optimization problem (1.5). We say that a direction u = (u1 . . . un) is

a feasible direction if we can slightly move the point α along direction u without

violating the constraints.

Formally, we consider the set Λ of all coefficients λ ≥ 0 such that the point

α + λu satisfies the constraints. This set always contains 0. We say that u is a

feasible direction if Λ is not the singleton {0}. Because the feasible polytope is

convex and bounded (see figure 1.2), the set Λ is a bounded interval of the form

[0, λmax].

We seek to maximizes the dual optimization problem (1.5) restricted to the

14 Support Vector Machine Solvers

0

α

maxλ

α

0
maxλ

Figure 1.3 Given a starting point α and a feasible direction u, the
direction search maximizes the function f(λ) = D(α + λu) for λ ≥ 0 and
α + λu satisfying the constraints of (1.5).

half-line {α + λu, λ ∈ Λ}. This is expressed by the simple optimization problem

λ∗ = arg max
λ∈Λ

D(α + λu).

Figure 1.3 represent values of the D(α + λu) as a function of λ. The set Λ is

materialized by the shaded areas. Since the dual objective function is quadratic,

D(α + λu) is shaped like a parabola. The location of its maximum λ+ is easily

computed using Newton’s formula:

λ+ =

∂D(α+λu)
∂λ

∣∣∣
λ=0

∂2D(α+λu)
∂λ2

∣∣∣
λ=0

=
g>u

u>Hu
,

where vector g and matrix H are the gradient and the Hessian of the dual objective

function D(α),

gi = 1− yi

∑

j

yjαj Kij and Hij = yiyjKij .

The solution of our problem is then the projection of the maximum λ+ into the

interval Λ = [0, λmax],

λ∗ = max

(
0, min

(
λmax,

g>u

u>Hu

))
. (1.18)

This formula is the basis for a family of optimization algorithms. Starting from an

initial feasible point, each iteration selects a suitable feasible direction and applies

the direction search formula (1.18) until reaching the maximum.

1.5.3 Modified Gradient Projection

Several conditions restrict the choice of the successive search directions u.

1.5 Early SVM Algorithms 15

The equality constraint (1.5) restricts u to the linear subspace
∑

i yiui = 0.

The box constraints (1.5) become sign constraints on certain coefficients of u.

Coefficient ui must be non-negative if αi = 0 and non-positive if αi = C.

The search direction must be an ascent direction to ensure that the search makes

progress toward the solution. Direction u must belong to the half-space g>u > 0

where g is the gradient of the dual objective function.

Faster convergence rates are achieved when successive search directions are

conjugate, that is, u>Hu′ = 0, where H is the Hessian and u′ is the last search

direction. Similar to the conjugate gradient algorithm (Golub and Van Loan, 1996),

this condition is more conveniently expressed as u>(g−g′) = 0 where g′ represents

the gradient of the dual before the previous search (along direction u′).

Finding a search direction that simultaneously satisfies all these restrictions is far

from simple. To work around this difficulty, the optimal hyperplane algorithms of

the 1970s (see Vapnik, 1982, addendum I, section 4) exploit a reparametrization

of the dual problem that squares the number of variables to optimize. This algo-

rithm (Vapnik et al., 1984) was in fact used by Boser et al. (1992) to obtain the

first experimental results for SVMs.

The modified gradient projection technique addresses the direction selection

problem more directly. This technique was employed at AT&T Bell Laboratories

to obtain most early SVM results (Bottou et al., 1994; Cortes and Vapnik, 1995).

