
Service-Oriented Computing

edited by Dimitrios Georgakopoulos and Michael P. Papazoglou

The MIT Press
Cambridge, Massachusetts
London, England

http://mitpress.mit.edu/0262072963

© 2009 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means
(including photocopying, recording, or information storage and retrieval) without permission in writing from the
publisher.

For information about special quantity discounts, please e-mail special_sales@mitpress.mit.edu

This book was set in Times Roman by SNP Best-set Typesetter Ltd., Hong Kong.
Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Service-oriented computing / edited by Dimitrios Georgakopoulos and Michael P. Papazoglou.
 p. cm.—(Cooperative information systems)
Includes bibliographical references and index.
ISBN 978-0-262-07296-0 (hardcover : alk. paper) 1. Web services. I. Georgakopoulos, Dimitrios. II. Papazoglou,
M., 1953–
TK5105.88813.S45 2009
006.7′6—dc22

 2007039722

10 9 8 7 6 5 4 3 2 1

1

1.1 Introduction

Service-Oriented Computing (SOC) is a computing paradigm that utilizes services as fundamen-
tal elements to support rapid, low-cost development of distributed applications in heterogeneous
environments. The promise of Service-Oriented Computing is a world of cooperating services
that are being loosely coupled to fl exibly create dynamic business processes and agile applica-
tions that may span organizations and computing platforms, and can adapt quickly and auto-
nomously to changing mission requirements.

Realizing the SOC promise involves developing Service-Oriented Architectures (SOAs)
[13] [23] and corresponding middleware that enables the discovery, utilization, and combi-
nation of interoperable services to support virtually any business process in any organizational
structure or user context. SOAs allow application developers to overcome many distributed
enterprise computing challenges, including designing and modeling complex distributed ser-
vices, performing enterprise application integration, managing (possibly cross-enterprise)
business processes, ensuring transactional integrity and QoS, and complying with agreements,
while leveraging various computing devices (e.g., PCs, PDAs, cell phones, etc.) and allowing
reuse of legacy systems [4]. SOA strives to eliminate these barriers so that distributed
applications are simpler/cheaper to develop and run seamlessly. In addition, SOA provides
the fl exibility and agility that business users require, allowing them to defi ne coarse-grained
services, which may be aggregated and reused to address current and future business
needs.

The design principles of an SOA [13] [3] are independent of any specifi c technology, such
as Web Services or J2EE Enterprise Java Beans. In particular, SOA prescribes that all functions
of a SOA-based application are provided as services [2]. That is, SOA services include all busi-
ness functions and related business processes that comprise the application, as well as any
system-related function that is necessary to support the SOA-based application. In addition to
providing for the functional decomposition of applications to services, SOA requires services
to be:

Overview of Service-Oriented Computing

Dimitrios Georgakopoulos and Michael P. Papazoglou

2 Dimitrios Georgakopoulos and Michael P. Papazoglou

• Self-contained

• Platform-independent

• Dynamically discoverable, invokable, and composable.

A service is self-contained when it maintains its own state independently of the application
that utilizes it. Services are platform-independent if they can be invoked by a client using any
network, hardware, and software platform (e.g., OS, programming language, etc.). Platform
independence also implies that an SOA service has an interface that is distinct from, and abstracts
the details of, the service implementation. The service interface defi nes the identity of a service
and its invocation mechanism. The service implementation implements the SOA function that
the service is designed to provide. Finally, SOA requires that services may be dynamically dis-
covered, invoked, and composed. Dynamic service discovery assumes the availability of an SOA
service that supports service discovery. This may include a service directory, taxonomy, or
ontology that service clients query to determine which service(s) can provide the functions they
need. To ensure invocability, SOA requires that service interfaces include mechanisms that allow
clients to invoke services and/or be notifi ed by services as needed. This implies that clients are
unaware of the network protocol used to perform the service invocation and of the middleware
platform components required to establish the connection. The combination of service invocabil-
ity and platform independence permits clients to invoke any service from anywhere and at any
time the service is needed. Finally, services are composable if they can be combined and used
by business processes that may span multiple service providers and organizations.

Each service in an SOA-based application may implement a brand-new function, it may use
parts of old applications that were adapted and wrapped by the service implementation, or it
may combine new code and legacy parts. In any case, the developers of the service clients typi-
cally do not have direct access to the service implementation other than indirectly through its
interface. For example, web services publish their service interfaces only without revealing their
implementation or the inner workings of their provider. Therefore, SOA permits enterprises to
create, deploy, and integrate multiple services and to choreograph new business functions and
processes by combining new and legacy application assets encapsulated in services. Further-
more, due to its dynamic nature, SOA can potentially provide just-in-time integration of services
that offer a new product or a client and/or time-dependent service that has never been provided
to a client before. This is a key enabler for real-time enterprises.

Web Services have become the preferred implementation technology for realizing SOAs [34].
Their success is due to basing their development on existing, ubiquitous infrastructure such as
HTTP, SOAP, and XML.

In this chapter, we survey the underpinnings of SOA and discuss technologies that can spring-
board enterprise integration projects. In addition, we review proposed enhancements of SOA,
such EDA and xSOA. The Event-Driven Architecture (EDA) is an event-driven SOA that pro-
vides support for complex event processing and provides additional fl exibility. The extended
SOA (xSOA) provides SOA extensions for service composition and management. This, chapter

Overview of Service-Oriented Computing 3

is unique in that it unifi es the principles, concepts, and developments in enterprise application
integration, middleware, SOAs and event-driven computing. It also explains how these contrib-
ute to an emerging distributed computing technology known as the Enterprise Service Bus.
Moreover, this chapter introduces the remaining chapters in the book that discuss enhancements
to the conventional SOA, EDA, and xSOA.

1.2 Service Roles in SOA

SOAs and Web Services solutions support two key roles: a service requester (client) and a
service provider, which communicate via service requests. A role thus refl ects a type of partici-
pant in an SOA [13] [33].

Service requests are messages formatted according to the Simple Object Access Protocol
(SOAP) [11]. SOAP entails a light-weight protocol allowing RPC-like calls over the Internet
using a variety of transport protocols including HTTP, HTTP/S, and SMTP. In principle, SOAP
messages may be conveyed using any protocol as long as a binding is defi ned. The SOAP request
is received by a runtime service (an SOAP “listener”) that accepts the SOAP message, extracts
the XML message body, transforms the XML message into a protocol that is native to the
requested service, and delegates the request to the actual function or business process within an
enterprise. After processing the request, the provider typically sends a response to the client in
the form of an SOAP envelope carrying an XML message.

Requested operations of Web Services are implemented using one or more Web Service
components [55]. Web Service components may be hosted within a Web Services container [21]
serving as an interface between business services and low-level infrastructure services. In par-
ticular, Web Service containers are similar to J2EE containers [3], and provide facilities such
as location, routing, service invocation, and management. A service container can host multiple
services, even if they are not part of the same distributed process. Thread pooling allows multiple
instances of a service to be attached to multiple listeners within a single container [17].

SOAP is by nature a platform-neutral and vendor-neutral standard. These characteristics allow
for a loosely coupled relationship between requester and provider, which is especially important
over the Internet, where two parties may reside in different organizations or enterprises. However,
SOA does not require the usage of SOAP and other service transports have been used in the
past, for example in [45].

The interactions between service requesters and service providers can be complex, since they
involve discovering/publishing, negotiating, reserving, and utilizing services from potentially
different service providers. An alternative approach for reducing such complexity is to combine
the service provider and requester functionality into a new role, which we refer to as service
aggregator [37]. The service aggregator thus performs a dual role. First, it acts as an application
service provider, offering a complete “service” solution by creating composite, higher-level
services. Service aggregators can accomplish this composition using specialized composition

4 Dimitrios Georgakopoulos and Michael P. Papazoglou

languages such as BPEL [5] and BPML [6]. A service agreegator also acts as a service requester
by requesting and reserving services from other service providers. This process is shown in
fi gure 1.1.

Though service aggregation may offer these service composition benefi ts to the requester,
it is also a form of service brokering that offers a convenience function that groups all
the required services “under one roof.” However, an important question that needs to be
addressed is how a service requester selects a specifi c application service provider for its service
offerings. The service requester can retain the right to select an application service provider
based on those that can be discovered from a registry service, such as UDDI [1]. SOA tech-
nologies such as UDDI, and security and privacy standards such as SAML [40] and WS-Trust
[80], introduce another role which aids service selection and it is called the service broker
[19].

