
1 Measuring Similarity with Kernels

1.1 Introduction

Over the last ten years, estimation and learning methods utilizing positive definite
kernels have become rather popular, particularly in machine learning. Since these
methods have a stronger mathematical slant than earlier machine learning methods
(e.g., neural networks), there is also significant interest in the statistical and math-
ematical community for these methods. The present chapter aims to summarize
the state of the art on a conceptual level. In doing so, we build on various sources
(including Vapnik (1998); Burges (1998); Cristianini and Shawe-Taylor (2000); Her-
brich (2002) and in particular Schölkopf and Smola (2002)), but we also add a fair
amount of recent material which helps in unifying the exposition.

The main idea of all the described methods can be summarized in one paragraph.
Traditionally, theory and algorithms of machine learning and statistics have been
very well developed for the linear case. Real-world data analysis problems, on the
other hand, often require nonlinear methods to detect the kind of dependences that
allow successful prediction of properties of interest. By using a positive definite
kernel, one can sometimes have the best of both worlds. The kernel corresponds
to a dot product in a (usually high-dimensional) feature space. In this space, our
estimation methods are linear, but as long as we can formulate everything in terms
of kernel evaluations, we never explicitly have to work in the high-dimensional
feature space.

1.2 Kernels

1.2.1 An Introductory Example

Suppose we are given empirical data

(x1, y1), . . . , (xn, yn) ∈ X× Y. (1.1)

Here, the domain X is some nonempty set that the inputs xi are taken from; the
yi ∈ Y are called targets. Here and below, i, j = 1, . . . , n.

Note that we have not made any assumptions on the domain X other than it being
a set. In order to study the problem of learning, we need additional structure. In

4 Measuring Similarity with Kernels

o
+

+

+

+

o
o

c+

c-

x-c

w

x

c

.

Figure 1.1 A simple geometric classification algorithm: given two classes of points
(depicted by ‘o’ and ‘+’), compute their means c+, c− and assign a test input x to the
one whose mean is closer. This can be done by looking at the dot product between x − c
(where c = (c+ + c−)/2) and w := c+ − c−, which changes sign as the enclosed angle
passes through π/2. Note that the corresponding decision boundary is a hyperplane (the
dotted line) orthogonal to w (from Schölkopf and Smola (2002)).

learning, we want to be able to generalize to unseen data points. In the case of
binary pattern recognition, given some new input x ∈ X, we want to predict the
corresponding y ∈ {±1}. Loosely speaking, we want to choose y such that (x, y)
is in some sense similar to the training examples. To this end, we need similarity
measures in X and in {±1}. The latter is easier, as two target values can only be
identical or different.1 For the former, we require a function

k : X× X→ R, (x, x′) �→ k(x, x′) (1.2)

satisfying, for all x, x′ ∈ X,

k(x, x′) = 〈Φ(x), Φ(x′)〉 , (1.3)

where Φ maps into some dot product space H, sometimes called the feature space.
The similarity measure k is usually called a kernel, and Φ is called its feature map.kernels and

feature map The advantage of using such a kernel as a similarity measure is that it allows us
to construct algorithms in dot product spaces. For instance, consider the following
simple classification algorithm, where Y = {±1}. The idea is to compute the
means of the two classes in the feature space, c+ = 1

n+

∑
{i:yi=+1} Φ(xi), and

c− = 1
n−

∑
{i:yi=−1} Φ(xi), where n+ and n− are the number of examples with

1. When Y has a more complex structure, things can get complicated — this is the main
topic of the present book, but we completely disregard it in this introductory example.

1.2 Kernels 5

positive and negative target values, respectively. We then assign a new point Φ(x)
to the class whose mean is closer to it. This leads to

y = sgn(〈Φ(x), c+〉 − 〈Φ(x), c−〉+ b) (1.4)

with b = 1
2

(‖c−‖2 − ‖c+‖2
)
. Substituting the expressions for c± yields

y = sgn

⎛
⎝ 1

n+

∑
{i:yi=+1}

〈Φ(x), Φ(xi)〉 − 1
n−

∑
{i:yi=−1}

〈Φ(x), Φ(xi)〉+ b

⎞
⎠ . (1.5)

Rewritten in terms of k, this reads

y = sgn

⎛
⎝ 1

n+

∑
{i:yi=+1}

k(x, xi)− 1
n−

∑
{i:yi=−1}

k(x, xi) + b

⎞
⎠ , (1.6)

where b = 1
2

(
1

n2
−

∑
{(i,j):yi=yj=−1} k(xi, xj)− 1

n2
+

∑
{(i,j):yi=yj=+1} k(xi, xj)

)
. This

algorithm is illustrated in figure 1.1 for the case that X equals R2 and Φ(x) = x.
Let us consider one well-known special case of this type of classifier. Assume

that the class means have the same distance to the origin (hence b = 0), and that
k(., x) is a density for all x′ ∈ X. If the two classes are equally likely and were
generated from two probability distributions that are correctly estimated by the
Parzen windows estimators

p+(x) :=
1

n+

∑
{i:yi=+1}

k(x, xi), p−(x) :=
1

n−

∑
{i:yi=−1}

k(x, xi), (1.7)

then (1.6) is the Bayes decision rule.
The classifier (1.6) is quite close to the support vector machine (SVM) that we

will discuss below. It is linear in the feature space (see (1.4)), while in the input
domain, it is represented by a kernel expansion (1.6). In both cases, the decision
boundary is a hyperplane in the feature space; however, the normal vectors are
usually different.2

1.2.2 Positive Definite Kernels

We have above required that a kernel satisfy (1.3), i.e., correspond to a dot product
in some dot product space. In the present section, we show that the class of kernels
that can be written in the form (1.3) coincides with the class of positive definite
kernels. This has far-reaching consequences. There are examples of positive definite

2. For (1.4), the normal vector is w = c+ − c−. As an aside, note that if we normalize
the targets such that ŷi = yi/|{j : yj = yi}|, in which case the ŷi sum to zero, then
‖w‖2 = K, ŷŷ�

F
, where 〈., .〉F is the Frobenius dot product. If the two classes have

equal size, then up to a scaling factor involving ‖K‖2 and n, this equals the kernel-target
alignment defined by Cristianini et al. (2002).

