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1. Time inconsistency: the role of discounting
This exercise takes as given the time separability of preferences and il-
lustrates the role of hyperbolic discounting in generating time inconsis-
tency. To this end, the exercise �rst asks you to verify that time-separable
preferences with exponential discounting (i.e., the preferences used in the
text) are time consistent. It then asks you to work out an example in
which the introduction of hyperbolic discounting renders preferences time-
inconsistent.

(a) Exponential consumer
Suppose that the preferences of the �exponential�consumer are given
by:

U0(c0; c1; :::) =
1X
t=0

�t log(ct); (80)

where ct is consumption in period t, � 2 (0; 1), and the subscript 0
on the lifetime utility function indicates that the consumption path
is being evaluated as of time t = 0.
The �ow constraint for period t is given by

bt+1 = (1 + r)bt + y � ct;

where y is the constant endowment, r is the exogenously-given world
real interest rate, and bt are net foreign assets held between period t
and period t+1. Iterating forward the �ow constraint and imposing
the condition that

1This answer key is part of a graduate textbook on �Open Economy Macroeconomics in
Developing Countries�, currently under preparation by the author (to be published by MIT
Press) and should be cited accordingly. The equation numbering of this answer key continues
that of Chapter 1. I am extremely grateful to Pablo Lopez Murphy and Agustin Roitman for
their invaluable help in the preparation of this manuscript and to Igor Zuccardi for his help
in �nalizing the manuscript. I thank Carolina Mejía Mantilla for helpful comments on this
answer key.
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lim
t!1

bt+1

(1 + r)
t = 0

yields the following intertemporal constraint:

1X
t=0

�
1

1 + r

�t
ct = (1 + r)

�
b0 +

y

r

�
: (81)

In this context:

i. De�ne the discount factor at time t (a measure of the degree of
the consumer�s impatience) as the marginal rate of substitution
between consumption at two consecutive dates for a constant
consumption path, �c:

Discount factort �MRStt;t+1 =
@U(c0; c1; :::)=@ct+1
@U(c0; c1; :::)=@ct

����
c0=c1=:::=�c

:

Suppose that the consumer is standing at time t. Compute the
discount factor for consumption between t+1 and t+2 (i.e., com-
pute MRStt+1;t+2). Next suppose that the consumer is stand-
ing at t + 1. Recompute the discount factor for consumption
between t + 1 and t + 2 (i.e., compute MRSt+1t+1;t+2). Verify
MRStt+1;t+2 =MRS

t+1
t+1;t+2.

ii. Denote by c0t , t = 0; 1; ::: the optimal consumption path chosen
at t = 0. Compute reduced-forms for c0t , t = 0; 1; :::.

iii. Denote by c1t , t = 1; 2; ::: the optimal consumption path chosen
at t = 1. Verify that the optimal consumption path chosen at
t = 1 is time consistent (i.e., coincides with the path chosen at
t = 0). (Hint: Compute reduced-forms for c1t , t = 1; 2; ::: and
check that c01 = c

1
1, c

0
2 = c

1
2; and so forth).

(b) Hyperbolic consumer

Suppose now that preferences are of the �quasi-hyperbolic�type (see,
for example, Backus, Routledge, and Zin (2004)):

U0(c0; c1; :::) = log(c0) + �
1X
t=1

�t log(ct); (82)

where � 2 (0; 1).
In this context:

i. Suppose that the consumer is standing at time t. Compute the
discount factor for consumption between t+1 and t+2 (i.e., com-
pute MRStt+1;t+2). Next suppose that the consumer is standing
at t + 1. Recompute the discount factor for consumption be-
tween t + 1 and t + 2 (i.e., compute MRSt+1t+1;t+2). Verify that
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MRStt+1;t+2 > MRSt+1t+1;t+2. Notice that this implies that the
consumer is more patient about consuming between tomorrow
and the day after tomorrow from the standpoint of today than
from the standpoint of tomorrow. In this sense, the consumer is
more impatient in the �short-run�than in the �long-run�, which
is the de�ning characteristic of hyperbolic discounting.