Algorithm 1.1 Modified gradient projection

1: α← 0
2: B← ∅
3: while there are examples violating the optimality condition, do
4: Add some violating examples to working set B.
5: loop
6: ∀k ∈ B gk ← ∂D(α)/∂αk using (1.10)
7: repeat % Projection–eviction loop
8: ∀k /∈ B uk ← 0
9: ρ← mean{ ykgk | k ∈ B }
10: ∀k ∈ B uk ← gk − ykρ % Ensure

P
i yiui = 0

11: B← B \ { k ∈ B | (uk > 0 and αk = C) or (uk < 0 and αk = 0) }
12: until B stops changing
13: if u = 0 exit loop
14: Compute λ∗ using (1.18) % Direction search
15: α← α + λ∗u
16: end loop
17: end while

The four conditions on the search direction would be much simpler without

the box constraints. It would then be sufficient to project the gradient g on the

linear subspace described by the equality constraint and the conjugation condition.

Modified gradient projection recovers this situation by leveraging the chunking

16 Support Vector Machine Solvers

procedure. Examples that activate the box constraints are simply evicted from the

working set!

Algorithm 1.1 illustrates this procedure. For simplicity we omit the conjugation

condition. The gradient g is simply projected (lines 8–10) on the linear subspace

corresponding to the inequality constraint. The resulting search direction u might

drive some coefficients outside the box constraints. When this is the case, we remove

these coefficients from the working set (line 11) and return to the projection stage.

Modified gradient projection spends most of the computing time searching for

training examples violating the optimality conditions. Modern solvers simplify this

step by keeping the gradient vector g up to date and leveraging the optimality

condition (1.11).

1.6 The Decomposition Method

Quadratic programming optimization methods achieved considerable progress be-

tween the invention of the optimal hyperplanes in the 1960s and the definition of

the contemportary SVM in the 1990s. It was widely believed that superior per-

formance could be achieved using state-of-the-art generic quadratic programming

solvers such as MINOS or LOQO (see appendix).

Unfortunately the designs of these solvers assume that the full kernel matrix is

readily available. As explained in section 1.4.3, computing the full kernel matrix

is costly and unneeded. Decomposition methods (Osuna et al., 1997b; Saunders

et al., 1998; Joachims, 1999a) were designed to overcome this difficulty. They

address the full-scale dual problem (1.5) by solving a sequence of smaller quadratic

programming subproblems.

Iterative chunking (section 1.5.1) is a particular case of the decomposition

method. Modified gradient projection (section 1.5.3) and shrinking (section 1.7.3)

are slightly different because the working set is dynamically modified during the

subproblem optimization.

1.6.1 General Decomposition

Instead of updating all the coefficients of vector α, each iteration of the decompo-

sition method optimizes a subset of coefficients αi, i ∈ B and leaves the remaining

coefficients αj , j /∈ B unchanged.

Starting from a coefficient vector α we can compute a new coefficient vector α′

by adding an additional constraint to the dual problem (1.5) that represents the

1.6 The Decomposition Method 17

frozen coefficients:

max
α′

D(α′) =
n∑

i=1

α′
i −

1

2

n∑

i,j=1

yiα
′
i yjα

′
j K(xi,xj)

subject to





∀i /∈ B α′
i = αi,

∀i ∈ B 0 ≤ α′
i ≤ C,∑

i yiα
′
i = 0.

(1.19)

We can rewrite (1.19) as a quadratic programming problem in variables αi, i ∈ B

and remove the additive terms that do not involve the optimization variables α′:

max
α′

∑

i∈B

α′
i


1− yi

∑

j /∈B

yjαj Kij


− 1

2

∑

i∈B

∑

j∈B

yiα
′
i yjα

′
j Kij

subject to ∀i ∈ B 0 ≤ α′
i ≤ C and

∑

i∈B

yiα
′
i = −

∑

j /∈B

yjαj .