6 Measuring Similarity with Kernels

kernels which can be evaluated efficiently even though via (1.3) they correspond to
dot products in infinite-dimensional dot product spaces. In such cases, substituting
k(x, x′) for 〈Φ(x), Φ(x′)〉, as we have done when going from (1.5) to (1.6), is crucial.

1.2.2.1 Prerequisites

Definition 1 (Gram Matrix) Given a kernel k and inputs x1, . . . , xn ∈ X, the
n× n matrix

K := (k(xi, xj))ij (1.8)

is called the Gram matrix (or kernel matrix) of k with respect to x1, . . . , xn.

Definition 2 (Positive Definite Matrix) A real n × n symmetric matrix Kij

satisfying ∑
i,j

cicjKij ≥ 0 (1.9)

for all ci ∈ R is called positive definite. If for equality in (1.9) only occurs for
c1 = · · · = cn = 0, then we shall call the matrix strictly positive definite.

Definition 3 (Positive Definite Kernel) Let X be a nonempty set. A function
k : X × X → R which for all n ∈ N, xi ∈ X gives rise to a positive definite Gram
matrix is called a positive definite kernel. A function k : X × X→ R which for all
n ∈ N and distinct xi ∈ X gives rise to a strictly positive definite Gram matrix is
called a strictly positive definite kernel.

Occasionally, we shall refer to positive definite kernels simply as a kernels. Note
that for simplicity we have restricted ourselves to the case of real-valued kernels.
However, with small changes, the below will also hold for the complex-valued case.

Since
∑

i,j cicj 〈Φ(xi), Φ(xj)〉 =
〈∑

i ciΦ(xi),
∑

j cjΦ(xj)
〉
≥ 0, kernels of the

form (1.3) are positive definite for any choice of Φ. In particular, if X is already a
dot product space, we may choose Φ to be the identity. Kernels can thus be regarded
as generalized dot products. While they are not generally bilinear, they share
important properties with dot products, such as the Cauchy-Schwartz inequality:

Proposition 4 If k is a positive definite kernel, and x1, x2 ∈ X, then

k(x1, x2)2 ≤ k(x1, x1) · k(x2, x2). (1.10)

Proof The 2 × 2 Gram matrix with entries Kij = k(xi, xj) is positive definite.
Hence both its eigenvalues are nonnegative, and so is their product, K’s determi-
nant, i.e.,

0 ≤ K11K22 −K12K21 = K11K22 −K2
12. (1.11)

Substituting k(xi, xj) for Kij , we get the desired inequality.

1.2 Kernels 7

1.2.2.2 Construction of the Reproducing Kernel Hilbert Space

We now define a map from X into the space of functions mapping X into R, denoted
as RX, via

Φ : X→ RX

x �→ k(., x). (1.12)

Here, Φ(x) = k(., x) denotes the function that assigns the value k(x′, x) to x′ ∈ X.
We next construct a dot product space containing the images of the inputs under

Φ. To this end, we first turn it into a vector space by forming linear combinations

f(.) =
n∑

i=1

αik(., xi). (1.13)

Here, n ∈ N, αi ∈ R and xi ∈ X are arbitrary.
Next, we define a dot product between f and another function g(.) =

∑n′

j=1 βjk(., x′
j)

(with n′ ∈ N, βj ∈ R and x′
j ∈ X) as

〈f, g〉 :=
n∑

i=1

n′∑
j=1

αiβjk(xi, x
′
j). (1.14)

To see that this is well-defined although it contains the expansion coefficients, note
that 〈f, g〉 =

∑n′

j=1 βjf(x′
j). The latter, however, does not depend on the particular

expansion of f . Similarly, for g, note that 〈f, g〉 =
∑n

i=1 αig(xi). This also shows
that 〈·, ·〉 is bilinear. It is symmetric, as 〈f, g〉 = 〈g, f〉. Moreover, it is positive
definite, since positive definiteness of k implies that for any function f , written as
(1.13), we have

〈f, f〉 =
n∑

i,j=1

αiαjk(xi, xj) ≥ 0. (1.15)

Next, note that given functions f1, . . . , fp, and coefficients γ1, . . . , γp ∈ R, we have

p∑
i,j=1

γiγj 〈fi, fj〉 =

〈
p∑

i=1

γifi,

p∑
j=1

γjfj

〉
≥ 0. (1.16)

Here, the left-hand equality follows from the bilinearity of 〈·, ·〉, and the right-hand
inequality from (1.15).

By (1.16), 〈·, ·〉 is a positive definite kernel, defined on our vector space of
functions. For the last step in proving that it even is a dot product, we note that
by (1.14), for all functions (1.13),

〈k(., x), f〉 = f(x), (1.17)

8 Measuring Similarity with Kernels

and in particular

〈k(., x), k(., x′)〉 = k(x, x′). (1.18)

By virtue of these properties, k is called a reproducing kernel (Aronszajn, 1950) .reproducing
kernel Due to (1.17) and proposition 4, we have

|f(x)|2 = |〈k(., x), f〉|2 ≤ k(x, x) · 〈f, f〉. (1.19)

By this inequality, 〈f, f〉 = 0 implies f = 0, which is the last property that was left
to prove in order to establish that 〈., .〉 is a dot product.

Skipping some details, we add that one can complete the space of functions (1.13)
in the norm corresponding to the dot product, and thus get a Hilbert space H , called
a reproducing kernel Hilbert space (RKHS).reproducing

kernel Hilbert
space(RKHS)

One can define an RKHS as a Hilbert space H of functions on a set X with
the property that for all x ∈ X and f ∈ H, the point evaluations f �→ f(x) are
continuous linear functionals (in particular, all point values f(x) are well-defined,
which already distinguishes RKHSs from many L2 Hilbert spaces). From the point
evaluation functional, one can then construct the reproducing kernel using the Riesz
representation theorem. The Moore-Aronszajn theorem (Aronszajn, 1950) states
that for every positive definite kernel on X × X, there exists a unique RKHS and
vice versa.