ii. Compute reduced forms for c0t , t = 0; 1; :::
iii. Compute reduced forms for c1t , t = 1; 2; ::: Assume, for simplicity,

that b0 = 0. Show that the optimal consumption path chosen
at t = 1 is time inconsistent (i.e., does not coincide with the
path chosen at t = 0). (Hint: Compute reduced-forms for cj1,
j = 0; 1; ::: and verify that c11 > c01.) Explain intuitively the
source of the time inconsistency.

Answer

(a) Exponential consumer

i.

MRStt+1;t+2 =
@Ut=@ct+2
@Ut=@ct+1

= �;

MRSt+1t+1;t+2 =
@Ut+1=@ct+2
@Ut+1=@ct+1

= �:

ii. Preferences as of time 0 are given by

U0 = ln c0 + � ln c1 + �
2 ln c2 + :::

The intertemporal constraint is given by

c0 +
c1
1 + r

+
c2

(1 + r)2
+ ::: = (1 + r)(b0 +

y

r
): (118)

The �rst-order conditions are therefore given by:

�t

ct
=

�

(1 + r)t
; t = 0; 1; :::

If �(1 + r) = 1, �rst-order conditions boil down to

ct =
1

�
;

which implies that consumption as of time 0 (denoted by c0t ) is
constant over time. Hence, from the intertemporal constraint
(118), it follows that
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c0t

�
1 +

1

1 + r
+

1

(1 + r)2
+ :::

�
= (1 + r)(b0 +

y

r
):

Then
c0t = rb0 + y; t = 0; 1; ::: (119)

iii. Preferences as of time 1 are given by

U1 = ln c1 + � ln c2 + �
2 ln c3 + ::

The intertemporal constraint is given by

c1 +
c2
1 + r

+
c3

(1 + r)2
+ ::: = (1 + r)

�
b1 +

y

r

�
:

Proceeding as above, we conclude that

c1t = rb1 + y; t = 1; 2; ::: (120)

To verify the optimum consumption plan chosen at time t = 1 is
time consistent, we need to show that

c0t = c
1
t for t = 1; 2; :::

Comparing (119) with (120), we can see that time consistency
would hold if

b1 = b0:

And, indeed, we can show that this is the case. Using the econ-
omy�s �ow constraint and (119), it follows that:

b1 = (1 + r)b0 + y � c0;

= (1 + r)b0 + y � r
�
b0 +

y

r

�
;

= b0:

We have thus shown that the consumption choices of our expo-
nential consumer are time consistent.

(b) Hyperbolic consumer

i.

MRStt+1;t+2 =
@Ut=@ct+2
@Ut=@ct+1

= �;

MRSt+1t+1;t+2 =
@Ut+1=@ct+2
@Ut+1=@ct+1

= ��:
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ii. Preferences as of time 0 are given by

U0 = ln c0 + �� ln c1 + ��
2 ln c2 + :::

The intertemporal constraint is given by

c0 +
c1
1 + r

+
c2

(1 + r)2
+ ::: = (1 + r)(b0 +

y

r
):

First-order conditions are therefore given by

��t

ct
=

�

(1 + r)t
; t = 1; 2; :::::

1

c0
= �:

If �(1 + r) = 1, the �rst-order conditions reduce to:

�

ct
= �; t = 1; 2; :::

1

c0
= �:

It follows that

ct = �c0 for t = 1; 2; ::: (121)

Using the intertemporal constraint,

c0 +
�c0
1 + r

�
1 +

1

1 + r
+

1

(1 + r)2
+ :::

�
= (1 + r)

�
b0 +

y

r

�
:

Hence,

c0(1 +
�

r
) = (1 + r)(b0 +

y

r
): (122)