(1.20)

Algorithm 1.2 Decomposition method

1: ∀k ∈ {1 . . . n} αk ← 0 % Initial coefficients
2: ∀k ∈ {1 . . . n} gk ← 1 % Initial gradient

3: loop
4: Gmax ← maxi yigi subject to yiαi < Bi

5: Gmin ← minj yjgj subject to Aj < yjαj

6: if Gmax ≤ Gmin stop. % Optimality criterion (1.11)

7: Select a working set B ⊂ {1 . . . n} % See text

8: α
′ ← arg max

α′

X

i∈B

α′
i

0
@1− yi

X

j /∈B

yjαj Kij

1
A− 1

2

X

i∈B

X

j∈B

yiα
′
i yjα

′
j Kij

subject to ∀i ∈ B 0 ≤ α′
i ≤ C and

X

i∈B

yiα
′
i = −

X

j /∈B

yjαj

9: ∀k ∈ {1 . . . n} gk ← gk − yk

X

i∈B

yi(α
′
i − αi)Kik % Update gradient

10: ∀i ∈ B αi ← α′
i % Update coefficients

11: end loop

Algorithm 1.2 illustrates a typical application of the decomposition method.

It stores a coefficient vector α = (α1 . . . αn) and the corresponding gradient

vector g = (g1 . . . gn). This algorithm stops when it achieves5 the optimality

criterion (1.11). Each iteration selects a working set and solves the corresponding

subproblem using any suitable optimization algorithm. Then it efficiently updates

the gradient by evaluating the difference between the old gradient and the new

5. With some predefined accuracy, in practice. See section 1.7.1.

18 Support Vector Machine Solvers

gradient and updates the coefficients. All these operations can be achieved using

only the kernel matrix rows whose indices are in B. This careful use of the kernel

values saves both time and memory, as explained in section 1.4.3

The definition of (1.19) ensures that D(α′) ≥ D(α). The question is then to

define a working set selection scheme that ensures that the increasing values of the

dual reach the maximum.

Like the modified gradient projection algorithm (section 1.5.3) we can construct

the working sets by eliminating coefficients αi when they hit their lower or upper

bound with sufficient strength.

Joachims (1999a) proposes a systematic approach. Working sets are constructed

by selecting a predefined number of coefficients responsible for the most severe

violation of the optimality criterion (1.11). Section 1.7.2.2 illustrates this idea in

the case of working sets of size two.

Decomposition methods are related to block coordinate descent in bound-constrained

optimization (Bertsekas, 1995). However the equality constraint
∑

i yiαi = 0 makes

the convergence proofs more delicate. With suitable working set selection schemes,

asymptotic convergence results state that any limit point of the infinite sequence

generated by the algorithm is an optimal solution (e.g., C.-C. Chang et al., 2000; C.-

J. Lin, 2001; Hush and Scovel, 2003; List and Simon, 2004; Palagi and Sciandrone,

2005). Finite termination results state that the algorithm stops with a predefined

accuracy after a finite time (e.g., C.-J. Lin, 2002).

1.6.2 Decomposition in Practice

Different optimization algorithms can be used for solving the quadratic program-

ming subproblems (1.20). The Royal Holloway SVM package was designed to com-

pare various subproblem solvers (Saunders et al., 1998). Advanced solvers such as

MINOS or LOQO have relatively long setup times. Their higher asymptotic con-

vergence rate is not very useful because a coarse solution is often sufficient for

learning applications. Faster results were often achieved using SVQP, a simplified

version of the modified gradient projection algorithm (section 1.5.3): the outer loop

of algorithm 1.1 was simply replaced by the main loop of algorithm 1.2.

Experiments with various working set sizes also gave surprising results. The

best learning times were often achieved using working sets containing very few

examples (Joachims, 1999a; Platt, 1999; Collobert, 2004).

1.6.3 Sequential Minimal Optimization

Platt (1999) proposes to always use the smallest possible working set size, that is,

two elements. This choice dramatically simplifies the decomposition method.

Each successive quadratic programming subproblem has two variables. The equal-

ity constraint makes this a one-dimensional optimization problem. A single direction

1.6 The Decomposition Method 19

search (section 1.5.2) is sufficient to compute the solution.