There is an analogue of the kernel trick for distances rather than dot products, i.e.,
dissimilarities rather than similarities. This leads to the larger class of conditionally
positive definite kernels. Those kernels are defined just like positive definite ones,
with the one difference being that their Gram matrices need to satisfy (1.9) only
subject to

n∑
i=1

ci = 0. (1.20)

Interestingly, it turns out that many kernel algorithms, including SVMs and kernel
principal component analysis (PCA) (see section 1.3.2), can be applied also with
this larger class of kernels, due to their being translation invariant in feature space
(Schölkopf and Smola, 2002; Hein et al., 2005).

We conclude this section with a note on terminology. In the early years of kernel
machine learning research, it was not the notion of positive definite kernels that
was being used. Instead, researchers considered kernels satisfying the conditions of
Mercer’s theorem (Mercer, 1909); see e.g. Vapnik (1998) and Cristianini and Shawe-
Taylor (2000). However, while all such kernels do satisfy (1.3), the converse is not
true. Since (1.3) is what we are interested in, positive definite kernels are thus the
right class of kernels to consider.

1.2 Kernels 9

1.2.3 Constructing Kernels

In the following we demonstrate how to assemble new kernel functions from existing
ones using elementary operations preserving positive definiteness. The following
proposition will serve us as the main working horse:constructing new

kernels

Proposition 5 Below, k1, k2, . . . are arbitrary positive definite kernels on X × X,
where X is a nonempty set.
(i) The set of positive definite kernels is a closed convex cone, i.e., (a) if α1, α2 ≥ 0,
then α1k1 + α2k2 is positive definite.
(ii) The pointwise product k1k2 is positive definite.
(iii) Assume that for i = 1, 2, ki is a positive definite kernel on Xi × Xi, where Xi

is a nonempty set. Then the tensor product k1 ⊗ k2 and the direct sum k1 ⊕ k2 are
positive definite kernels on (X1 × X2)× (X1 × X2).
(iv) If k(x, x′) := limn→∞ kn(x, x′) exists for all x, x′, then k is positive definite.
(v) The function k(x, x′) := f(x)f(x′) is a valid positive definite kernel for any
function f .

Let us use this proposition now to construct new kernel functions.

1.2.3.1 Polynomial Kernels

From proposition 5 it is clear that homogeneous polynomial kernels k(x, x′) =
〈x, x′〉p are positive definite for p ∈ N and x, x′ ∈ Rd. By direct calculation we can
derive the corresponding feature map (Poggio, 1975):

〈x, x′〉p =

〈
d∑

j=1

[x]j , [x′]j

〉p

=
∑

j∈[d]p

[x]j1 · · · · · [x]jp · [x′]j1 · · · · · [x′]jp = 〈Cp(x), Cp(x′)〉 ,

(1.21)

where Cp maps x ∈ Rd to the vector Cp(x) whose entries are all possible p th-degree
ordered products of the entries of x. The polynomial kernel of degree p thus
computes a dot product in the space spanned by all monomials of degree p in
the input coordinates. Other useful kernels include the inhomogeneous polynomial,

k(x, x′) = (〈x, x′〉+ c)p where p ∈ N and c ≥ 0, (1.22)

which computes all monomials up to degree p.

1.2.3.2 Gaussian Kernel

Using the infinite Taylor expansion of the exponential function ez =
∑∞

i=1
1
i!z

i, it
follows from propostion 5(iv) that

eγ〈x,x′〉

10 Measuring Similarity with Kernels

is a kernel function for any x, x′ ∈ X and γ ∈ R. Therefore, it follows immediately
that the widely used Gaussian function e−γ||x−x′||2 with γ > 0 is a valid kernel
function. This can be seen as rewriting the Gaussian function as

e−γ||x−x′||2 = e−γ〈x,x〉e2γ〈x,x′〉e−γ〈x′,x′〉,

and using proposition 5(ii).
We see that the Gaussian kernel corresponds to a mapping into C∞, i.e. the space

of continuous functions. However, the feature map is normalized, i.e. ||Φ(x)||2 =
k(x, x) = 1 for any x ∈ X. Moreover, as k(x, x′) > 0 for all x, x′ ∈ X, all mapped
points lie inside the same orthant in feature space.

1.2.3.3 Spline Kernels

It is possible to obtain spline functions as a result of kernel expansions (Smola,
1996; Vapnik et al., 1997) simply by noting that convolution of an even number of
indicator functions yields a positive kernel function. Denote by IX the indicator (or
characteristic) function on the set X , and denote by ⊗ the convolution operation,
(f ⊗ g)(x) :=

∫
Rd f(x′)g(x′ − x)dx′). Then the B-spline kernels are given by

k(x, x′) = B2p+1(x − x′) where p ∈ N with Bi+1 := Bi ⊗B0. (1.23)

Here B0 is the characteristic function on the unit ball3 in Rd. From the definition of
(1.23) it is obvious that for odd m we may write Bm as the inner product between
functions Bm/2. Moreover, note that for even m, Bm is not a kernel.

1.2.4 The Representer Theorem

From kernels, we now move to functions that can be expressed in terms of ker-
nel expansions. The representer theorem (Kimeldorf and Wahba, 1971; Cox and
O’Sullivan, 1990) shows that solutions of a large class of optimization problems can
be expressed as kernel expansions over the sample points. We present a slightly
more general version of the theorem with a simple proof (Schölkopf et al., 2001).
As above, H is the RKHS associated with the kernel k.

Theorem 6 (Representer Theorem) Denote by Ω : [0,∞) → R a strictly
monotonic increasing function, by X a set, and by c : (X × R2)n → R∪{∞}
an arbitrary loss function. Then each minimizer f ∈ H of the regularized risk
functional

c ((x1, y1, f(x1)) , . . . , (xn, yn, f(xn))) + Ω
(‖f‖2H) (1.24)

3. Note that in R one typically uses ξ
− 1

2
,
1
2

.

1.3 Operating in Reproducing Kernel Hilbert Spaces 11

admits a representation of the form

f(x) =
n∑

i=1

αik(xi, x). (1.25)

Proof We decompose any f ∈ H into a part contained in the span of the kernel
functions k(x1, ·), · · · , k(xn, ·), and one in the orthogonal complement:

f(x) = f‖(x) + f⊥(x) =
n∑

i=1

αik(xi, x) + f⊥(x). (1.26)

Here αi ∈ R and f⊥ ∈ H with 〈f⊥, k(xi, ·)〉H = 0 for all i ∈ [n] := {1, . . . , n}. By
(1.17) we may write f(xj) (for all j ∈ [n]) as

f(xj) = 〈f(·), k(xj , .)〉 =
n∑

i=1

αik(xi, xj) + 〈f⊥(·), k(xj , .)〉H =
n∑

i=1

αik(xi, xj).

