
Preface

The methods of conventional statistics were developed in times where both dataset

collection and modeling were carried out with paper and pencil. The appearance of

computers first displaced the pencil for model calculation. Machine learning gained

prominence by exploiting this new opportunity, enabling the construction of efficient

high-dimensional models using comparatively small training sets

Another change of similar magnitude is underway. Pervasive and networked

computers have reduced the cost of collecting and distributing large-scale datasets.

We now need learning algorithms that scale linearly with the volume of the data,

while maintaining enough statistical efficiency to outperform algorithms that simply

process a random subset of the data.

For the sake of the argument, assume that there are only two categories of

computers. The first category, the “makers,” directly mediate human activity. They

implement the dialogue between sellers and buyers, run the accounting department,

control industrial processes, route telecommunications, etc. The makers generate

and collect huge quantities of data. The second category, the “thinkers,” analyze

this data, build models, and draw conclusions that direct the activity of the makers.

Makers produce datasets whose size grows linearly with their collective computing

power. We can roughly write this size as nd where n is a number of examples and

d the number of features per example. The computational needs of state-of-the-art

learning algorithms typically grow like n2d or nd2. If thinkers were to use these

algorithms, their collective computing power would have to vastly exceed that of

the makers. This is economically infeasible. The Googles of this world cannot deploy

vastly more resources than all their customers together: their advertisement income

cannot exceed the wealth of those who receive the messages, because the advertisers

would never sell enough to recoup their expense.

The title “Large-Scale Kernel Machines” may appear to be a contradiction in

terms. Kernel machines are often associated with dual techniques that implement

very large parameter spaces at the expense of scalability in the number of examples.

However, as was made clear during the NIPS 2005 workshop, kernel machines

can scale nicely by cleverly approximating the conventional optimization problem

solved during learning. Because we derive these large-scale systems from relatively

well understood kernel machines, we can assess more soundly the impact of their

increased scalability on their statistical efficiency.

This book offers solutions to researchers and engineers seeking to solve practical

learning problems with large-scale datasets. Algorithms are described in detail;
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experiments have been carried out on realistically large datasets. Many contributors

have made their code and data available online.

This book is also intended for researchers seeking to increase our conceptual

understanding of large-scale learning. Large-scale learning research so far has mostly

been empirical. Many useful algorithms lack firm theoretical grounds. This book

gathers information that can help address the discrepancy between advances in

machine learning mathematics and advances in machine learning algorithms.

The first chapter provides a very detailed description of state-of-the-art support

vector machine (SVM) technology. It also reviews the essential concepts discussed

in the book. The second chapter compares primal and dual optimization techniques.

The following chapters progress from well understood techniques to more and more

controversial approaches. This is, of course, a very subjective assessment since most

chapters contain both aspects. This progression includes:

Fast implementation of known algorithms, leveraging special kernels, sparse data,

or parallel computers. Some chapters describe experimental setups that should be

considered as masterpieces of engineering.

Approximations that are amenable to theoretical guarantees, such as multipole

approximations and fast matrix-vector multiplication.

Algorithms that perform very well in practice but are difficult to analyze theoret-

ically. This part includes three very effective methods to improve the scalability of

kernel machines: greedy selection, nonconvex optimization, and selective sampling.

Finally, we invited the authors of the final chapter to rationalize their mistrust in

kernel algorithms for large-scale problems. They consider problems that animals

perform effortlessly, such as perception and control. They argue convincingly that

local kernel representations are inefficient for these problems. Meanwhile, this

argument might not apply to other relevant tasks, such as mining transaction logs.

This analysis suggests that this class of problems is different enough to justify a

specific scientific approach.
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