The computation of the Newton step (1.18) is very fast because the direction u

contains only two nonzero coefficients.

The asymptotic convergence and finite termination properties of this particular

case of the decomposition method are very well understood (e.g., Keerthi and

Gilbert, 2002; Takahashi and Nishi, 2005; P.-H. Chen et al., 2006; Hush et al.,

2006).

The sequential minimal optimization (SMO) algorithm 1.3 selects working sets

using the maximum violating pair scheme. Working set selection schemes are

discussed more thoroughly in section 1.7.2. Each subproblem is solved by performing

a search along a direction u containing only two nonzero coefficients: ui = yi and

uj = −yj . The algorithm is otherwise similar to algorithm 1.2. Implementation

issues are discussed more thoroughly in section 1.7.

Algorithm 1.3 SMO with maximum violating pair working set selection

1: ∀k ∈ {1 . . . n} αk ← 0 % Initial coefficients
2: ∀k ∈ {1 . . . n} gk ← 1 % Initial gradient

3: loop
4: i← arg maxi yigi subject to yiαi < Bi

5: j ← arg minj yjgj subject to Aj < yjαj % Maximal violating pair
6: if yigi ≤ yjgj stop. % Optimality criterion (1.11)

7: λ← min


Bi − yiαi, yjαj −Aj ,

yigi − yjgj

Kii + Kjj − 2Kij

ff
% Direction search

8: ∀k ∈ {1 . . . n} gk ← gk − λyk Kik + λyk Kjk % Update gradient
9: αi ← αi + yiλ αj ← αj − yjλ % Update coefficients
10: end loop

The practical efficiency of the SMO algorithm is very compelling. It is easier

to program and often runs as fast as careful implementations of the full fledged

decomposition method.

SMO prefers sparse search directions over conjugate search directions (sec-

tion 1.5.3). This choice sometimes penalizes SMO when the soft-margin parameter

C is large. Reducing C often corrects the problem with little change in generaliza-

tion performance. Second-order working set selection (section 1.7.2.3) also helps.

The most intensive part of each iteration of algorithm 1.3 is the update of the

gradient on line 8. These operations require the computation of two full rows of the

kernel matrix. The shrinking technique (Joachims, 1999a) reduces this calculation.

This is very similar to the decomposition method (algorithm 1.2) where the working

sets are updated on the fly, and where successive subproblems are solved using SMO

(algorithm 1.3). See section 1.7.3 for details.

20 Support Vector Machine Solvers

1.7 A Case Study: LIBSVM

This section explains the algorithmic choices and discusses the implementation

details of a modern SVM solver. The LIBSVM solver (version 2.82; see appendix) is

based on the SMO algorithm, but relies on a more advanced working set selection

scheme. After discussing the stopping criteria and the working set selection, we

present the shrinking heuristics and their impact on the design of the cache of

kernel values.

This section discusses the dual maximization problem

max D(α) =

n∑

i=1

αi −
1

2

n∑

i,j=1

yiαi yjαj K(xi,xj)

subject to

{
∀i 0 ≤ αi ≤ C,∑

i yiαi = 0

Let g = (g1 . . . gn) be the gradient of the dual objective function,

gi =
∂D(α)

∂αi
= 1− yi

n∑

k=1

ykαk Kik.

Readers studying the source code should be aware that LIBSVM was in fact

written as the minimization of −D(α) instead of the maximization of D(α). The

variable G[i] in the source code contains −gi instead of gi.

1.7.1 Stopping Criterion

The LIBSVM algorithm stops when the optimality criterion (1.11) is reached with

a predefined accuracy ε,

max
i∈Iup

yigi − min
j∈Idown

yjgj < ε, (1.21)

where Iup = { i | yiαi < Bi } and Idown = { j | yjαj > Aj } as in (1.11).