From (121) and (122), it follows that

c00 =
1 + r

r + �
(rb0 + y) ; (123)

c0t =
�(1 + r)

r + �
(rb0 + y) ; t = 1; 2; ::: (124)

Notice that c00 > c
0
t (t = 1; 2; :::), because the consumer discounts

future consumption at a rate that is higher than the real interest
rate In other words, the discount factor, ��, is smaller than the
interest rate factor, 1=(1 + r). Put di¤erentely, the consumer
is more impatient in the short-run than in the long-run. (See
Figure 1, Panel A.)
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iii. Preferences as of time 1 are given by

U1 = ln c1 + �� ln c2 + ��
2 ln c3 + :::

The constraint is given by

c1 +
c2
1 + r

+
c3

(1 + r)2
+ ::: = (1 + r)(b1 +

y

r
):

Proceeding as in the previous point, we �nd that

c11 =
1 + r

r + �
(rb1 + y); (125)

c1t =
�(1 + r)

r + �
(rb1 + y) ; t = 2; 3; ::: (126)

To show that the choice of c1 is time inconsistent, it is enough
to show that

c11 > c
0
1: (127)

Intuitively, we expect this to be the case because the consumer
discounts more heavily the immediate future than the distant
future. Hence, from the point of view of t = 1, consumption at
time 1 is more valuable than it was from the point of view of
t = 0. Formally, this can be seen from the fact that c1 receives
a higher weight in U1 than in U0.
We now need to compute b1. To this end, we make use of the
economy�s �ow constraint and (123):

b1 = (1 + r)b0 + y � c00;
= y � c00;

= y � (1 + r)
r + �

y;

= b0 �
1� �
r + �

(rb0 + y):

(As expected, the economy runs a current accoun de�cit in period
0.) Substituting this expression for b1 into (125) and (126), we
get

c11 = �

�
1 + r

r + �

�2
(rb0 + y); (128)

c1t = �2
�
1 + r

r + �

�2
(rb0 + y) (129)
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Given (131) and (128), showing c11 > c
0
1 implies showing that

�

�
1 + r

r + �

�2
(rb0 + y)| {z }

c11

>
�(1 + r)

r + �
(rb0 + y)| {z };
c01

which reduces to:

� < 1;

which holds since, by assumption, � 2 (0; 1). Hence, our in-
tuition was correct and under these hyperbolic preferences, the
choice of c1 is time inconsistent as it depends on when it is made
(at t = 0 or t = 1).
Finally �and to gain further insight �notice that, intuitively, we
expect c1t < c

0
t for t � 2 The reason is that the consumer run a

current account de�cit in t = 0 (and hence has fewer resources)
and has chosen a higher level of c1. Hence, there are less resources
to spend on future consumption.

�2
�
1 + r

r + �

�2
(rb0 + y)| {z }

c11

<
�(1 + r)

r + �
(rb0 + y)| {z }
c01

;

which again reduces to

� < 1:

Figure 1, Panel A illustrates the time inconsistency generated by
hyperbolic preferences by showing how the path of consumption
chosen at t = 0 di¤ers from the one that would be chosen at
t = 1.

2. Time inconsistency: the role of non time-separability

This exercise �which complements the previous one �takes as given the
presence of exponential discounting and illustrates the role of non time-
separability in generating time inconsistency.1

(a) Past consumption a¤ects today�s utility
Let preferences be given by:

U0(c0; c1; :::) = log(c0) +
1X
t=1

�t[log(ct) + � log(ct�1)]:

1See Calvo (1996) for a detailed discussion of the role of non-separability in generating
time-inconsistency.
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The sign of � de�nes the type of preferences. Naturally, if � = 0,
these are the standard time-separable preferences. If � < 0, there
is habit persistence (or habit formation) in the sense that higher
consumption in period t� 1 decreases utility in t (capturing the idea
that consumers get used or �addicted�to that level of consumption).
If � > 0, there is durability of consumption goods in the sense that
higher consumption at t�1 increases utility at t.2 The intertemporal
constraint remains given by (115).
In this context:

i. Compute reduced forms for c0t , t = 0; 1; :::
ii. Compute reduced forms for c1t , t = 0; 1; :::Verify that the optimal
consumption path chosen at t = 1 is time consistent.