(1.27)
Second, for all f⊥,

Ω(‖f‖2H) = Ω

⎛
⎝
∥∥∥∥∥

n∑
i

αik(xi, ·)
∥∥∥∥∥

2

H

+ ‖f⊥‖2H

⎞
⎠ ≥ Ω

⎛
⎝
∥∥∥∥∥

n∑
i

αik(xi, ·)
∥∥∥∥∥

2

H

⎞
⎠ . (1.28)

Thus for any fixed αi ∈ R the risk functional (1.24) is minimized for f⊥ = 0. Since
this also has to hold for the solution, the theorem holds.

Monotonicity of Ω does not prevent the regularized risk functional (1.24) from
having multiple local minima. To ensure a global minimum, we would need to
require convexity. If we discard the strictness of the monotonicity, then it no longer
follows that each minimizer of the regularized risk admits an expansion (1.25); it
still follows, however, that there is always another solution that is as good, and
that does admit the expansion.

The significance of the representer theorem is that although we might be trying
to solve an optimization problem in an infinite-dimensional space H, containing
linear combinations of kernels centered on arbitrary points of X, it states that the
solution lies in the span of n particular kernels — those centered on the training
points. We will encounter (1.25) again further below, where it is called the support
vector expansion. For suitable choices of loss functions, many of the αi often equal
zero.

1.3 Operating in Reproducing Kernel Hilbert Spaces

We have seen that kernels correspond to an inner product in some possibly high-
dimensional feature space. Since direct computation in these spaces is computation-
ally infeasible one might argue that sometimes the application of kernels is rather
limited. However, in this section we demonstrate for some cases that direct opera-

12 Measuring Similarity with Kernels

tion in feature space is possible. Subsequently we introduce kernel PCA which can
extract features corresponding to principal components in this high-dimensional
feature space.

1.3.1 Direct Operations in RKHS

1.3.1.1 Translation

Consider the modified feature map Φ̃(x) = Φ(x)+Γ, with Γ ∈ H. This feature map
corresponds to a translation in feature space. The dot product

〈
Φ̃(x), Φ̃(x′)

〉
yields

for this case the terms

〈Φ(x), Φ(x′)〉+ 〈Φ(x), Γ〉+ 〈Γ, Φ(x′)〉+ 〈Γ, Γ〉 ,

which cannot always be evaluated. However, let us restrict the translation Γ to be
in the span of the functions Φ(x1), · · · , Φ(xn) ∈ H with {x1, . . . , xn} ∈ Xn. Thus if
Γ =

∑n
i=1 αiΦ(xi), αi ∈ R, then the dot product between translated feature maps

can be evaluated in terms of the kernel functions solely. Thus we obtain for our
modified feature map

〈
Φ̃(x), Φ̃(x′)

〉
= k(x, x′) +

n∑
i=1

αik(xi, x) +
n∑

i=1

αik(xi, x
′) +

n∑
i,j=1

αiαjk(xi, xj).

(1.29)

1.3.1.2 Centering

As a concrete application for a translation operation consider the case that we would
like to center a set of points in the RKHS. Thus we would like to have a feature map
Φ̃ such that 1

n

∑n
i=1 Φ̃(xi) = 0. Using Φ̃(x) = Φ(x)+Γ with Γ = −∑n

i=1
1
nΦ(xi) this

can be obtained immediately utilizing (1.29). The kernel matrix K̃ of the centered
feature map Φ̃ can then be expressed directly in terms of matrix operations by

K̃ij = (K − 1mK −K1m + 1mK1m)ij ,

where 1m ∈ Rm×m is the constant matrix with all entries equal to 1/m, and K is
the kernel matrix evaluated using Φ.

1.3.1.3 Computing Distances

An essential tool for structured prediction is the problem of computing distances
between two objects. For example, to assess the quality of a prediction we would
like to measure the distance between predicted object and true object. Since kernel
functions can be interpreted as dot products (see (1.3)) they provide an elegant way
to measure distances between arbitrary objects. Consider two objects x1, x2 ∈ X,

1.3 Operating in Reproducing Kernel Hilbert Spaces 13

such as two-word sequences or two automata. Assume we have a kernel function k

on such objects; we can use their distance in the RKHS, i.e.,

d(x1, x2) = ||Φ(x1)− Φ(x2)||H =
√

k(x1, x1) + k(x2, x2)− 2k(x1, x2).

Here, we have utilized the fact that the dot product in H can be evaluated by
kernel functions and thus define the distance between the objects to be the distance
between the images of the feature map Φ.

1.3.1.4 Subspace Projections

Another elementary operation which can be performed in a Hilbert space is the
one-dimensional orthogonal projection. Given two points Ψ, Γ in the RKHS H we
project the point Ψ to the subspace spanned by the point Γ, obtaining

Ψ′ =
〈Γ, Ψ〉
||Γ||2 Γ. (1.30)

Considering the case that Ψ and Γ are given by kernel expansions, we see immedi-
ately that any dot product with the projected point Ψ′ can be expressed with kernel
functions only. Using such a projection operation in RKHS, it is straightforward to
define a deflation procedure:

Ψ′ = Ψ− 〈Γ, Ψ〉
||Γ||2 Γ. (1.31)

Using projection and deflation operations, one can perform e.g. the Gram-Schmidt
orthogonalization procedure for the construction of orthogonal bases. This was used
for example in information retrieval (Cristianini et al., 2001) and computer vision
(Wolf and Shashua, 2003). An alternative application of deflation and subspace
projection in RKHS was introduced by Rosipal and Trejo (2002) in the context of
subspace regression.