Theoretical results establish that SMO achieves the stopping criterion (1.21)

after a finite time. These finite termination results depend on the chosen working

set selection scheme. (See Keerthi and Gilbert, 2002; Takahashi and Nishi, 2005;

P.-H. Chen et al., 2006; Bordes et al., 2005, appendix).

Schölkopf and Smola (2002, section 10.1.1) propose an alternate stopping crite-

rion based on the duality gap (1.15). This criterion is more sensitive to the value

of C and requires additional computation. On the other hand, Hush et al. (2006)

propose a setup with theoretical guarantees on the termination time.

1.7 A Case Study: LIBSVM 21

1.7.2 Working Set Selection

There are many ways to select the pair of indices (i, j) representing the working set

for each iteration of the SMO algorithm.

Assume a given iteration starts with coefficient vector α. Only two coefficients of

the solution α′ of the SMO subproblem differ from the coefficients of α. Therefore

α′ = α + λu where the direction u has only two nonzero coefficients. The equality

constraint further implies that
∑

k ykuk = 0. Therefore it is sufficient to consider

directions uij = (uij
1 . . . u

ij
n) such that

uij
k =





yi if k = i,

−yj if k = j,

0 otherwise.

(1.22)

The subproblem optimization then requires a single direction search (1.18) along

direction uij (for positive λ) or direction −uij = uji (for negative λ). Working set

selection for the SMO algorithm then reduces to the selection of a search direction

of the form (1.22). Since we need a feasible direction, we can further require that

i ∈ Iup and j ∈ Idown.

1.7.2.1 Maximal Gain Working Set Selection

Let U = {uij | i ∈ Iup, j ∈ Idown } be the set of the potential search directions. The

most effective direction for each iteration should be the direction that maximizes

the increase of the dual objective function:

u∗ = arg max
uij∈U

max
0≤λ

D(α + λuij)−D(α)

subject to

{
yiαi + λ ≤ Bi,

yjαj − λ ≥ Aj .

(1.23)

Unfortunately the search of the best direction uij requires iterating over the n(n−1)

possible pairs of indices. The maximization of λ then amounts to performing a

direction search. These repeated direction searches would virtually access all the

kernel matrix during each SMO iteration. This is not acceptable for a fast algorithm.

Although maximal gain working set selection may reduce the number of itera-

tions, it makes each iteration very slow. Practical working set selection schemes

need to simplify problem (1.23) in order to achieve a good compromise between the

number of iterations and the speed of each iteration.

22 Support Vector Machine Solvers

1.7.2.2 Maximal Violating Pair Working Set Selection

The most obvious simplification of (1.23) consists in performing a first-order

approximation of the objective function

D(α + λuij)−D(α) ≈ λ g>uij ,

and, in order to make this approximation valid, to replace the constraints by a

constraint that ensures that λ remains very small. This yields problem

u∗ = arg max
uij∈U

max
0≤λ≤ε

λ g>uij .

We can assume that there is a direction u ∈ U such that g>u > 0 because we

would otherwise have reached the optimum (see section 1.3.2). Maximizing in λ

then yields

u∗ = arg max
uij∈U

g>uij . (1.24)

This problem was first studied by Joachims (1999a). A first look suggests that we

may have to check the n(n− 1) possible pairs (i, j). However, we can write

max
uij∈U

g>uij = max
i∈Iup j∈Idown

(yigi − yjgj) = max
i∈Iup

yigi − min
j∈Idown

yjgj .

We recognize here the usual optimality criterion (1.11). The solution of (1.24) is

therefore the maximal violating pair (Keerthi et al., 2001)

i = arg max
k∈Iup

ykgk,

j = arg min
k∈Idown

ykgk.
(1.25)

This computation require a time proportional to n. Its results can immediately be

reused to check the stopping criterion (1.21). This is illustrated in algorithm 1.3.

1.7.2.3 Second-Order Working Set Selection

Computing (1.25) does not require any additional kernel values. However, some

kernel values will eventually be needed to perform the SMO iteration (see algo-

rithm 1.3, lines 7 and 8). Therefore we have the opportunity to do better with

limited additional costs.