Service brokers are trusted parties that force service providers to adhere to information
practices that comply with privacy laws and regulations or, in the absence of such laws,
industry best practices. In this way broker-sanctioned service providers are guaranteed to offer
services that are in compliance with local regulations and to create a more trusted relationship
with customers and partners. A service broker maintains a registry of available services and
providers, as well as value-added information about the provided services. This may include
information about service reliability, trustworthiness, quality, and possible compensation, to
name a few.

Figure 1.2 shows an SOA where a service broker acts as an intermediary between service
requesters and service providers. A UDDI-based service registry is a specialized instance of a
service broker. Under this confi guration the UDDI registry serves as a broker where the service
providers publish the defi nitions of the services they offer using WSDL, and the service request-
ers fi nd information about the services available.

Service
requester

Service
provider

Service
provider

Provider Requester

Aggregator

Figure 1.1
The role of the service aggregator.

Overview of Service-Oriented Computing 5

1.3 Enterprise Service Bus

Though Web Services technologies are currently most commonly used in implementing SOAs,
many other conventional programming languages and enterprise integration platforms may be
used in an SOA as well [51]. In particular, any technology that complies with WSDL and com-
municates with XML messages can participate in an SOA. Such technologies include J2EE and
message queues, such as IBM’s WebSphere MQ.

Since clients and services may be developed by different providers using different technolo-
gies and conceptual designs, there may be technological mis-matches (e.g., they may use dif-
ferent communication protocols) and heterogeneities (e.g., message syntax and semantics)
between them. Dealing with such technological mismatches and heterogeneity involves two
basic approaches:

• Implement clients to conform exactly with the technology and conceptual model (e.g., seman-
tics and syntax) of the services they may invoke.

• Insert an integration layer providing reusable communication and integration logic between
the services and their clients.

The fi rst approach requires the development of a service interface for each connection, result-
ing in point-to-point interconnections. Such point-to-point interconnection networks are hard
to manage and maintain because they introduce a tighter coupling between clients and
services. This coupling involves signifi cant effort to harmonize transport protocols, document
formats, interaction styles, etc. [35]. This approach results in hard-to-change clients and services,
since any change to a service may impact all its clients. In addition, point-to-point integrations
are complex and lack scalability. As the number of services and clients increases, they may
quickly become unmanageable. To deal with this problem, existing Enterprise Application

Service
broker

Service
provider

Service
client

Figure 1.2
Service brokering.

6 Dimitrios Georgakopoulos and Michael P. Papazoglou

Integration (EAI) middleware supports a variety of hub-and-spoke integration patterns [39]. This
leaves the second approach as the more viable alternative.

The second approach introduces an integration layer that provides for interoperability between
services and their clients. The Enterprise Service Bus (ESB) [48] [17] addresses the need to
provide an integration infrastructure for Web Services and SOA. The ESB exhibits two promi-
nent features [24]. First, it promotes loose coupling of the clients and services. Second, the ESB
divides the integration logic into distinct, easily manageable pieces.

The ESB is an open, standards-based message bus designed to enable the implementation,
deployment, and management of SOA-based solutions. To play this role the ESB provides the
distributed processing, standards-based integration, and enterprise-class backbone required
by the extended enterprise [24]. In particular, the ESB is designed to provide interoperability
between large-grained applications and other components via standards-based adapters and
interfaces. To accomplish this the ESB functions as both transport and transformation facilitator
to allow distribution of these services over disparate systems and computing environments.

Conceptually, the ESB has evolved from the store-and-forward mechanism found in middle-
ware products (e.g., message-oriented middleware), and combines conventional EAI technolo-
gies with Web services, XSLT [96], and orchestration and choreography technologies (e.g.,
BPEL, WS-CDL, and ebXML BPSS). Physically, an ESB provides an implementation backbone
for an SOA. It establishes proper control of messaging and also supports the needs of security,
policy, reliability, and accounting in an SOA. The ESB is responsible for controlling message
fl ow and performing message translation between services. It facilitates pulling together applica-
tions and discrete integration components to create assemblies of services that form composite
business processes, which in turn automate business functions in an enterprise.

Figure 1.3 depicts a simplifi ed architecture of an ESB that integrates a J2EE application using
JMS, a .NET application using a C# client, an MQ application that interfaces with legacy appli-
cations, and other external applications and data sources. An ESB, as portrayed in the upper and
midde parts of fi gure 1.3, enables the more effi cient value-added integration of a number of
different application components by positioning them behind a service-oriented facade and by
applying Web Services technology. In this fi gure, a distributed query engine, which is normally
based on XQuery [10] or SQL, enables the creation of data services to abstract the complexity
of underlying data sources. Portals in the upper part of fi gure 1.3 are user-facing ESB aggrega-
tion points of a variety resources represented as services.

Endpoints in the ESB, which are depicted as small rectangles in fi gure 1.3, provide abstraction
of physical destination and connection information (such as TCP/IP hostnames and port numbers)
transcending plumbing-level integration capabilities of traditional, tightly coupled, distributed
software components. Endpoints allow services to communicate using logical connection names,
which an ESB will map to actual physical network destinations at runtime. This destination
independence offers the services that are connected to the ESB the ability to be upgraded, moved,
or replaced without having to modify code and disrupt existing ESB applications. For instance,
an existing invoicing service could easily be upgraded by a new service without disrupting the

Overview of Service-Oriented Computing 7

execution of other applications. Additionally, duplicate processes can be set up to handle
fail-over if a service is not available. Endpoints rely on the asynchronous and highly reliable
communication between service containers. They can be confi gured to use several levels of
quality of service, which guarantees communication despite network failures and outages
[17].

To successfully build and deploy a distributed Service-Oriented Architecture, the following
four primary aspects need to be addressed:

1. Service enablement Each discrete application is exposed as a service.

2. Service orchestration Distributed services are confi gured and orchestrated in clearly speci-
fi ed processes.

3. Deployment As the SOA-based application is developed, completed services and processes
must be transitioned from the testing to the production environment.

4. Management Services must be monitored, and their invocations and selection may need to
be adjusted to better meet application-specifi c goals.

Services can be assembled using a variety of application development tools (e.g., Microsoft
.NET, Borland JBuilder, or BEA WebLogic Workshop) which allow new or existing distributed
applications to be exposed as Web services. Technologies such as J2EE Connector Architecture
(JCA) may also be used to create services by integrating packaged applications (such as ERP
systems), which would then be exposed as services.

To achieve its operational objectives, the ESB integration services such as connectivity and
routing of messages based on business rules, data transformations, and application adapters [18].

Custom
applications

Service
orchestrationPortals

Distributed
query engine

Adapters Web
services

WebSphere,
.NET
apps

JMS/
J2EE

Java apps

MQ
gateway

Mainframe
& legacy

apps

Data sources Enterprise
applications

Multi-platform
support

Reliable Asynchronous Secure Messaging

service
interface

Figure 1.3
Enterprise Service Bus connecting diverse applications and technologies.

8 Dimitrios Georgakopoulos and Michael P. Papazoglou

These capabilities are themselves SOA-based in that they are spread out across the bus in a
highly distributed fashion and are usually hosted in separately deployable service containers.
This is a crucial difference from traditional integration brokers, which usually are highly central-
ized and monolithic [39]. The distributed nature of the ESB container model allows individual
Web Services to plug into the ESB backbone as needed. This enables ESB containers to be
highly decentralized and work together in a highly distributed fashion, though they are scaled
independently from one another. This is illustrated in fi gure 1.3, where applications running on
different platforms are decoupled from each other, and can be connected through the bus as
logical endpoints that are exposed as Web services.

1.3.1 Event-Driven Architecture

In the enterprise context, business events (e.g., a customer order, the arrival of a shipment at a
loading dock, or the payment of a bill) may affect the normal course of a business process at
any point in time [36]. This implies that business processes cannot be designed a priori, assum-
ing that events follow predetermined patterns, but must be defi ned more dynamically to permit
process fl ows to be driven by asynchronous events. To support such applications, SOA must be
enhanced into an event-driven extension of SOA, which we refer to as Event-Driven Architecture
(EDA) [55] [17] [57]. Therefore, EDA is a service architecture that permits enterprises to imple-
ment an SOA while respecting the highly volatile nature of business events. An ESB requires
that applications and event-driven Web Services be tied together in the context of an SOA in a
loosely coupled fashion. EDA allows applications and Web Services to operate independent of
each other while collectively supporting a business processes and functions [18].

In an ESB-enabled EDA, applications and services are treated as abstract service endpoints
which can readily respond to asynchronous events [18]. EDA provides a means of abstracting
away from the details of underlying service connectivity and protocols.