1.3.2 Kernel Principal Component Analysis

A standard method for feature extraction is the method of principal component
analysis (PCA), which aims to identify principal axes in the input. The principal
axes are recovered as the eigenvectors of the empirical estimate of the covariance
matrix Cemp = Eemp

[
(x− Eemp[x]) (x− Eemp[x])

]
. In contrast to PCA, kernel

PCA introduced by Schölkopf et al. (1998) tries to identify principal components
of variables which are nonlinearly related to input variables, i.e. principal axis in
some feature space H. To this end, given some training set (x1, . . . ,xn) of size n,
one considers the eigenvectors v ∈ H of the empirical covariance operator in featurecovariance in

feature space space:

Cemp = Eemp

[
(Φ(x)− Eemp[Φ(x)]) (Φ(x)− Eemp[Φ(x)])

]
.

14 Measuring Similarity with Kernels

Although this operator and thus its eigenvectors v cannot be calculated directly,
they can be retrieved in terms of kernel evaluations only. To see this, note that even
in the case of a high-dimensional feature space H, a finite training set (x1, . . . ,xn) of
size n when mapped to this feature space spans a subspace E ⊂ H whose dimension
is at most n. Thus, there are at most n principal axes (v1, . . . ,vn) ∈ En with
nonzero eigenvalues. It can be shown that these principal axes can be expressed
as linear combinations of the training points vj =

∑N
i=1 αj

iΦ(xi), 1 ≤ j ≤ n,
where the coefficients αj ∈ Rn are obtained as eigenvectors of the kernel matrix
evaluated on the training set. If one retains all principal components, kernel
PCA can be considered as a basis transform in E, leaving the dot product of
training points invariant. To see this, let (v1, . . . ,vn) ∈ En be the principal axes of
{Φ(x1), . . . ,Φ(xn)}. The kernel PCA map φn : X→ Rn is defined coordinatewise
as

[φn]p(x) = Φ(x) · vp, 1 ≤ p ≤ n.

Note that by definition, for all i and j, Φ(xi) and Φ(xj) lie in E and thus

K(xi,xj) = Φ(xi) · Φ(xj) = φn(xi) · φn(xj). (1.32)

The kernel PCA map is especially useful if one has structured data and one wants
to use an algorithm which is not readily expressed in dot products.

1.4 Kernels for Structured Data

We have seen several instances of positive definite kernels, and now intend to
describe some kernel functions which are particularly well suited to operate on data
domains other than real vector spaces. We start with the simplest data domain: sets.

1.4.1 Set Kernels

Assume that we have given a finite alphabet Σ, i.e. a collection of symbols which
we call characters. Furthermore let us denote by P(Σ) the power set of Σ. Then, we
define a set kernel to be any valid kernel function k which takes two sets A ∈ P(Σ)
and B ∈ P(Σ) as arguments. As a concrete example, consider the following kernel:

k(A, B) =
∑

x ∈ A, y ∈ B

1x=y,

where 1x=y denotes a comparison. This kernel measures the size of the intersectionkernels for text
of two sets and is widely used e.g. in text classification where it is referred to as
the sparse vector kernel. Considering a text document as a set of words, the sparse
vector kernel measures the similarity of text document via the number of common

1.4 Kernels for Structured Data 15

words. Such a kernel was used e.g. in Joachims (1998) for text categorization using
SVMs.

The feature map corresponding to the set kernel can be interpreted as a repre-
sentation by its parts. Each singleton xi ∈ Σ, 1 ≤ i ≤ |Σ|, i.e. all sets of cardinality
1, is mapped to the vertex ei of the unit simplex in R|Σ|. Each set A with |A| > 1
is then the average of the vertex coordinates, i.e.,

Φ(A) =
∑
x∈A

Φ(x) =
∑

xi∈Σ,x∈A

1x=xiei.

Set kernels are in general very efficient to evaluate as long as the alphabet is
finite since the feature map yields a sparse vector in R|Σ|. For example, in text
classification each dimension corresponds to a specific word, and a component is
set to a constant whenever the related word occurs in the text. This is also known
as the bag-of-words representation. Using an efficient sparse representation, the dot
product between two such vectors can be computed quickly.

1.4.2 Rational Kernels

One of the shortcomings of set kernels in applications such as natural language
applications is that any relation among the set elements such as, e.g., word order
in a document, is completely ignored. However, in many applications one considers
data with a more sequential nature such as word sequences in text classification,
temporal utterance order in speech recognition, or chains of amino acids in protein
analysis. In these cases the data are of sequential nature and can consist of variable-
length sequences over some basic alphabet Σ. In the following we review kernels
which were introduced to deal with such data types and which belong to the general
class of rational kernels.

Rational kernels are in principle similarity measures over sets of sequences. Since
sets of sequences can be compactly represented by automata, rational kernels can be
considered as kernels for weighted automata. For a discussion on automata theorykernels for

automata see e.g. Hopcroft et al. (2000). In particular, since sequences can be considered
as very simple automata, rational kernels automatically implement kernels for
sequences. At the heart of a rational kernel is the concept of weighted transducers
which can be considered as a representation of a binary relation between sequences;
see e.g. Mohri et al. (2002) and Cortes et al. (2004).

Definition 7 (Weighted Transducer) Given a semiring K = (K,⊕,⊗), a
weighted finite-state transducer (WFST) T over K is given by an input alpha-
bet Σ, an output alphabet Ω, a finite set of states S, a finite set of transitions
E ⊆ S× (Σ∪ {ε})× (Ω∪ {ε})×K× S, a set of initial states S0 ∈ S, a set of final
states S∞ ⊆ S, and a weight function w : S → K.

In our further discussion we restrict the output alphabet Ω to be equal to the input
alphabet, i.e. Ω = Σ. We call a sequence of transitions h = e1, . . . , en ⊂ E a path,
where the ith transition is denoted by πi(h). By π0(h) and π∞(h) we denote starting

16 Measuring Similarity with Kernels

and termination states of a path h respectively. Given two sequences x, y ∈ Σ∗, we
call a path h successful if it starts at an initial state, i.e. π0(h) ∈ S0, terminates
in a final state, i.e. π∞(h) ∈ S∞, and concatenating the input and output symbols
associated with the traversed transitions equals the sequences x and y. There might
be more than a single successful path and we will denote the set of all successful
paths depending on the pair (x, y) by Π(x, y). Furthermore, for each transition
πi[h] ∈ E we denote by w(πi[h]) ∈ K the weight associated with the particular
transition πi[h]. A transducer is called regulated if the weight of any sequence input-
output pair (x, y) ∈ Σ∗ × Σ∗ calculated by