(b) Future consumption yields utility

Let preferences be given by:

U0(c0; c1; :::) =

1X
t=0

�t[log(ct) + log(ct+1)]

:In this case the consumer derives utility not only from today�s con-
sumption but also from next period�s consumption.

i. Compute reduced forms for c0t , t = 0; 1; :::
ii. Compute reduced forms for c1t , t = 0; 1; ::: Assume, for simplicity,
that b0 = 0. Show that the optimal consumption path chosen at
t = 1 is time inconsistent. Explain intuitively the source of time
inconsistency.

Answer

(a) Past consumption a¤ects today�s marginal utility

i. Preferences as of time 0 are given by

U0 = log c0 + �(log c1 + � log c0) + �
2(log c2 + � log c1) + :::

The constraint is

c0 +
c1
1 + r

+
c2

(1 + r)2
+ ::: = (1 + r)(b0 +

y

r
): (130)

2Habit persistence has been used extensively in the �nance literature as a possible expla-
nation for the equity-premium puzzle (see Constantinides, 1990). In the area of development
macroeconomics, habit persistence has been used to explain some of the stylized facts associ-
ated with exhange rate-based stabilization (see Uribe (2002)). We will examine these issues
in detail in Chapter @.
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First-order conditions are given by:

�t

ct
(1 + ��) =

�

(1 + r)t
:

If �(1 + r) = 1, �rst-order conditions boil down to:

ct =
(1 + ��)

�

which implies that consumption as of time 0 (denoted by c0t ) is
constant over time. Hence, from the intertemporal constraint
(130), it follows that

c0t (1 +
1

1 + r
+

1

(1 + r)2
+ :::) = (1 + r)(b0 +

y

r
)

Hence,
c0t = rb0 + y; t = 0; 1; ::: (131)

ii. Preferences as of time 1 are given by

U1 = ln c1 + �(ln c2 + � ln c1) + �
2(ln c3 + � ln c2) + ::

The intertemporal constraint is given by

c1 +
c2
1 + r

+
c3

(1 + r)2
+ ::: = (1 + r)(b1 +

y

r
):

Proceeding as before, we �nd that

c1t = rb1 + y: (132)

Comparing (131) and (132), we see that the choice of c1 will be
time-consistent if

b1 = b0:

And using the �ow constraint and the choice of c0 given by (131),
we can check that this indeed the case:

b1 = (1 + r)b0 + y � c0
= (1 + r)b0 + y � r(b0 +

y

r
)

= b0

(b) Future consumption yields utility

i. Preferences are given by

U0 = ln c0 + ln c1 + �(ln c1 + ln c2) + �
2(ln c2 + ln c3) + :::
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The intertemporal constraint is given by

c0 +
c1
1 + r

+
c2

(1 + r)2
+ ::: = (1 + r)(b0 +

y

r
) (133)

The �rst-order conditions are therefore given by

1

c0
= �

�t�1

ct
(1 + �) =

�

(1 + r)t
; t = 1; 2; ::

If �(1 + r) = 1, the �rst-order condition reduce to:

1

c0
= �;

(1 + r)(1 + �)

ct
= � ; t = 1; 2; ::

It follows that

ct = (1 + r)(1 + �)c0; t = 1; 2; :: (134)

Using this last equation and the intertemporal constraint (133),
we obtain

c0

�
1 +

(1 + r)(1 + �)

r

�
= (1 + r)

�
b0 +

y

r

�
:

Using this last equation and (134)

c00 =
1 + r

r + (1 + r)(1 + �)
(rb0 + y) ; (135)

c0t =
(1 + r)2(1 + �)

r + (1 + r)(1 + �)
(rb0 + y) ; t = 1; 2; :: (136)