Instead of a linear approximation of (1.23), we can keep the quadratic gain

D(α + λuij)−D(α) = λ(yigi − yjgj)−
λ2

2
(Kii +Kjj − 2Kij)

but eliminate the constraints. The optimal λ is then

yigi − yjgj

Kii +Kjj − 2Kij
,

1.7 A Case Study: LIBSVM 23

and the corresponding gain is

(yigi − yjgj)
2

2(Kii +Kjj − 2Kij)
.

Unfortunately the maximization

u∗ = arg max
uij∈U

(yigi − yjgj)
2

2(Kii +Kjj − 2Kij)
subject to yigi > yjgj (1.26)

still requires an exhaustive search through the the n(n−1) possible pairs of indices.

A viable implementation of the second-order working set selection must heuristically

restrict this search.

The LIBSVM solver uses the following procedure (Fan et al., 2005a):

i = arg max
k∈Iup

ykgk

j = arg max
k∈Idown

(yigi − ykgk)2

2(Kii +Kkk − 2Kik)
subject to yigi > ykgk .

(1.27)

The computation of i is exactly as for the maximal violating pair scheme. The

computation of j can be achieved in time proportional to n. It only requires the

diagonal of the kernel matrix, which is easily cached, and the ith row of the kernel

matrix, which is required anyway to update the gradients (algorithm 1.3, line 8).

We omit the discussion of Kii +Kjj−2Kij = 0. See (Fan et al., 2005a) for details

and experimental results. The convergence of this working set selection scheme is

proved in (P.-H. Chen et al., 2006).

Note that the first-order (1.24) and second-order (1.26) problems are only used for

selecting the working set. They do not have to maintain the feasibility constraint of

the maximal gain problem (1.23). Of course the feasibility constraints must be taken

into account during the computation of α′ that is performed after the determination

of the working set. Some authors (Lai et al., 2003; Glasmachers and Igel, 2006)

maintain the feasibility constraints during the working set selection. This leads to

different heuristic compromises.

1.7.3 Shrinking

The shrinking technique reduces the size of the problem by temporarily eliminating

variables αi that are unlikely to be selected in the SMO working set because they

have reached their lower or upper bound (Joachims, 1999a). The SMO iterations

then continue on the remaining variables. Shrinking reduces the number of kernel

values needed to update the gradient vector (see algorithm 1.3, line 8). The hit rate

of the kernel cache is therefore improved.

For many problems, the number of free support vectors (section 1.4.1) is relatively

small. During the iterative process, the solver progressively identifies the partition

of the training examples into nonsupport vectors (αi = 0), bounded support

vectors (αi = C), and free support vectors. Coefficients associated with nonsupport

24 Support Vector Machine Solvers

vectors and bounded support vectors are known with high certainty and are good

candidates for shrinking.

Consider the sets6

Jup(α) = { k | ykgk > m(α)} with m(α) = max
i∈Iup

yigi, and

Jdown(α) = { k | ykgk < M(α)} with M(α) = min
j∈Idown

yjgj .

With these definitions, we have

k ∈ Jup(α) =⇒ k /∈ Iup =⇒ αk = ykBk, and

k ∈ Jdown(α) =⇒ k /∈ Idown =⇒ αk = ykAk.

In other words, these sets contain the indices of variables αk that have reached

their lower or upper bound with a sufficiently “strong” derivative, and therefore

are likely to stay there.

Let α∗ be an arbitrary solution of the dual optimization problem. The quantities

m(α∗), M(α∗), and yk gk(α∗) do not depend on the chosen solution (P.-H. Chen

et al., 2006, theorem 4). Therefore the sets J∗
up = Jup(α∗) and J∗

down = Jdown(α∗)

are also independent of the chosen solution.