Services in this SOA variant are not required to understand protocol implementations or have
any knowledge on routing of messages to other services. An event producer typically sends
messages through an ESB, and then the ESB publishes the messages to the services that have
subscribed to the events. The event itself encapsulates an activity, constituting a complete
description of a specifi c action. To achieve its functionality, the ESB supports the established
Web Services technologies, including, SOAP, WSDL, and BPEL, as well as emerging standards
such as WS-ReliableMessaging [43] and WS-Notifi cation [52].

As was noted in the previous section, in a brokered SOA (depicted in fi gure 1.2) the only
dependency between the provider and the client of a service is the service contract that is typi-
cally described in WSDL and is advertised by a service broker. The dependency between the
service provider and the service client is a runtime dependency, not a compile-time dependency.
The client obtains and uses all the information it needs about the service at runtime. The service
interfaces are discovered dynamically, and messages are constructed dynamically. The service
consumer does not know the format of the request message, or the location of the service, until
it needs the service.

Overview of Service-Oriented Computing 9

Service contracts and other associated metadata (e.g., about policies and agreements [20]),
lay the groundwork for enterprise SOAs that involve many clients operating with a complex,
heterogeneous application infrastructure. However, many of today’s SOA implementations are
not that elaborate. In many cases, when small or medium enterprises implement an SOA, neither
service interfaces in WSDL nor UDDI lookups are provided. This is often due either to the
fact that the SOA in place provides for limited functionality or to the fact that suffi cient
security arrangements are not yet in place. In these cases an EDA provides a more lightweight,
straightforward set of technologies to build and maintain the service abstraction for client
applications [9].

To achieve less coupling between services and their clients, EDA requires event producers
and consumers to be fully decoupled [9]. That is, event producers need no specifi c knowledge
of event consumers, and vice versa. Therefore, there is no need for a service contract (e.g., a
WSDL specifi cation) that explicates the behavior of a service to the client. The only relationship
between event consumers and producers is through the ESB, to which services and clients sub-
scribe as event publishers and/or subscribers. Despite the focus of EDA on decoupling event
consumers and producers, the event consumers may require metadata about the events they may
receive and process. To address this need, event producers often organize events on the basis
of some application-specifi c event taxonomy that is made available to (and in some cases is
mutually agreed upon with) event consumers. Such taxonomies typically specify event types
and other event metadata that describe published events that consumers can subscribe to, includ-
ing the format of the event-related attributes and corresponding messages that may be exchanged
between event producer and consumer services.

1.3.2 An ESB-Based Application Example

As an example of an ESB-based application, consider the simplifi ed distributed procurement
process in fi gure 1.4 that has been implemented using an ESB. The process is initiated when an
“Inventory service” publishes a replenishment event (in fi gure 1.4 this is indicated by the dashed
arrow between “Inventory service” and “Replenishment” service). This event is received by the
subscribing “Replenishment” service as prescribed by EDA. On receipt of such an event, the
“Replenishment” service starts the procurement process that follows the traditional SOA (e.g.,

Inventory
service

Supplier
order

Purchase
order

Invoicing
service

Replenishment

Figure 1.4
Simplifi ed distributed procurement process.

10 Dimitrios Georgakopoulos and Michael P. Papazoglou

service invocations are depicted as solid arrows). In particular, the “Replenishment” service fi rst
invokes the “Supplier order” service that chooses a supplier based on some criterion. Next, the
purchase order is automatically generated by the “Purchase order” service (this service encap-
sulates an ERP purchasing module), and it is sent to the vendor of choice. Finally, this vendor
uses an “Invoicing” service to bill the customer.

The services that are part of the procurement business process in fi gure 1.4 interact via an
ESB that is depicted in fi gure 1.5. This ESB supports all aspects of SOA and EDA needed for
implementing this service-based application. In particular, the ESB receives the published event
and delivers it asynchronously to the subscribing “Replenishment” service (the event publisher
is not depicted in fi gure 1.5). When the “Replenishment” service invokes the “Supplier order”
service, the ESB transports the invocation message. Although this fi gure shows only a single
“Supplier order” service as part of the inventory, a plethora of supplier services may exist. The

Replenishment
service

Supplier order
service

Order
application

SOAP/
HTTP

XML/
JMS

Procurement

Purchase order
service

ERP

SOAP/
JMS

Inventory

Supplier

Credit check
service

Legacy cc
application

JCA
connector

Invoicing
service

Invoice
application

XML/
JMS

Finance

J2EE
application

Enterprise Service Bus

Figure 1.5
Enterprise Service Bus connecting remote services.

Overview of Service-Oriented Computing 11

“Supplier order” service, which executes a remote Web Service at a chosen supplier to fulfi ll
the order, generates its response in XML, but the message format is not understood by the
“Purchase order” service. To deal with this and other heterogeneity problems, the message from
the “Supplier order” service leverages the ESB’s transformation service to convert the XML
message that has been generated by the “Supplier order” service into a format that is accepted
by the “Purchase order” service. Figure 1.5 also shows that legacy applications that are placed
onto the ESB through JCA resource adapters employed by the “credit check” service.

The capabilities of ESB are discussed in more detail next.

1.3.3 Enterprise Service Bus Capabilities

Developing or adapting an application for SOA involves the following steps:

1. Creating service interfaces to existing or new functions, either directly or through the use of
adapters;

2. routing and delivering service requests to the appropriate service provider; and

3. providing for safe substitution of one service implementation for another, without any effect
to the clients of that service.

The last step requires not only that the service interfaces be specifi ed as prescribed by SOA,
but also that the SOA infrastructure used to develop the application allow the clients to invoke
services regardless of the service location and the communication protocol involved. Such
service routing and substitution are among the key capabilities of the ESB.

Additional capabilities/functional requirements for an ESB are described in the following
paragraphs. We consider these capabilities as being necessary to support the functions of an
effective ESB. Some of the functional capabilities described below have been discussed in other
publications (e.g., [46] [15] [32] [17]).

Service Communication Capabilities
A critical ability of the ESB is to route service interactions through a variety of communication
protocols, and to transform service interactions from one protocol to another where necessary.
Other important aspects of an ESB implementation are the capacity to support service messaging
models consistent with the SOA interfaces and the ability to transmit the required interaction
context, such as security, transaction, or message correlation information.

Dynamic Connectivity Capabilities
Dynamic connectivity pertains to the ability to connect to services dynamically, without using
a separate static API or proxy for each service. Most enterprise applications today operate on a
static connectivity mode, requiring some static piece of code for each service. Dynamic service
connectivity is a key capability for a successful ESB implementation. The dynamic connectivity
API is the same, regardless of the service implementation mechanism (Web Services, JMS,
EJB/RMI, etc.).

12 Dimitrios Georgakopoulos and Michael P. Papazoglou

Endpoint Discovery with Quality of Service Capabilities
The ESB should support the discovery, selection, and binding to services. Increasingly these
capabilities will be based on Web Services standards such as WSDL, SOAP, UDDI, and WS-
PolicyFramework. As many network endpoints can implement the same service contract, it may
be desirable for the client to select the best endpoint at runtime, rather than hard-coding end-
points at build time. In addition the ESB should be capable of supporting various qualities of
service. Clients can query a Web Service, such as an organizational UDDI service, to discover
the best service instance to use based on its QoS properties. Ideally, these capabilities should
be controlled by declarative policies associated with the services involved, using a policy stan-
dard such as WS-Policy [26].

Integration Capabilities
To support SOA in a heterogeneous environment, the ESB needs to integrate with a variety of
systems that do not directly support service-style interactions. These may include legacy systems,
packaged applications, and other COTS components. When assessing the integration require-
ments for ESB, several levels of integration must be considered, including application, process,
and information integration. Each of these imposes specifi c technical requirements that need to
be addressed by a service-oriented integration solution [32] [24].

Application integration is concerned with building and evolving an integration backbone
capability that enables fast assembly and redeployment of business software components. Such
integration is an integral part of the assembly process that facilitates strategies which combine
legacy applications, acquired packages, external application subscriptions, and newly built
components. The ESB should focus on a service-based application integration solutions that
deliver (1) applications composed of interchangeable parts that are designed to be adaptable
to accommodate business and technology changes; (2) evolutionary application portfolios that
protect investment and can respond rapidly to new requirements and business processes; and (3)
integration of various platform and component technologies.

Process integration is concerned with the development of processes that combine other busi-
ness processes, and integrate applications into business processes. Process-level integration at
the level of ESB generally involve Enterprise Application Integration (EA), i.e., the integration
of business processes and applications within the enterprise. It may also involve the integration
of processes, not simply individual services, from other organizations external such as organiza-
tions participating in a supply chain or fi nancial services that span multiple institutions.