Using the fact that �(1 + r) = 1, these two expression can be
simplify to:

c00 =
rb0 + y

2
; (137)

c0t =
�
1 +

r

2

�
(rb0 + y) ; t = 1; 2; :: (138)

As expected c00 < c0t (see Figure 1, Panel B) because c0 only
yields utility today, as opposed to all the other consumptions
which yield utility in the period in which they occur but also in
the period before.
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ii. Preferences are given by

U1 = ln c1 + ln c2 + �(ln c2 + ln c3) + �
2(ln c3 + ln c4) + :::

The intertemporal constraint is given by

c1 +
c2
1 + r

+
c3

(1 + r)2
+ ::: = (1 + r)

�
b1 +

y

r

�
:

Proceeding as in the previous point:

c11 =
rb1 + y

2
; (139)

c1t =
�
1 +

r

2

�
(rb1 + y) ; t = 1; 2; :: (140)

Since c1 has a higher �weight�in U0 than in U1, we expect that

c01 > c
1
1.

Intuitively, tomorrow�s consumption is more valuable from to-
day�s standpoint than from tomorrow�s standpoint because the
anticipation of tomorrow�s consumption also gives utility today.
Before showing this, we �rst need to compute b1. To this end, we
make use of the economy�s �ow constraint and (135) to obtain:

b1 = (1 + r)b0 + y � c00
b1 = b0 +

1

2
(rb0 + y):

As expected, the economy runs a current account surplus in pe-
riod 0.
We now replace this solution for b1 into the expression for c11 and
c0t given in (139) and (140) to obtain:

c11 =
�
1 +

r

2

� rb0 + y
2

(141)

c1t =
(2 + r)2

4
(rb0 + y) (142)

Recall that we want to show that c01 > c
1
1. Given (??) and (141),

this implies showing that�
1 +

r

2

�
(rb0 + y)| {z }
c01

>
�
1 +

r

2

� rb0 + y
2| {z }

c11

;

which reduces to
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1 >
1

2
;

and hence holds. Hence, the choice of c1 is time inconsistent.
When the consumer reoptimizes in t = 1, he/she will choose a
lower level of c1 because it has become less valuable.
Finally, notice that we also expect that c0t < c1t , t � 2, since
the consumer has run a current account surplus in period 0 (and
hence has more resources than in t = 0) and has chosen a lower
level of c1. To check this, we show that�

1 +
r

2

�
(rb0 + y)| {z }
c0t

<
(2 + r)2

4
(rb0 + y)| {z }
c1t

;

which reduces to

0 <
r

2

and hence holds. Figure 1, Panel B illustrates the time incon-
sistency generated by preferences in which future consumption
yields utility by showing how the path of consumption chosen at
t = 0 di¤ers from the one that would be chosen at t = 1.

2. Roots of the system
Consider the in�nite horizon model of Section 2.2 with logarithmic pref-
erences. In this context:

(a) Show that the dynamic system associated with the model has roots
r � � and r. (If r = �, then the roots are zero and r.)

(b) Consider a discrete time version of the model. Show that for the
(1 + r)� = 1 case, the roots are 1 and 1 + r.

Answer

(a) With logarithmic preferences, we can reduce the model to the follow-
ing linear system of di¤erential equations (assume constant endow-
ment):

_bt = rbt + y � ct; (143)

_ct = (r � �)ct: (144)

Expressed in matrix notation:�
_bt
_ct

�
=

�
r �1
0 r � �

� �
bt
ct

�
:
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Denote by � the roots of the system. To obtain the roots of the
system, we substract � from the diagonal elements of the matrix
associated with the dynamic system and set its determinant to zero:���� r � � �1

0 r � � � �

���� = 0:
The characteristic equation is then given by

�2 � (2r � �)�+ r(r � �) = 0:

The roots are therefore given by

� =
2r � � �

p
(2r � �)2 � 4r(r � �)