There is a finite number of possible sets Jup(α) or Jdown(α). Using the continuity

argument of (P.-H. Chen et al., 2006, theorem 6), both sets Jup(α) and Jdown(α)

reach and keep their final values J∗
up and J∗

down after a finite number of SMO

iterations.

Therefore the variables αi, i ∈ J∗
up∪J∗

down also reach their final values after a finite

number of iterations and can then be safely eliminated from the optimization. In

practice, we cannot be certain that Jup(α) and Jdown(α) have reached their final

values J∗
up and J∗

down. We can, however, tentatively eliminate these variables and

check later whether we were correct.

The LIBSVM shrinking routine is invoked every min(n, 1000) iterations. It dy-

namically eliminates the variables αi whose indices belong to Jup(α) ∪ Jdown(α).

Since this strategy may be too aggressive, unshrinking takes place whenever

m(αk)−M(αk) < 10ε, where ε is the stopping tolerance (1.21). The whole gradient

vector g is first reconstructed. All variables that do not belong to Jup(α) or

Jdown(α) are then reactivated.

The reconstruction of the full gradient g can be quite expensive. To decrease this

cost, LIBSVM maintains an additional vector ḡ = (ḡ1 . . . ḡn)

ḡi = yi

∑

αk=C

ykαk Kik = yiC
∑

αk=C

yk Kik.

6. In these definitions, Jup, Jdown, and gk implicitely depend on α.

1.7 A Case Study: LIBSVM 25

during the SMO iterations. This vector needs to be updated whenever an SMO

iteration causes a coefficient αk to reach or leave the upper bound C. The full

gradient vector g is then reconstructed using the relation

gi = 1− ḡi − yi

∑

0<αk<C

ykαk Kik.

The shrinking operation never eliminates free variables (0 < αk < C). Therefore

this gradient reconstruction only needs rows of the kernel matrix that are likely to

be present in the kernel cache.

1.7.4 Implementation Issues

Two aspects of the implementation of a robust solver demand particular attention:

numerical accuracy and caching.

1.7.4.1 Numerical Accuracy

Numerical accuracy matters because many parts of the algorithm distinguish the

variables αi that have reached their bounds from the other variables. Inexact

computations could unexpectedly change this partition of the optimization variables

with catastrophic consequences.

Algorithm 1.3 updates the variables αi without precautions (line 9). The LIBSVM

code makes sure, when a direction search hits the box constraints, that at least one

of the coefficients αi or αj is exactly equal to its bound. No particular attention is

then necessary to determine which coefficients of α have reached a bound.

Other solvers use the opposite approach (e.g., SVQP2) and always use a small

tolerance to decide whether a variable has reached its lower or upper bound.

1.7.4.2 Data Structure for the Kernel Cache

Each entry i of the LIBSVM kernel cache represents the ith row of the kernel matrix,

but stores only the first li ≤ n row coefficients Ki1 . . . Ki li . The variables li are

dynamically adjusted to reflect the known kernel coefficients.

Shrinking is performed by permuting the examples in order to give the lower

indices to the active set. Kernel entries for the active set are then grouped at the

beginning of each kernel matrix row. To swap the positions of two examples, one

has to swap the corresponding coefficients in vectors α, g, ḡ and the corresponding

entries in the kernel cache.

When the SMO algorithm needs the first l elements of a particular row i, the

LIBSVM caching code retrieves the corresponding cache entry i and the number li
of cached coefficients. Missing kernel values are recomputed and stored. Finally, a

pointer to the stored row is returned.

The LIBSVM caching code also maintains a circular list of recently used rows.

Whenever the memory allocated for the cached rows exceeds the predefined maxi-

26 Support Vector Machine Solvers

mum, the cached coefficients for the least recently used rows are deallocated.