Information integration [42] is the process of providing consistent access to all the data in
the enterprise, by all the applications that require it, in whatever form they need it, without being
restricted by the format, source, or location of the data. This may require adapters and other data
transformation facilities, aggregation of services to merge and reconcile disparate data (e.g., to
merge two profi les for the same customer), and data validation to ensure data consistency (e.g.,
the minimum computed income should be greater that zero).

Overview of Service-Oriented Computing 13

Portal-based integration is concerned with how to fabricate a standard portal framework that
provides effi cient, uniform, and consistent presentation of complex business functions and
processes to Web users. It permits the ESB to provide one face to Web users, resulting in con-
sistent user experience and unifi ed information delivery. This allows the underlying services
and applications to remain distributed. Two complementary industry standards, JSR 168 and
WSRP, are emerging in the portal space and can help in such integration efforts [44]. JSR 168
defi nes a standard way to develop portlets. It allows portlets to be interoperable across portal
vendors. For example, portlets developed for BEA’s WebLogic Portal can be interoperable
with IBM Portal. This allows organizations to have a lower dependency on the portal product
vendor. WSRP (Web Service for Remote Portals) allows remote portlets to be developed
and used in a standard manner and facilitates federated portals. It combines the power of
Web services and portal technologies and is fast becoming the major enabling technology
for distributed portals in an enterprise. JSR 168 complements WSRP by dealing with local
rather than distributed portlets. A portal page may have certain local portlets which are JSR
168-compliant and some remote, distributed portlets that are executed in a remote container.
With JSR 168 and WSRP maturing, the possibility of a true EJB federated portal can become
a reality.

It is important to note that all these integration levels must be considered when embarking
on an ESB implementation. To be effective, ESB-based integration must rely on a methodology
that facilitates reuse, eliminates redundancy, and simplifi es integration, testing, deployment, and
maintenance.

Message Transformation Capabilities
Legacy and new components that are integrated as services into the ESB typically have different
expectations of messaging models and data formats. A major source of value in an ESB is that
it shields any individual component from any knowledge of the implementation details of any
other component. The ESB transformation services make it possible to ensure that messages and
data received by any component are in the format it expects, thereby removing the need to
change the sender or the receiver. The ESB plays a major role in transforming heterogeneous
data and messages, including converting legacy data formats (e.g., a COBOL/VSAM application
running on an OS/390 host) to XML, transforming XML to WSDL messages, and transtating
input XML to a different XML format.

Reliable Messaging Capabilities
Reliable messaging refers to the ability to queue service request messages and ensure guaranteed
delivery of these messages to their destinations. It also includes the ability to provide message
delivery notifi cation to the message senter/service requestor. Reliable messaging supports asyn-
chronous store-and-forward delivery as well as guaranteed delivery capabilities. Primarily used
for handling events, this capability is crucial for responding to clients in an asynchronous
manner.

14 Dimitrios Georgakopoulos and Michael P. Papazoglou

Topic/Content-Based Routing Capabilities
The ESB should be equipped with routing mechanisms to facilitate not only topic-based routing
but also a more sophisticated content-based routing. Topic-based routing assumes that messages
can be grouped into fi xed, topical classes, so that subscribers can state interest in a topic and,
as a consequence, receive messages associated with that topic [28]. Content-based routing
permits the content of the message to determine its routing to different endpoints in the ESB.
This requires subscriptions to be based on constraints involving properties or attributes of asyn-
chonous messages and events. Therefore, content-based routing is particularly important for
EDA.

Content-based routing is often implemented by XML messages and JMS or other message-
oriented middleware or is based on emerging standards, such as WS-Notifi cation.

WS-Notifi cation defi nes a general, topic-based Web Service system for publish/subsribe
interactions, which relies on the WS-Resource framework [30]. WS-Notifi cation [52] is a family
of related specifi cations that defi ne a standard Web Services approach to notifi cation using a
topic-based publish/subscribe pattern. Its specifi cation defi nes standard message exchanges to
be implemented by service providers that wish to participate in notifi cations and standard
message exchanges, thus allowing publication of messages from entities that are not themselves
service providers. WS-Notifi cation also allows expression of operational requirements for service
providers and requesters that participate in notifi cations. It permits notifi cation messages to be
attached to WSDL PortTypes. The current WS-Notifi cation specifi cation provides support for
both brokered and peer-to-peer publish/subscribe.

Security Capabilities
Enforcing security is a key success factor for ESB implementations. The ESB needs to provide
security to service consumers and to integrate with the (potentially different) security models
of the service providers. Both point-to-point (e.g., SSL encryption) and end-to-end security
capabilities are required. The latter include federated authentication, which intercepts service
requests and adds the appropriate username and credentials; validation of each service
request and authorization to make sure that the sender has the appropriate privilege to access
the service; and encryption/decryption of XML message content. To address these intricate
security requirements, trust models, WS-Security [8], and other security-related standards have
been developed.

Long-Running Process and Transaction Capabilities
If the ESB support, long-running business processes and transactions, such as those encountered
in an online reservation system that interacts with the users as well as various service providers
(airline ticketing, car reservation, hotel reservation, online payment such as paypal, etc) it is of
vital importance that the ESB provide necessary transactional correctness and reliability guar-
antees. More specifi cally, the ESB must provide mechanisms that isolate the side effects of
concurrent transactions from each other and must support recovery from technical and process
failures. The challenge at hand is to ensure that complex transactions are handled in a highly

Overview of Service-Oriented Computing 15

reliable manner, and ESB-supported transactions can roll back their processing to the original/
prerequest state in the event of a failure.

Management and Monitoring Capabilities
Managing applications in a SOA environment is a serious challenge [7]. Examples of issues that
need to be addressed include dynamic load balancing, fail-over when primary systems go down,
and achieving topological or geographical affi nity between the client and the service instance.
Effective application management in an ESB requires a management framework that is consis-
tent across an heterogeneous set of participating component systems and supports Service Level
Agreements (SLAs). Enforcing SLAs requires the ability to select service providers dynamically,
based on the quality of service they offer and the business value of individual transactions.

An additional requirement for a successful ESB implementation is the ability to monitor the
health, capacity, and performance of services. Monitoring is the ability to track service activities
that take place via the ESB and provide various metrics and statistics. Of particular signifi cance
is the ability to be able to spot problems and exceptions in the business processes and to move
toward resolving them as soon as they occur. Process monitoring capabilities are currently pro-
vided by tool sets in platforms for developing, deploying, and managing service applications,
such as the WebLogic Workshop.

Scalability Capabilities
With a widely distributed SOA, there is need to scale some of the services or the entire infra-
structure to meet integration demands. For example, transformation services are typically very
resource-intensive and may require multiple instances across two or more computing nodes. The
loosely coupled nature of an SOA requires that the ESB use a decentralized model to provide
a cost-effective solution that promotes fl exibility in scaling any aspect of the integration network.
A decentralized SOA enables independent scalability of individual services as well as of the
communications infrastructure itself.

1.4 xSOA

A basic SOA (i.e., the architecture depicted in fi gure 1.2) implements concepts such as service
registration, discovery, and service invocation. ESB requirements, however, suggest that the
basic SOA needs to be extended to support capabilities such as service orchestration, monitoring,
and management. These are addressed by the extended SOA (xSOA) [37] [41]. The xSOA is an
attempt to streamline, group together, and logically structure the functional requirements of
complex applications that make use of the service-oriented computing paradigm. The xSOA is
a stratifi ed service-based architecture. Its architectural layers, which are depicted in fi gure 1.6,
embrace a multidimensional separation of concerns [40] in such a way that each layer defi nes
a set of constructs, roles, and responsibilities, and relies on constructs of a lower layer to accom-
plish its mission. The logical separation of functionality is based on the need to separate basic

16 Dimitrios Georgakopoulos and Michael P. Papazoglou

service capabilities provided by the basic SOA (for example, building simple service-based
applications) from more advanced service functionality needed for composing monitoring, and
managing services. As shown in fi gure 1.6, the xSOA utilizes the basic SOA constructs as its
foundational layer, and adds layers of service composition and management on top of it. The
ESB middleware capabilities (communication, message routing and translation, service discov-
ery, etc.) fall within the xSOA foundation layer. ESB capabilities that deal with service composi-
tion and management are in the composition and management layers of the xSOA. However,
these layers include more advanced functionality than in an ESB.