2
;

which can be reduced to

� =
2r � � � �

2
;

or

� =

�
r
r � �

The two roots are therefore r and r � �. If r < �, then we have one
positive and one negative (i.e., stable) root.
If r = �, then we have a zero root and a positive root. Choosing the
solution ct = rb0+y for all t � 0 (which is equivalent to imposing the
transversality condition) implies setting to zero the constant corre-
sponding to the positive (i.e., unstable) root and using only the zero
root. To see this clearly, notice that r = � implies that _ct = 0. Then,
substituting ct = rb0 + y into (144) and evaluating the expression at
t = 0 implies that _b0 = 0, which implies that _bt = 0 for all t > 0.

(b) In discrete time with �(1 + r) = 1, the linear system of di¤erence
equations reduces to

bt+1 = (1 + r)bt + y � ct; (145)

ct+1 = �(1 + r)ct:

It can be easily check that the same logic discussed above holds. In
particular, if �(1 + r) = 1, then the roots of this system are 1 and
1 + r. Choosing the solution ct = rb0 + y corresponds to setting to
zero the constant corresponding to the 1+ r root and using only the
unit root. If �(1 + r) = 1, then ct+1 = ct for all t = 0; 1; :::. Then,
substituting ct = rb0+ y into (145) and evaluating the expression for
t = 0 yields b1 = b0, which implies that bt+1 = b0 for all t � 0.
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3. Consumption tilting
This exercise analyzes consumption tilting (i.e., optimal consumption plans
when � is not necessarily equal to r) in both the �nite and in�nite horizon
settings.

Let the instantaneous utility function be given by:

u(ct) =
c
1� 1

�
t � 1
1� 1

�

; (146)

where � > 0 denotes the intertemporal rate of substitution in consump-
tion.

(a) Finite horizon

Consider the �nite horizon problem analyzed in the text, in which
the consumer maximizes (1) (with the instantaneous utility function
given by (146) subject to (18). In this context:

i. Derive the �rst-order conditions for the consumer�s problem and
show how the rate of growth of consumption depends on the re-
lation between � and r. Explain the intuition behind the results.

ii. Derive a closed-form solution for ct.

(b) In�nite horizon (based on Calvo (1996))

In an in�nite horizon setting, the existence of a well-de�ned opti-
mal consumption path when r is di¤erent from � cannot be taken
for granted. (By well-de�ned optimal consumption path we mean a
consumption path whose present discounted value is �nite.)
Consider the basic in�nite horizon model described in the text, in
which the consumer maximizes (13) (with the instantaneous utility
function given by ((146))) subject to (18). For simplicity, let the
endowment stream be constant over time and equal to y and b0 = 0.
In this context:

i. Derive a condition involving r, �, and � that guarantees the exis-
tence of a well-de�ned optimal consumption path. In particular,
show that � � 1 is a su¢ cient condition for existence. [Hint:
Solve for the optimal consumption path, write the intertemporal
budget constraint in terms of c0, and establish the condition for
the integral to converge.]

ii. To illustrate the fact that � � 1 is not a necessary condition to
guarantee the existence of a well-de�ned optimal consumption
path, consider the case in which � = 1:5. What is the condition
involving r and � for which existence is guaranteed?

iii. Restrict your attention to cases in which a well-de�ned optimal
consumption path exists. Show that:
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A. If r = �, ct = y for all t � 0.
B. If r > �, c0 < y and consumption increases over time.
C. If r < �, c0 > y and consumption falls over time.

iv. Check that the same condition that you derived in (i) above
guarantees that the utility funcional (13), with u (c) given by
(117), converges.