[[T]](x, y) :=
⊕

h∈Π(x,y)

w(π0[h])⊗
|h|⊗
i=1

w(πi[h])⊗ w(π∞[h]) (1.33)

is well-defined and in K.
The interpretation of the weights w(h) and in particular [[T]](x, y) depends on how

they are manipulated algebraically and on the underlying semiring K. As a concrete
example for the representation of binary relations, let us consider the positive
semiring (K,⊕,⊗,0,1) = (R+, +,×, 0, 1) which is also called the probability or real
semiring. A binary relation between two sequences x, y ∈ Σ∗ is e.g. the conditional
probability [[T]](x, y) = P (y|x). Let xi denote the ith element of the sequence x.
We can calculate the conditional probability as

P (y|x) =
∑

h∈Π(x,y)

∏
i=0

P (yi|πi[h], xi)× P (y∞|π∞(h), x∞),

where the sum is over all successful paths h and w(πi[h])) := P (yi|πi(h), xi) denotes
the probability of performing the transition πi(h) and observing (xi, yi) as input and
outpout symbols. However, reconsidering the example with the tropical semiring
(K,⊕,⊗,0,1) = (R ∪ {∞,−∞}, min, +, +∞, 0) we obtain

[[T]](x, y) = max
h∈Π(x,y)

∑
i=0

w(πi[h]) + w(π∞[h]),

which is also known as the Viterbi approximation if the weights are negative log-
probabilities, i.e. w(π∞[h]) = − log P (yi|πi[h], xi). It is also possible to perform
algebraic operations on transducers directly. Let T1, T2 be two weighted transducers,
then a fundamental operation is composition.

Definition 8 (Composition) Given two transducers T1 = {Σ, Ω, S1, E1, S1
0 , S1∞, w1}

and T2 = {Ω, Δ, S2, E2, S2
0 , S2∞, w2}, the composition T1 ◦ T2 is defined as trans-

ducer R = {Σ, Δ, S, E, S0, S∞, w} such that

S = S1 × S2, S0 = S1
0 × S2

0 , S∞ = S1
∞ × S2

∞

and each transition e ∈ E satisfies

∀e : (p, p′)
a:c/w→ (q, q′) ⇒ ∃ {p a:b/w1→ q, p′

b:c/w2→ q′},

1.4 Kernels for Structured Data 17

with w = w1 ⊗ w2.

For example, if the transducer T1 models the conditional probabilities of a label
given a feature observation P (y|φ(x)) and another T2 transducer models the condi-
tional probabilities of a feature given an actual input P (φ(x)|x), then the transducer
obtained by a composition R = T1 ◦T2 represents P (y|x). In this sense, a composi-
tion can be interpreted as a matrix operation for transducers which is apparent if
one considers the weights of the composed transducer:

[[T1 ◦ T2]](x, y) =
∑
z∈Ω

[[T1]](x, z)[[T2]](z, y).

Finally, let us introduce the inverse transducer T−1 that is obtained by swapping
all input and output symbols on every transition of a transducer T. We are now
ready to introduce the concept of rational kernels.

Definition 9 (Rational Kernel) A kernel k over the alphabet Σ∗ is called ra-
tional if it can be expressed as weight computation over a transducer T , i.e.
k(x, x′) = Ψ([[T]](x, x′)) for some function Ψ : K → R. The kernel is said to be
defined by the pair (T, Ψ).

Unfortunately, not any transducer gives rise to a positive definite kernel. However,
from proposition 5(v) and from the definition it follows directly that any transducer
S := T ◦ T−1 is a valid kernel sincekernel evaluation

by transducers
k(x, y) =

∑
z

[[T]](x, z)[[T]](x′, z) = [[S]](x, x′).

The strength of rational kernels is their compact representation by means of
transducers. This allows an easy and modular design of novel application-specific
similarity measures for sequences. Let us give an example for a rational kernel.

1.4.2.1 n-gram Kernels

An n-gram is a block of n adjacent characters from an alphabet Σ. Hence, the
number of distinct n-grams in a text is less than or equal to |Σ|n. This shows that
the space of all possible n-grams can be very high even for moderate values of n.
The basic idea behind the n-gram kernel is to compare sequences by means of the
subsequences they contain:

k(x, x′) =
∑

s∈Σn

#(s ∈ x)#(s ∈ x′), (1.34)

where #(s ∈ x) denotes the number of occurrences of s in x. In this sense, the
more subsequences two sequences share, the more similar they are. Vishwanathan
and Smola (2004) proved that this class of kernels can be computed in O(|x|+ |x′|)
time and memory by means of a special suited data structure allowing one to find
a compact representation of all subsequences of x in only O(|x|) time and space.

18 Measuring Similarity with Kernels

Furthermore, the authors show that the function f(x) = 〈w, Φ(x)〉 can be computed
in O(|x|) time if preprocessing linear in the size of the expansion w is carried out.
Cortes et al. (2004) showed that this kernel can be implemented by a transducer
kernel by explicitly constructing a transducer that counts the number of occurrences
of n symbol blocks; see e.g figure 1.2. One then can rewrite (1.34) as

k(x, x′) = [[T ◦ T−1]](x, x′). (1.35)

In the same manner, one can design transducers that can compute similarities
incorporating various costs as, for example, for gaps and mismatches; see Cortes
et al. (2004).

1.4.3 Convolution Kernels

One of the first instances of kernel functions on structured data was convolutional
kernels introduced by Haussler (1999). The key idea is that one may take a
structured object and split it up into parts. Suppose that the object x ∈ X consists
of substructures xp ∈ Xp where 1 ≤ p ≤ r and r denotes the number of overall
substructures. Given then the set P(X) of all possible substructures

⊗r
i=1 Xi, one

can define a relation R between a subset of P and the composite object x. As an
example consider the relation “part-of” between subsequences and sequences. Ifrepresentation by

parts there are only a finite number of subsets, the relation R is called finite. Given a
finite relation R, let R−1(x) define the set of all possible decompositions of x into
its substructures: R−1(x) = {z ∈ P(X) : R(z, x)}. In this case, Haussler (1999)
showed that the so-called R-convolution given as

k(x, y) =
∑

x′∈R−1(x)

∑
y′∈R−1(y)

r∏
i=1

ki(x′
i, y

′
i) (1.36)

is a valid kernel with ki being a positive definite kernel on Xi.The idea of decom-
posing a structured object into parts can be applied recursively so that one only
requires to construct kernels ki over the “atomic” parts Xi.