In a typical service-based application employing the bottom layer of xSOA, a service provider
hosts a network-accessible software module. The service provider defi nes a service description,
and publishes it to a client or a registry through which a service description is advertised. The
service client (requester) discovers a service (endpoint) and retrieves the service description
directly from the service or from a registry (e.g. a UDDI repository). The client uses the service
description to bind with the service provider and invoke the service. The service provider and
service client roles are logical constructs, and a service may exhibit characteristics of both. For
reasons of conceptual simplicity, in fi gure 1.6 we assume that service providers and aggregators

Role actions

performs
publishers
uses

Service provider

Service client

Service aggregator

Market maker

Managed services

Composite services

Basic services

Service operator

Description & Basic Operations

• Coordination• Conformance• Monitoring• QoS

Composition

• Market• Certification• Rating• SLAs
• Operations• Assurance• Support

• Publication
• Discovery
• Selection
• Binding

• Capability
• Inteface
• Behavior
• QoS

Management

Figure 1.6
xSOA, an extended SOA.

Overview of Service-Oriented Computing 17

can act as service brokers and advertise the services they provide. The role actions in this fi gure
also indicate that a service aggregator entails a special type of provider.

The service composition layer in the xSOA encompasses a more advanced role of service
agreegator and corresponding functionality for the aggregation of multiple services into a single
composite service. Resulting composite services may be used by (1) service aggregators as basic
services in further service compositions, or (2) clients as applications/solutions. Service aggrega-
tors thus become service providers in the bottom layer of xSOA by publishing the service
descriptions of the composite service they create.

The development of composite services at the composition layer of xSOA involves managing
the following:

• Metadata, standard terminology, and reference models Web Services need to use metadata
to describe what other endpoints need to know in order to interact with them. Metadata describ-
ing a service typically contain descriptions of the interfaces of a service, including vendor
identifi er, narrative description of the service, Internet address for messages, and format of
request and response messages, as well as choreographic descriptions of the order of interactions.
Service descriptions may range from simple service identifi ers implying a mutually understood
protocol to a complete description of the service interaction. Metadata describing services
provide high-level semantic details regarding the structure and contents of the messages received
and sent by Web Services, message operations, concrete network protocols, and endpoint
addresses used by Web Services. They also describe abstractly the capabilities, requirements,
and general characteristics of Web Services and how they can interoperate with other services.
Web Service metadata need to be accompanied with standard terminology to address business
terminology fl uctuations and reference models, such as RosettaNet PIPS [56], to allow applica-
tions to defi ne data and processes that are meaningful not only to their own businesses but also
to their business partners, while maintaining interoperability (at the semantic level) with other
business applications. The purpose of combining metadata, standard terminology, and reference
models is to enable business processes to capture and convey their intended meaning and
exchange requirements, identifying (among other things) the meaning, timing, sequence, and
purpose of each business collaboration and associated information exchange.

• Conformance This involves managing service, behavior, and semantics conformance. Service
conformance achieves the following: (1) ensures the integrity of a composite service by match-
ing its operations and parameter types with those of its constituent component services, (2)
imposes constraints on the component services (e.g., to enforce business rules), and (3) performs
data fusion activities. Service conformance has three parts: typing, behavioral, and semantic
conformance. Typing (syntactic) conformance is performed at the data-typing level by using
principles such as type safeness, covariance, and contravariance for signature matching [53].
Behavioral conformance ensures the correctness of logical relationships between component
operations that need to be blended into higher-level operations. Behavioral conformance guar-
antees that composite operations do not lead to spurious results and that the overall process

18 Dimitrios Georgakopoulos and Michael P. Papazoglou

behaves in a correct and unambiguous manner. Finally, semantic conformance ensures that ser-
vices and operations are annotated with domain-specifi c semantic properties (descriptions) so
that they preserve their meaning when they are composed and can be formally validated. Service
conformance is a research topic [53]. Concrete solutions exist only for typing conformance [38]
[16], as they are based on conformance techniques for programming languages such as Eiffel
or Java.

• Coordination This involves managing the execution order and datafl ow between the com-
ponent service (e.g., by specifying workfl ow processes and using a workfl ow engine for runtime
control of service execution).

• Monitoring This allows monitoring events or information produced by the component ser-
vices, monitoring instances of business processes, viewing process instance statistics, and sus-
pending and resuming or terminating selected process instances. Of particular signifi cance is the
ability to be able to spot problems and exceptions in the business processes and be able to resolve
them as soon as they occur. Process monitoring capabilities are currently provided by tools in
platforms for developing, deploying, and managing service applications (e.g., BEA’s WebLogic
and Vitria’s BusinessWare).

• Policy compliance This involves the management of the compliance of service compositions
to policies (e.g., for security, information assurance, and QoS). In particular, policies [49] may
be used to manage a system or organize the interaction between Web services [4]. For example,
knowing that a service supports a Web Services security standard such as WS-Security is not
enough information to enable successful composition. The client needs to know what kind of
security tokens the service is capable of processing, and which one it expects. The client must
also determine if the service requires signed messages. And if so, it must determine what token
type must be used for the digital signatures. Finally, the client must determine when to encrypt
the messages, which algorithm to use, and how to exchange a shared key with the service.
Composing services without understanding these details and complying to the appropriate
policies may lead to erroneous results.

Standards such BPEL and WS-Choreography [14] that operate at the service composition
layer in xSOA enable the creation of large service-based applications that allow two companies
to conduct business in an automated fashion. We expect to see much larger service collabora-
tions spanning entire industry groups and other complex business relationships. These develop-
ments necessitate the use of tools and utilities that provide insights into the health of systems
that implement Web Services and into the status and behavior patterns of loosely coupled appli-
cations. A related methodology is essential for leveraging a management framework for a pro-
duction-quality, service-based infrastructure and applications. The rationale is very similar to
the situation in traditional distributed computing environments, where systems administrators
rely on programs/tools/utilities to make certain that a distributed computing environment oper-
ates reliably and effi ciently.

Overview of Service-Oriented Computing 19

Managing loosely coupled applications in an SOA inherently entails even more challenging
requirements. Failure or change of a single application component can bring down numerous
interdependent enterprise applications. The addition of new applications or components can
overload existing components, causing unexpected degradation or failure of seemingly unrelated
systems. Application performance depends on the combined performance of cooperating com-
ponents and their interactions. To counter such situations, enterprises need to constantly monitor
the health of their applications. The performance should be in tune at all times and under all
load conditions.

Managing critical Web service-based applications requires sophisticated administration and
management capabilities that are supported across an increasingly heterogeneous set of partici-
pating distributed component systems and provide complex aggregate (cross-component)
service-level agreement enforcement and dynamic resource provisioning. Such capabilities are
provided by the xSOA service management layer.

We could defi ne Services management as the functionality required for discovering the exis-
tence, availability, performance, health, usage, control, confi guration, life cycle support, and
maintenance, of Web Services or business processes in the context of a SOA. Service manage-
ment encompasses the control and monitoring of SOA-based applications throughout their life
cycle [22]. It spans a range of activities from installation and confi guration to collecting metrics
and tuning to ensure responsive service execution. The management layer in xSOA requires that
services need to be managed. In fact, the very same well-defi ned structures and standards that
form the basis for Web Services also provide the foundation for managing and monitoring com-
munications between services and their underlying resources, across numerous vendors, plat-
forms, technologies, and topologies.

Service management includes many interrelated functions [25]. The most prominent functions
of service management are summarized in the following categoriers:

1. Service-Level Agreement (SLA) management This includes QoS (e.g., sustainable network
bandwidth with priority messaging service) [31]; service reporting (e.g., acceptable system
response time); and service metering.

2. Auditing, monitoring, and troubleshooting This includes providing service performance
and utilization statistics, measurement of transaction arrival rates and response times, measure-
ment of transaction loads (number of bytes per incoming and outgoing transaction), load balanc-
ing across servers, measuring the health of services, and troubleshooting.

3. Dynamic service provisioning This includes provisioning resources, dynamic allocation/
deallocation of hardware, installation/deinstallation of software on demand-based changing
workloads, ensuring SLAs, and reliable SOAP messaging delivery.

4. Service life cycle/state management This includes exposing the current state of a service
and permitting life cycle management, including the ability to start and stop a service, make
specifi c confi guration changes to a deployed Web Service, support different versions of Web

20 Dimitrios Georgakopoulos and Michael P. Papazoglou

services, and notify the clients of a service about a change or impending change to the service
interface.

5. Scalability/extensibility The Web Services support environment should be extensible and
must permit discovery of supported management functionality in a given instantiation.

To manage critical applications, cross-organizational collaborations, and other complex
business relationships the xSOA service management layer is divided into two complementary
categories [37] [41]:

1. Service operations management. This manages the service platform and the deployment
of services, and, more importantly, monitors the correctness and overall functionality of
aggregated/orchestrated services.