Answer

(a) Finite horizon

i. The �rst-order condition is given by

c
� 1
�

t e��t = �e�rt:

Taking logarithms, we obtain

� 1
�
ln ct � �t = ln�� rt:

Totally di¤erentiating,

� 1
�

dct
ct
� �dt = �rdt:

Rearranging terms,

:
ct
ct
= (r � �)�: (147)

We see that consumption will grow over time when the real in-
terest rate is larger than the discount rate. In this case, the
consumer is discounting the future at a lower rate than the real
interest rate that he/she would obtain by foregoing consumption
today. Hence, consumption today will be low relative to tomor-
row�s (i.e., consumption is increasing over time). The opposite is
true when the real interest rate is lower than the discount rate.

ii. Notice that equation (147) is a �rst-order linear di¤erential equa-
tion in ct. The general solution to this di¤erential equation is
given by

ct = c0e
(r��)�t; (148)

where c0 is the level of consumption at t = 0 yet to be deter-
mined.
To determine c0, substitute the expression for ct given by (148)
into the intertemporal constraint (10) to obtain

c0

Z T

0

e[(r��)��r]tdt = b0 +

Z T

0

yte
�rtdt:
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Integrating the left-hand side, we get

c0 =
r � (r � �)�

1� e[(r��)��r]T

 
b0 +

Z T

0

yte
�rtdt

!
: (149)

Substituting (149) into (148), we obtain a reduced form for ct:

ct = e
(r��)�t r � (r � �)�

1� e[(r��)��r]T

 
b0 +

Z T

0

yte
�rtdt

!
Note that, as a particular case, if r = � then

ct =
r

1� e�rT

 
b0 +

Z T

0

yte
�rtdt

!
:

In other words, if r = �, ct is constant over time and equal to
permanent income (i.e., the constant level of consumption that
exhausts the present discounted value of resources).

(b) In�nite horizon

i. Substituting the expression for ct given by (148) into the in-
tertemporal budget constraint for the in�nite horizon case given
by (18) yields

c0

Z 1

0

e[(r��)��r]tdt = b0 +

Z 1

0

yte
�rtdt: (150)

The integral on the left-hand side will converge if and only if

(r � �)� � r < 0;

�� < r
(1� �)
�

: (151)

For r > 0, a su¢ cient condition for this to hold is that � � 1,
which is borne out by the empirical evidence (see the discussion
in Chapter 3).

ii. Suppose that � = 1:5. Then condition (151) holds whenever

� >
r

3
:

iii. If (151) holds, we can solve (150) to obtain (assuming that yt =
y):

c0 = [r � (r � �)�] y
r

ct = c0e
(r��)�t

So if r > �, c0 < y and consumption increases over time. If
r < �, then c0 > y and consumption falls over time.
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iv. We want to check that the condition (r��)��r < 0 is a necessary
and su¢ cient condition forZ 1

0

 
c
1� 1

�
t � 1
1� 1

�

!
e��tdt (152)

to converge.
Substituting expression (148) into (152), we obtain

Z 1

0

0@�c0e(r��)�t�1� 1
� � 1

1� 1
�

1A e��tdt:
Rearranging this expression, we obtain

c
1� 1

�
0

1� 1
�

Z 1

0

e[(r��)�(1�
1
� )��]tdt� 1

1� 1
�

Z 1

0

e��tdt: (153)

The second integral always converges. But the �rst integral will
converge if and only if

(r � �)�
�
1� 1

�

�
� � < 0;

which reduces to
(r � �)� � r < 0; (154)

which is what we wanted to show.
Notice some important particular cases. First, if r = �, condi-
tion (154) always hold since it reduces to �r < 0. Intuitively,
since the path of consumption is bounded, u(c) is also bounded
and therefore the utility functional always converges regardless
of the value of �. Second, as before, � � 1 is a su¢ cient condition
for the utility funtional to converge.
To gain further insights, solve for (153) to obtainZ 1

0

 
c
1� 1

�
t � 1
1� 1

�

!
e��tdt = � c

1� 1
�

0

1� 1
�

�
1

[(r � �) (� � 1)� �]

�
� 1

1� 1
�

1

�
;

where

c0 = [r � (r � �)�]
�
b0 +

Z 1

0

yte
�rtdt

�
: (155)

If r = �, thenZ 1

0

 
c
1� 1

�
t � 1
1� 1

�

!
e��tdt =

1

�

c
1� 1

�
0 � 1
1� 1

�

(156)
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where

c0 = r

�
b0 +

Z 1

0

yte
�rtdt

�
: (157)

Finally, if r = � and u(c) = log(c), it can be checked thatZ 1

0

log(ct)e
��tdt =

log(c0)

�
.