Convolution kernels are very general and were successfully applied in the context
of natural language processing (Collins and Duffy, 2002; Lodhi et al., 2000).
However, in general the definition of R and in particular R−1 for a specific problem
is quite difficult.

A:A:1

B:B:1

A:A:1

B:B:1

A:A:1

B:B:1

A: :1

B: :1

A: :1

B: :1

Figure 1.2 A transducer that can be used for calculation of 3-grams for a binary
alphabet.

1.4 Kernels for Structured Data 19

1.4.4 Kernels Based on Local Information

Sometimes it is easier to describe the local neighborhood than to construct a kernel
for the overall data structure. Such a neighborhood of a data item might be defined
by any item that differs only by the presence or absence of a single property. For
example, when considering English words, neighbors of a word can be defined as
any other word that would be obtained by misspelling. Given a set of data items, all
information about neighbor relations can be represented by e.g. a neighbor graph. A
vertex in such a neighbor graph would correspond to a data item and two vertices
are connected whenever they satisfy some neighbor rule. For example, in the case of
English words, a neighbor rule could be that two words are neighbors whenever their
edit distance is smaller than some apriori defined threshold. Kondor and Lafferty
(2002) utilize such neighbor graphs to construct global similarity measures by usingsimilarities due

to a diffusion
process

a diffusion process analogy. To this end, the authors define a diffusion process by
using the so-called graph Laplacian, L being a square matrix and where each entry
encodes information on how to propagate the information from vertex to vertex.
In particular, if A denotes the binary adjacency matrix of the neighbor graph, the
graph Laplacian is given by L = A − D, where D is a diagonal matrix and each
diagonal Dii is the vertex degree of the ith data item. The resulting kernel matrix
K is then obtained as the matrix exponential of βL with β < 1 being a propagation
parameter:

K = e−βL := lim
n→∞

(
1− β

n
L

)n

.

Such diffusion kernels were successfully applied to such diverse applications as text-
categorization, as e.g. in Kandola et al. (2002); gene-function prediction by Vert
and Kanehisa (2002); and semisupervised learning, as e.g. in Zhou et al. (2004).

Even if it is possible to define a kernel function for the whole instance space,
sometimes it might be advantageous to take into account information from local
structure of the data. Recall the Gaussian kernel and polynomial kernels. When
applied to an image, it makes no difference whether one uses as x the image or a
version of x where all locations of the pixels have been permuted. This indicates
that the function space on X induced by k does not take advantage of the locality
properties of the data. By taking advantage of the local structure, estimates can be
improved. On biological sequences one may assign more weight to the entries of the
sequence close to the location where estimates should occur, as was performed e.g.
by Zien et al. (2000). In other words, one replaces 〈x, x′〉 by x
Ωx, where Ω � 0 is
a diagonal matrix with largest terms at the location which needs to be classified.

In contrast, for images, local interactions between image patches need to be
considered. One way is to use the pyramidal kernel introduced in Schölkopf (1997)
and DeCoste and Schölkopf (2002), which was inspired by the pyramidal cells of
the brain: It takes inner products between corresponding image patches, then raises
the latter to some power p1, and finally raises their sum to another power p2. This

20 Measuring Similarity with Kernels

means that mainly short-range interactions are considered and that the long-range
interactions are taken with respect to short-range groups.

1.4.5 Tree and Graph Kernels

We now discuss similarity measures on more structured objects such as trees and
graphs.

1.4.5.1 Kernels on Trees

For trees Collins and Duffy (2002) propose a decomposition method which maps a
tree x into its set of subtrees. The kernel between two trees x, x′ is then computed
by taking a weighted sum of all terms between both trees and is based on the
convolutional kernel (see section 1.4.3). In particular, Collins and Duffy (2002)
show an O(|x| · |x′|) algorithm to compute this expression, where |x| is the number
of nodes of the tree. When restricting the sum to all proper rooted subtrees it is
possible to reduce the time of computation to O(|x|+ |x′|) time by means of a tree
to sequence conversion (Vishwanathan and Smola, 2004).

1.4.5.2 Kernels on Graphs

A labeled graph G is described by a finite set of vertices V , a finite set of edges E,
two sets of symbols which we denote by Σ and Ω, and two functions v : V → Σ and
e : E → Ω which assign each vertex and edge a label from the sets Σ, Ω respectively.
For directed graphs, the set of edges is a subset of the Cartesian product of the
ordered set of vertices with itself, i.e. E ⊆ V × V such that (vi, vj) ∈ E if and only
if vertex vi is connected to vertex vj . One might hope that a kernel for a labeled
graph can be similarly constructed using some decomposition approach similar to
the case of trees. Unfortunately, due to the existence of cycles, graphs cannot be
as easily serialized, which prohibits, for example, the use of transducer kernels for
graph comparison. A workaround is to artificially construct walks, i.e. eventuallygraph kernels

based on paths repetitive sequences of vertex and edge labels. Let us denote by W (G) the set of
all possible walks in a graph G of arbitrary length. Then, using an appropriate
sequence kernel kh, a valid kernel for two graphs G1, G2 would take the form

kG(G1, G2) =
∑

h∈W (G1)

∑
h′∈W (G2)

kh(h, h′). (1.37)

Unfortunately, this kernel can only be evaluated if the graph is acyclic since
otherwise the sets P (G1), P (G2) are not finite. However, one can restrict the set of
all walks W (G) to the set of all paths P (G) ⊂ W (G), i.e. nonrepetitive sequences
of vertex and edge labels. Borgwardt and Kriegel (2005) show that computation ofpath kernels are

intractable this so-called all-path kernel is NP-complete. As an alternative, for graphs where
each edge is assigned to a cost instead of a general label they propose to further
restrict the set of paths. They propose to choose the subset of paths which appear in

1.4 Kernels for Structured Data 21

an all-pairs shortest-path transformed version of the original graph. Thus for eachshortest-path
graph kernel graph Gi which has to be compared, the authors build a new completely connected

graph Ĝi of the same size. In contrast to the original graph each edge in Ĝi between
nodes vi and vj corresponds to the length of the shortest path from vi to vj in the
original graph Gi. The new kernel function between the transformed graphs is then
calculated by comparing all walks of length 1, i.e.,

kĜ(G1, G2) =
∑

h ∈W (Ĝ1)

|h| = 1

∑
h′ ∈ W (Ĝ2)

|h′| = 1

kh(h, h′). (1.38)

Since algorithms for determining all-pairs shortest paths as, for example, Floyd-
Warshall, are of cubic order and comparing all walks of length 1 is of fourth order,
the all-pairs shortest-path kernel in (1.38) can be evaluated in O(|V |4) complexity.