2. Service market management. This typically supports integrated supply chain functions and
provides a comprehensive range of services supporting an industry/trade, including providing
services for business transaction negotiation, fi nancial settlement, service certifi cation and
quality assurance, service rating, etc.

The xSOA’s service operations management functionality is aimed at supporting critical
applications that require enterprises to manage the service platform, the deployment of services,
and the applications. xSOA’s service operations management typically gathers information
about the managed service platform, Web Services and business processes, and managed resource
status and performance. It also supports specifi c service management tasks (e.g., root cause
failure analysis, SLA monitoring and reporting, service deployment, and life cycle management
and capacity planning). Operations management functionality may provide detailed application
performance statistics that help assess the application effectiveness, permit complete visibility
into individual business processes and transactions, guarantee consistency of service composi-
tions, and deliver application status notifi cations when a particular activity is completed or a
decision condition is reached. xSOA refers to the role responsible for performing such operation
management functions as the service operator.

It is increasingly important for service operators to defi ne and support active capabilities
versus traditional passive capabilities [29]. For example, rather than merely raising an alert when
a given Web Service is unable to meet the performance requirements of a given service-level
agreement, the management platform should be able to take corrective action. This action could
take the form of rerouting requests to a backup service that is less loaded, or provisioning a new
application server with an instance of the software providing the service if no backup is currently
running and available.

Finally, service operations management should provide tools for the management of running
processes that are comparable with those provided by BPM tools. Management in this care taker
the form of real-time and historical reports, and the triggering of actions. For example, devia-
tions from key performance indicator target values, such as the percent of requests fulfi lled
within the limits specifi ed by a service-level agreement, might trigger an alert and an escalation
procedure.

Overview of Service-Oriented Computing 21

Another aim of xSOA’s service management layer is to provide support for specifi c markets
by permitting the development of open service marketplaces. Currently, there exist several verti-
cal industry marketplaces, such as those for the semiconductor, automotive, travel, and fi nancial
services industries. Their purpose is to create opportunities for buyers and sellers to meet and
conduct business electronically, or to aggregate service supply/demand by offering added-value
services and group buying power (just like a cooperative). The scope of such a service market-
place is limited only by the ability of enterprises to make their offerings visible to other enter-
prises and establish industry-specifi c protocols by which to conduct business. Service marketplaces
typically support supply chain management by providing to their members a unifi ed view of
products and services, standard business terminology, and detailed business process descriptions.
In addition, service markets must offer a comprehensive range of services supporting industry/
trade, including services that provide business transaction negotiation and facilitation [12],
fi nancial settlement, service certifi cation and quality assurance, rating services, service metrics
(such as number of current service requesters, average turnaround time), and manage the nego-
tiation and enforcement of SLAs. The xSOA market management functionality as illustrated in
fi gure 1.6 is aimed to support these open service market functions.

xSOA Service markets introduce the role of a market maker. A market maker is a trusted
third party or consortium of organizations that brings the suppliers and vendors together. Essen-
tially, a service market maker is a special kind of service aggregator that has added responsibili-
ties, such as issuing certifi cates, maintaining industry standard information, introducing new
standards, and endorsing service providers/aggregators. The market maker assumes the respon-
sibility for service market administration and performs maintenance tasks to ensure the admin-
istration is open and fair for business and, in general, provides facilities for the design and
delivery of integrated service offerings that meet specifi c business needs and conform to industry
standards.

1.5 Chapter Summary and Remaining Chapters in this Book

Modern enterprises need to streamline both internal and cross-enterprise business processes by
integrating new, legacy, and home-grown applications. This requires an agile approach that
allows enterprise business services (those offered to customers and partners) to be easily assem-
bled from a collection of smaller, more fundamental business services. This challenge in auto-
mated business integration has driven major advances in technology within the integration
software space. As a result the SOA has emerged to address the roles of service requesters,
service providers, and service brokers, and to foster loosely coupled, standards-based, and
protocol-independent distributed computing that offers solutions for achieving the desired busi-
ness integration and mapping IT implementations more closely to the overall business process
fl ow.

Combining the SOA paradigm with event-driven processing lays the foundation for EDA.
Both SOA and EDA can be effectively supported by an ESB that is capable of combining various

22 Dimitrios Georgakopoulos and Michael P. Papazoglou

conventional distributed computing, middleware, BPM, and EAI technologies. Therefore ESB
offers a unifi ed backbone on which enterprise services can be advertised, composed, planned,
executed, and monitored.

To capture essential ESB functions that include capabilities such as service orchestration,
“intelligent” routing, provisioning, and integrity and security of messages, as well as service
management, the conventional SOA was extended into the extended SOA (xSOA).

In writing this chapter we have intentionally exposed the complexity of SOA-based applica-
tion development in environments where SOA-based applications are not developed entirely
from new functionality. Though this sacrifi ces some of the clarity in SOA, it faithfully represents
the issues in the development of many real SOA-based applications.

The remaining chapters in this book cover topics related to SOA, EDA, and xSOA, as well
as engineering aspects of SOA-based applications. In particular, the book includes chapters on
modeling of SOA-based applications, SOA architecture design, business process management,
transactions, QoS and service agreements, service requirements engineering, reuse, and adapta-
tion. The remaining chapters are outlined below.

Chapter 2: Conceptual Modeling of Service-Driven Applications

In this chapter, Boualem Benatallah, Fabio Casati, Woralak Kongdenfha, Halvard Skogsrud, and
Farouk Toumani present a model-driven methodology for Web Services development and man-
agement. In particular, the proposed methodology is based on (1) UML and high-level notations
to model key service abstractions, (2) operators and algebras for comparing and transforming
such models, and (3) a CASE tool, partially implemented, that manages the entire service
de velopment life cycle. The proposed methodology focuses on the aspects of Web Services
mentioned above, and on the relationship among them, and between them and the Web Service
implementation.

The motivation behind this effort comes from the observation that there has been little concern
so far regarding the potential complexity of service-based applications development, despite
initial results in supporting interoperability in terms of a concerted standardization effort. There
is no framework for helping Web Services beginners, or even developers, wander through the
maze of available specifi cations and their usefulness for developing service artifacts and abstrac-
tions (e.g., interfaces, business protocols, composition models, and policies). In addition, there
has been little support for model-driven development of Web Services, which is very useful to
bridge the gap between requirements and the subsequent phases of the service artifacts develop-
ment process.

Chapter 3: Realizing Service-Oriented Architectures with Web Services

In this chapter Jim Webber and Savas Parastatidis present a message-oriented architectural para-
digm for Web Services, consisting of three distinct views that decouple the architecture layer
(service-oriented) from the protocol layer (message-oriented) and the implementation layer
(event-driven). The importance of XML messages and message exchange patterns are empha-

Overview of Service-Oriented Computing 23

sized across all three views. This approach is illustrated by desribing the construction of a simple
instant messaging application which highlights protocol design and implementation issues. In
addition to setting out the architectural layers of message-oriented Web services, a set of archi-
tectural and implementation guidelines is presented. These guidelines show how to avoid
common software pitfalls by adhering to a number of deliberately simple design principles which
encompass architecture, protocol, and implementation.

Chapter 4: Service-Oriented Support for Dynamic Interorganizational Business Process
Management

Paul Grefen’s chapter analyzes requirements for the support of business processes and puts these
in the context of the existing SOC technology. The chapter describes an application of SOC
technology providing dedicated support for dynamic business process management across the
boundaries of organizations. The combination of SOC technology and workfl ow management
(WFM) technology provides the basis for full-fl edged dynamic interorganizational business
process management. Grefen concludes that the current state of the art does not yet provide an
integrated solution, but that many capabilities are available or under development.

Chapter 5: Data and Process Mediation in Semantic Web Services

This chapter by Adrian Mocan, Emilia Cimpian, and Christoph Bussler views the Web as a
highly distributed and heterogeneous source of data and information. In this environment, Web
Services extend the heterogeneity problems from the data level to the behavior level of business
logic, message exchange protocol, and Web Service invocation. The chapter fi rst indentifi es the
need for mediator systems that are able to cope with these heterogeneity problems and offer the
means for reconciliation, integration, and interoperability. Next, this chapter presents an over-
view of mediator systems, analyzes existing and future trends in this area, and describes the
mediation architecture of the Web Service Execution Environment (WSMX).

The chapter addresses both data and process mediation. It provides an insight into the fi rst
topic together with a survey of the multitude of existing approaches in data mediation. The
chapter also explores and characterizes the largely unexplored topic of process mediation that
must be part of the mediation solution for the Semantic Web and Semantic Web Services.