1.8 Conclusion and Outlook

This chapter has presented the state-of-the-art technique to solve the SVM dual

optimization problem with an accuracy that comfortably exceeds the needs of most

machine learning applications. Like early SVM solvers, these techniques perform

repeated searches along well-chosen feasible directions (section 1.5.2). The choice

of search directions must balance several objectives:

Search directions must be sparse: the SMO search directions have only two

nonzero coefficients (section 1.6.3).

Search directions must leverage the cached kernel values. The decomposition

method (section 1.6) and the shrinking heuristics (section 1.7.3) are means to

achieve this objective.

Search directions must offer good chances to increase the dual objective function

(section 1.7.2).

This simple structure provides opportunities for large-scale problems. Search direc-

tions are usually selected on the basis of the gradient vector which can be costly to

compute. Chapter 13 uses an approximate optimization algorithm that partly relies

on chance to select the successive search directions (Bordes et al., 2005).

Approximate optimization can yield considerable speedups because there is no

point in achieving a small optimization error when the estimation and approxima-

tion errors are relatively large. However, the determination of stopping criteria in

dual optimization can be very challenging (Tsang et al., 2005; Loosli and Canu,

2006). In chapter 2, the approximate optimization of the primal is claimed to be

more efficient. In chapter 11, very direct greedy algorithms are advocated.

Global approaches have been proposed for the approximate representation (Fine

and Scheinberg, 2001) or computation (chapter 8) of the kernel matrix. These

methods can be very useful for nonsparse kernel machines (chapters 9 and 10).

In the case of support vector machines, it remains difficult to achieve the benefits

of these methods without partly losing the benefits of sparsity.

This chapter has solely discussed support vector machines with arbitrary kernels.

Specific choices of kernels can also lead to dramatic speedups (chapters 7, 3, and 4).

Acknowledgments

Part of this work was funded by NSF grant CCR-0325463. Chih-Jen Lin thanks his

students for proofreading the paper.

1 Appendix 27

Appendix

1.A Online Resources

LIBSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) has been presented in

section 1.7. It implements SVM classification, SVM regression, and one-class SVM

using both the C-SVM and ν-SVM formulations. It handles multiclass problems

using the one-vs.-one heuristic.

SVMlight (http://svmlight.joachims.org) is a very widely used solver for SVM

classification, SVM regression, SVM ranking, and transductive SVM (Joachims,

1999a). It implements algorithms for quickly computing leave-one-out estimates of

the generalization error. It offers more options than LIBSVM at the price of some

additional complexity.

SimpleSVM (http://asi.insa-rouen.fr/~gloosli/simpleSVM.html) implements

the simple SVM algorithm (Vishwanathan et al., 2003) in MATLAB. It offers ac-

ceptable performance because it properly caches the kernel values instead of pre-

computing the full kernel matrix.

SVQP and SVQP2 (http://leon.bottou.org/projects/svqp) are two compact

C++ libraries for solving the SVM problem. SVQP2 is a self-contained SMO

implementation with state-of-the-art performance. It implements hybrid maximum

gain working set selection (Glasmachers and Igel, 2006) and has a mode for solving

SVMs without bias. SVQP is a relatively old implementation of the modified

gradient projection (section 1.5.3) to be used with the decomposition method.

Royal Holloway SVM (http://svm.dcs.rhbnc.ac.uk/dist/index.shtml) is an older

solver based using the decomposition method around the SVQP, MINOS, or LOQO

solvers (Saunders et al., 1998).

MINOS (http://www.sbsi-sol-optimize.com/asp/sol_products_minos.htm) is a

generic quadratic programming package that was often used by early SVM im-

plementations.

LOQO (http://www.princeton.edu/~rvdb/loqo) is a generic quadratic program-

ming package using advanced interior point and primal-dual optimization meth-

ods (Vanderbei, 1999).

The kernel machines (http://www.kernel-machines.org/software.html) site lists a

large number of software packages for kernel machines. Considerable variability

should be expected in the quality of the software packages and the accuracy of the

claims.