An alternative approach proposed by Kashima et al. (2003) is to compare two
graphs by measuring the similarity of the probability distributions of random walkscomparing

random walks on the two graphs. The authors propose to consider a walk h as a hidden variable
and the kernel as a marginalized kernel where marginalization is over h, i.e.,

kRG(G1, G2) = E[kG(G1, G2)] =
∑

h∈W (G1)

∑
h′∈W (G2)

kh(h, h′)p(h|G1)p(h|G2),

(1.39)
where the conditional distributions p(h|G1), p(h′|G2) in (1.39) for the random walk
h, h′ are defined as start, transition, and termination probability distribution over
the vertices in V . Note that this marginalized graph kernel can be interpreted as a
randomized version of (1.37).

By using the dot product of the two probability distributions as kernel, the
induced feature space H is infinite-dimensional, with one dimension for every
possible label sequence. Nevertheless, the authors developed an algorithm for how
to calculate (1.39) explicitly with O(|V |6) complexity.

1.4.6 Kernels from Generative Models

In their quest to make density estimates directly accessible to kernel methods
Jaakkola and Haussler (1999a,b) designed kernels which work directly on probability
density estimates p(x|θ). Denote by

Uθ(x) := ∂θ − log p(x|θ) (1.40)

I := Ex

[
Uθ(x)U

θ (x)
]

(1.41)

the Fisher scores and the Fisher information matrix respectively. Note that forFisher
information maximum likelihood estimators Ex [Uθ(x)] = 0 and therefore I is the covariance of

Uθ(x). The Fisher kernel is defined as

k(x, x′) := U

θ (x)I−1Uθ(x′) or k(x, x′) := U

θ (x)Uθ(x′) (1.42)

22 Measuring Similarity with Kernels

depending on whether we study the normalized or the unnormalized kernel respec-
tively. It is a versatile tool to reengineer existing density estimators for the purpose
of discriminative estimation.

In addition to that, it has several attractive theoretical properties: Oliver et al.
(2000) show that estimation using the normalized Fisher kernel corresponds to an
estimation subject to a regularization on the L2(p(·|θ)) norm.

Moreover, in the context of exponential families (see section 3.6 for a more
detailed discussion) where p(x|θ) = exp(〈φ(x), θ〉 − g(θ)), we have

k(x, x′) = [φ(x) − ∂θg(θ)] [φ(x′)− ∂θg(θ)] (1.43)

for the unnormalized Fisher kernel. This means that up to centering by ∂θg(θ) the
Fisher kernel is identical to the kernel arising from the inner product of the sufficient
statistics φ(x). This is not a coincidence and is often encountered when working with
nonparametric exponential families. A short description of exponential families is
given further below in section 3.6. Moreover, note that the centering is immaterial,
as can be seen in lemma 13.

1.5 An Example of a Structured Prediction Algorithm Using Kernels

In this section we introduce concepts for structured prediction based on kernel
functions. The basic idea is based on the property that kernel methods embed
any data type into a linear space and thus can be used to transform the targets
to a new representation more amenable to prediction using existing technqiues.
However, since one is interested in predictions of the original type one has to solve
an additional reconstruction problem that is independent of the learning problem
and therefore might be solved more easily. The first algorithm following this recipe
was kernel dependency estimation (KDE) introduced by Weston et al. (2002) andkernel

dependency
estimation

which we discuss next.
Given n pairs of data items Dn = {(xi, yi)}ni=1 ⊂ X × Y one is interested in

learning a mapping tZ : X → Y. As a first step in KDE one constructs a linear
embedding of the targets only. For example, Weston et al. (2002) propose kernelkernel for the

outputs PCA using a kernel function on Y, i.e. ky(y1, y2) : Y×Y→ R. Note that this kernel
function gives rise to a feature map φy into a RKHS Hy and allows application
of the kernel PCA map (see section 1.3.2). The new vectorial representation of
the outputs can then be used to learn a map TH from the input space X to the
vectorial representation of the outputs, i.e. Rn. This new learning problem using the
transformed output is a standard multivariate regression problem and was solved
for example in Weston et al. (2002) with kernel ridge regression using a kernel for
X.

1.6 Conclusion 23

Finally, for a given new input point x∗ and its predicted representation TH(x∗),
one has to reconstruct the output element y∗ ∈ Y that matches the predicted
representation best, i.e.

y∗ = arg min
y∈Y

||φy(y)− TH(x∗)||2Hy
. (1.44)

The problem (1.44) is known as the pre-image problem or alternatively as thepre-
image/decoding
problem

decoding problem and has wide applications in kernel methods. , We summarize
all feature maps used in KDE in figure 1.3 where we denote by Γ : Hy → Y the
pre-image map which is given by (1.44). In chapter 8, we see an application of KDE
to the task of string prediction where the authors design a pre-image map based
on n-gram kernels.

φ(Y) ⊂ Hy

Γ

��
X

TH

����������������� tZ �� Y

φy

��

Figure 1.3 Mappings between original sets X, Y and corresponding feature spaces Hy

in kernel dependency estimation.

1.6 Conclusion

Kernels can be used for decorrelation of nontrivial structures between points in
Euclidean space. Furthermore, they can be used to embed complex data types into
linear spaces leading straightforward to distance and similarity measures among
instances of arbitrary type. Finally, kernel functions encapsulate the data from
the algorithm and thus allow use of the same algorithm on different data types
without changing the implementation. Thus, whenever a learning algorithm can be
expressed in kernels it can be utilized for arbitrary data types by exchanging the
kernel function. This reduces the effort of using existing inference algorithms for
novel application fields to introducing a novel specifically designed kernel function.