Chapter 6: Toward Confi gurable QoS-Aware Web Services Infrastructure

L. Bahler, F. Caruso, C. Chung, B. Falchuk, and J. Micallef have a long experience in the
development of mission-critical enterprise systems, such as telecommunications network man-
agement systems. Such systems have stringent nonfunctional requirements for reliability, per-
formance, availability, security, and scalability. Web Services technologies that address these
essential quality of service (QoS) aspects are still in their infancy, with several emerging and
often overlapping specifi cations that address only a fraction of QoS issues. This chapter addresses
the challenges of designing Web Services with QoS requirements for mission-critical operations.
In particular, this chapter provides an analysis and design methodology for Web Services that

24 Dimitrios Georgakopoulos and Michael P. Papazoglou

can be transparently deployed on different transports. It focuses on the QoS requirements for
the message exchange to accomplish a business service—and decribes an adaptive Web Services
gateway that can be confi gured to provide security (and other capabilities). The chapter also
advocates the use of Semantic Web technologies to support and automate deployment confi gura-
tion that satisfi es the solution QoS requirements for a specifi c technology environment.

Chapter 7: Confi gurable QoS Computation and Policing in Dynamic Web Service
Selection

In this chapter, Anne HH Ngu, Yutu Liu, Liangzhao Zeng, and Quan Z. Sheng cover QoS
problems and solutions for supporting rapid and dynamic composition of Web Services. In a
dynamic Web Service composition paradigm, Web Services that meet requesters’ functional
requirements must be located and bounded dynamically from a large and constantly changing
number of service providers. To enable quality-driven Web service selection, an open, fair,
dynamic, and secure framework is needed to evaluate the QoS of a vast number of Web services.
The computational fairness and enforcement of the QoS of component Web Services should
have minimal overhead, yet be able to achieve suffi cient trust by both service requesters and
providers. This chapter presents an open, fair, and dynamic QoS computation model for Web
Services selection through implementation of and experimentation with a QoS registry in a
hypothetical phone service provisioning marketplace application.

Chapter 8: WS-Agreement Concepts and Use: Agreement-Based, Service-Oriented
Architectures

This chapter by Heiko Ludwig outlines the concept of agreement-driven SOA, explains the ele-
ments of the WS-Agreement specifi cation, and discusses conceptual and pragmatic issues of
implementing an agreement-driven SOA based on WS-Agreement. Agreements, such as Service
Level Agreements (SLAs), are typically used to defi ne the specifi cs of a service delivered by a
provider to a particular customer. They include the service provider’s obligations in terms of
which services at which quality, the modalities of service delivery, and the quantity (i.e., the
capacity) of the service to be delivered. Agreements also defi ne what is expected of the service
customer, typically the fi nancial compensation and the terms of use. The chapter describes the
specifi cations of WS-Agreement that are defi ned by the Grid Resource Allocation Agreement
Protocol (GRAAP) Working Group of the Global Grid Forum (GGF) Such agreement specifi ca-
tions enable an organization to dynamically establish an SLA in a formal, machine-interpretable
representation as part of an SOA. The chapter discusses an XML-based syntax for agreements
and agreement templates, a simple agreement creation protocol, and an interface to monitor the
state of an agreement.

Chapter 9: Transaction Support for Web Services

This chapter by Mark Little provides an overview of various transaction models and specifi ca-
tions that have been proposed as standards for transactional composition of Web services. In

Overview of Service-Oriented Computing 25

particular, the chapter provides a tutorial of ACID transactions and the Business Transactions
Protocol (BTP) proposed by the Organization for Advancement of Structured Information
Systems (OASIS). It explains the Web Services Coordination (WS-C) protocol with its Web
Services Atomic Transaction (WS-AT) and the Web Services Business Activity (WS-BA)
specifi cations, and provides an overview of the the Composite Application Framework (WS-
CAF) specifi cation. Finally, the chapter compares these proposed standards by characterizing
and comparing the transactional guarantees they provide.

Chapter 10: Transactional Web Services

This chapter by Stefan Tai, Thomas Mikalsen, Isabelle Rouvellou, Jonas Grundler, and Olaf
Zimmermann addresses the problem of transactional coordination in Service-Oriented Comput-
ing (SOC). The chapter advocates the use of declarative policy assertions to advertise and match
support for different transaction models, and to defi ne transactional semantics of Web Services
compositions. It presents concrete, protocol-specifi c policies that apply to relevant Web Services
specifi cations. In particular, the chapter focuses on the Web Services Coordination (WS-
Coordination) specifi cation that defi nes an extensible framework that can be used to implement
different coordination models for Web Services. These include traditional atomic transactions
and long-running business transactions specifi ed using the Web Services Atomic Transaction
(WS-AT) and the Web Services Business Activity (WS-BA) specifi cations. The chapter presents
a policy-based approach that extends BPEL with coordination semantics and uses policies to
drive and confi gure corresponding middleware systems to support transactional service composi-
tions in an SOC environment.

Chapter 11: Service Componentization: Toward Service Reuse and Specialization

Bart Orriens and Jian Yang introduce the concept of service component to facilitate the idea of
Web Service component reuse, specialization, and extension, and discuss why the inheritance
concepts developed by object-oriented programming language research cannot be applied
directly to service component inheritance, but must be modifi ed. The chapter introduces service
components as a packaging mechanism for developing Web-based distributed applications in
terms of combining existing (published) Web services. Generally speaking, a service component
can range from a small fragment of a business process to an entire complex business process.
A component’s interface specifi cation will be used when applications and other service composi-
tions are built upon it. The chapter illustrates that service components have a recursive nature,
in that they can be composed of published Web Services while in turn they themselves are also
considered to be Web Services (albeit complex in nature). Finally, The chapter describes how
once a service component is defi ned it can be reused, specialized, and extended.

Chapter 12: Requirements Engineering Techniques for Web Services

In this chapter, Jaap Gordijn, Pascal van Eck, and Roel Wieringa focus on creating a shared
understanding of Web Services, and on analyzing whether the each Web Service is commercially

26 Dimitrios Georgakopoulos and Michael P. Papazoglou

viable and technically feasible. Achieving these is complicated when many different stakehold-
ers representing different enterprises and different interests are involved. The chapter presents
an approach, based on requirements engineering techniques: (1) to understand and analyze the
Web Service, and (2) to develop a blueprint for a Web Service-based implementation. The
chapter takes a multiple perspective approach that includes a commercial value perspective, a
process perspective, and an information systems perspective.

Chapter 13: Web Service Adaptation

In the last chapter of this book, Barbara Pernici and Pierluigi Plebani discuss Web Service
adaptation. The solutions presented in the chapter are based on the results of the MAIS (Multi-
channel Adaptive Information System) project, in which the Web Service paradigm has been
exploited in an adaptive way, studying (1) a set of models and methodologies which allow
service provisioning through different channels, and (2) techniques to provide fl exible services
which are aware of the provisioning context. For this goal, the chapter proposes a Web Services
description that takes into account the service provisioning channel as an orthogonal dimension
which is independent from the user and the provider. The chapter considers Web Services to be
both stand-alone and running inside a process. To offer a way to evaluate when and in what
way the adaptation can take place, the chapter describes a quality model of Web Services. In
particular, this quality model allows the client to know how the quality varies not only between
different Web Services but also between the channels through which the same Web service can
be invoked. In this way, the client has information with which to identify the best Web Service
and the best channel to use.

References

[1] Universal Description, Discovery, and Integration (UDDI). Technical report. September 2000. http://www.uddi.
org.

[2] Ali Arsanjani. Introduction to the special issue on developing and integrating enterprise components and services.
Communications of the ACM, 45(10):30–34 (October 2002).

[3] Anjali Anagol-Subbarao. J2EE Web Services on BEA WebLogic 1/e. Prentice Hall PTR, Upper Saddle River, N.J.,
2004.

[4] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Architectures and Applications. Springer,
New York, 2004.

[5] T. Andrews et al. Business Process Execution Language (BPEL), Version 1.1. Technical report. BEA Systems, IBM,
Microsoft, SAP, and Siebel Systems, May 2003.

[6] A. Arkin. Business Process Modeling Language (BPML). Last call draft report. BPMI.org, November 2002.

[7] A. Arora et al. Web Services for Management (WS-Management). Technical report. Advanced Micro Devices, Dell,
Intel, Microsoft, and Sun Microsystems, October 2004.

[8] B. Atkinson et al. Web Services Security (WS-Security). Technical report. Microsoft, IBM, and VeriSign, April
2002.

[9] J. Bloomberg. Events vs. services: The real story. ZapThink white paper, October 2004. Available at www
.zapthink.com.

[10] Scott Boag et al. XQuery 1.0: An XML Query Language. Working draft, technical report. W3C, April 2005.

Overview of Service-Oriented Computing 27

[11] D. Box et al. Simple Object Access Protocol (SOAP) 1.1. W3C note. May 2000. http://www.w3.org/TR/SOAP.

[12] Tung Bui and Alexandre Gachet. Web services for negotiation and bargaining in electronic markets: Design
requirements and implementation framework. In Proceedings of the 38th Hawaii International Conference on System
Sciences. IEEE, Waikoloa, Hawiaii 2005.

[13] S. Burbeck. The tao of e-business services: The evolution of Web applications into service-oriented components
with Web services. IBM DeveloperWorks, October 1, 2000. http://www-106.ibm.com/developerworks/Webservices/
library/ws-tao.

[14] David Burdett and Nickolas Kavantzas. WS-Choreography Model Overview. Working draft. W3C, March 2004.

[15] A. Candadai. A dynamic implementation framework for SOA-based applications. Web Logic Developers Journal,
pp. 6–8 (September/October 2004).

[16] L. Cardelli and P. Wegner. On understanding types, data abstraction and polymorphism. ACM Computing Surveys,
17(4):471–522 (1985).

[17] D. Chappell. Enterprise Service Bus. O’Reilly, Sebastopol, Calif., 2004.

[18] D. Chappell. ESB myth busters: 10 Enterprise Service Bus myths debunked. Clarity of defi nition for a growing
phenomenon. Web Services Journal, pp. 22–26 (February 2005).

[19] M. Colan. Service-Oriented Architecture expands the vision of Web services, Part 2. IBM DeveloperWorks.
June 2004.

[20] A. Dan et al. Web services on demand: WSLA-driven automated management. IBM Systems Journal, 43(1):
136–158 (March 2004).

[21] Arulazi Dhesiaseelan and Venkatavaradan Ragunathan. Web Services Container Reference Architecture (WSCRA).
In Proceedings of the International Conference on Web Services, pp. 805–806. IEEE, 2004.

[22] A. Lazovik et al. Associating assertions with business processes and monitoring their execution. In Proceedings
of the Second International Conference on Service Oriented Computing. ACM Press, New York, 2004.

[23] D. Booth et al. Web Services Architecture. 3WC Working Group note, 2003/2004. http://www.w3.org/TR/2004/
NOTE-arch-20040211.

[24] M. Keen et al. Patterns: Implementing an SOA using an Enterprise Service Bus. IBM Redbooks, July 25, 2004.

[25] Nicolas Catania et al. Web Services Management Framework—Overview, Version 2.0. Technical report. HP, July
2003.

[26] Siddharth Bajaj et al. Web Services Policy framework (WS-Policy). Technical report. BEA Systems, IBM,
Microsoft, SAP, Sonic Software, and VeriSign, September 2004.

[27] Stephen Farrell et al. Assertions and Protocol for the OASIS Security Assertion Markup Language (SAML), V1.1.
Committee specifi cation. OASIS, July 2003.

[28] B. Mukherjee et al. An effi cient multicast protocol for content-based publish-subscribe systems. In ICDCS ’99:
Proceedings of the 19th IEEE International Conference on Distributed Computing Systems, pp. 262–272. IEEE Com-
puter Society, Washington, D.C., 1999.

[29] A. G. Ganek and T. A. Corbi. The dawning of the autonomic computer era. IBM Systems Journal, 42(1):5–18
(2003).

[30] Steve Graham et al., eds. Web Services Resource (WS-Resource), Version 1.2. Working draft 03, technical report.
OASIS, March 2005.

[31] R. Hauck and H. Reiser. Monitoring quality of service across organizational boundaries. In Trends in Distributed
Systems: Towards a Universal Service Market. Proceedings of the Third International IFIP/GI Working Conference.
LNCS 1890. Springer, New York, 2000.

[32] K. Channabasavaiah, K. Holley, and E. M. Tuggle, Jr. Migrating to a Service-Oriented Architecture, Part 1. IBM
DeveloperWorks, December 2003.

[33] D. Krafzig, K. Banke, and D. Slama. Enterprise SOA: Service-Oriented Architecture Best Practices. Prentice Hall
Professional Technical References, Indianapolis, Ind., 2005.

[34] Heather Kreger. Fulfi lling the Web services promise. Communications of the ACM, 46(6):29ff. (2003).

[35] D. Linthicum. Next Generation Application Integration: From Simple Information to Web Services. Addison-
Wesley, Boston, 2003.

28 Dimitrios Georgakopoulos and Michael P. Papazoglou

[36] D. Luckham. The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise
Systems. Addison-Wesley, Boston, 2002.

[37] M. P. Papazoglou and D. Georgakopoulos. Introduction to a special issue on Service-Oriented Computing.
Communications of the ACM, 46(10): 24–28 (October 2003).

[38] B. Meyer. Object-Oriented Software Construction, 2nd ed. Prentice Hall Professional Technical Reference, Upper
Saddle River, N.J., 1997.

[39] M. P. Papazoglou and P. M. A. Ribbers. e-Business: Organizational and Technical Foundations. Wiley, Hoboken,
N.J., 2006.

[40] H. Ossher and P. Tarr. Multi-dimensional separation of concerns and the hyperspace approach. In Proceedings of
the Symposium on Software Architectures and Component Technology: The State of the Art in Software Development.
Kluwer 2000.

[41] M. P. Papazoglou. Extending the Service Oriented Architecture. Business Integration Journal, February 2005.

[42] Christine Parent and Stefano Spaccapietra. Issues and approaches of database integration. Communications of the
ACM, 41(5):166–178 (1998).

[43] Kazunori Iwasa, ed. WS-reliability, 1.1. Committee draft 1.086. OASIS, Web Services Reliable Messaging TC,
August 2004. http://www.oasis-open.org/committees/wsrm/documents/specs/(tbd).

[44] R. Rana and S. Kumar. Service on demand portals: A primer on federated portals. Web Logic Developers Journal,
pp. 22–24 (September/October 2004).

[45] Ueli Wahli et al. Websphere Version 5.1 Application Developer 5.1.1 Web Services Handbook. IBM Redbook,
2004.

[46] R. Robinson. Understand Enterprise Service Bus Scenarios and Solutions in Service-Oriented Architecture. IBM
DeveloperWorks, 2004.

[47] S. Anderson et al. Web Services Trust language (WS-Trust). Public draft release. Actional, BEA Systems, Computer
Associates, IBM, Layer 7 Technologies, Microsoft, Oblix, OpenNetwork Technologies, Ping Identity, Reactivity, RSA
Security, and VeriSign, February 2005.

[48] R. Schulte. Predicts 2003: Enterprise Service Buses Emerge. Report. Gartner, December 2002.

[49] M. Sloman. Policy driven management of distributed systems. Journal of Network and Systems Management,
2:333–360 (1994).

[50] D. Smith. Web services enable Service Oriented and Event-Driven Architectures. Business Integration Journal,
pp. 12–13 (May 2004).

[51] Michael Stal. Web Services: Beyond component-based computing. Communications of the ACM, 45(10):71–76
(October 2002).

[52] Steve Graham, Peter Niblett, et al. Web Services Base Notifi cation, Version 1.0. Akamai Technologies, Computer
Associates, Fujitsu, Hewlett-Packard Development Company, IBM, SAP, Sonic Software, University of Chicago, and
Tibco Software. Inc., 2004.

[53] W. J. van den Heuvel. Aligning Modern Business Processes and Legacy Systems: A Component-Bases Perspective.
MIT Press, Cambridge, Mass., 2007.

[54] W3C. XSL Transformations (XSLT), version 2.0. W3C working draft, technical report. April 2005.

[55] Jian Yang. Web Service componentization. Communications of the ACM, 46(10):35–40 (October 2003).

[56] P. Yendluri. RosettaNet Implementation Framework (RNIF), version 2.0. Technical report. RosettaNet, 2000.

[57] D. Baker, D. Georgakopoulos, M. Nodine, and A. Cichocki. From events to awareness. In Proceedings of the First
International Workshop on Event-driven Architecture, Processing, and Systems (EDA-PS 2006); 2006 IEEE Services
Computing Workshops (SCW 2006), IEEE, Chicago, September, 2006.

	Georgakopoulos_00_FM.pdf
	Georgakopoulos_01_Ch01.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /None
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /None
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