We can obtain this result by taking the limit of both the LHS
and RHS of (156) as � ! 1. Alternative, we could re-do the
whole calculation starting with log (ct) in equation (152).

4. Fluctuating real interest rate
Consider the in�nite horizon model analyzed in Subsection 2.2 but suppose
that the world real interest rate �uctuates over time. In particular �and
to �x ideas �assume that the time path of the real interest rate is given
by

rt =

�
rH for 0 6 t 6 T;
rL for t > T;

(158)

where rH > � and rL < �. Assume logarithmic preferences.

In this context, derive a reduced-form solution for the path of consump-
tion.

Answer
In light of the time-varying real interest rate, the household�s lifetime
constraint is given by

b0 +

Z 1

0

yte
�
R t
0
rsdsdt =

Z 1

0

cte
�
R t
0
rsdsdt: (159)

Notice that if rs = r, then this lifetime constraint reduces to the standard
lifetime constraint. The Lagrangean takes the form:

L =
Z 1

0

log(ct)e
��tdt+ �

�
b0 +

Z 1

0

yte
�
R t
0
rsdsdt�

Z 1

0

cte
�
R t
0
rsdsdt

�
:

The �rst-order condition for consumption is given by

e��t

ct
= �e�

R t
0
rsds:

Rewrite this �rst-order condition as

1

ct
= �e�

R t
0
(rs��)ds: (160)
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Taking logarithms on both sides:

log(ct) = log(�)��
Z t

0

(rs � �)ds.

Di¤erentiating with respect to time (and applying Leibnitz rule), we ob-
tain the Euler equation:

_ct
ct
= rt � �.

Taking into account the time path of the real interest rate given by (158),
we can rewrite the Euler equation as

_ct =

�
ct
�
rH � �

�
0 � t � T;

ct
�
rL � �

�
t > T:

(161)

Since rH > � and rL < �, consumption will be increasing between 0 and
T and decreasing afterwards. Another important piece of information is
that the path of consumption will be continuous at time T , as can be
inferred from �rst-order condition (160). We therefore know the time
pro�le of consumption. To derive the speci�c level of consumption, we
need to resort to the lifetime constraint.

First, let us solve the two di¤erential equations given by 161 to obtain:

ct =

(
c0e

(rH��)t 0 � t � T;
cT e

(rL��)(t�T ) t > T:
(162)

where c0 and cT denote initial levels of consumption to be determined.
Since ct is continous at time T , it follow from the �rst equation above
that

cT = c0e
(rH��)T . (163)

Using (163), we can rewrite (162) as

ct =

(
c0e

(rH��)t 0 � t � T;
c0e

(rH��)T e(r
L��)(t�T ) t > T:

(164)

All that remains is to determine c0. To this e¤ect, substitute (164) into
the lifetime constraint (159)Z T

0

c0e
(rH��)te�r

Htdt+

Z 1

T

c0e
(rH��)T e(r

L��)(t�T )e�r
Ltdt =W

where

W � b0 +
Z T

0

yte
�rHtdt+

Z 1

T

yte
�rLtdt

is the household�s wealth. After some algebra, we can show that

c0 =
�W

(1� e��T ) + e(rH�rL)T e��T
: (165)
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Equations (164) and (165) fully characterize the path of consumption. As
a particular case, notice that if rH = rL = r, then c0 = �W , which is the
solution obtained in (155).

5. Adding labor supply to the basic model
This exercise adds labor supply to the basic in�nite horizon model of
Section 2.2. Production is thus endogenous. Speci�cally, consider the
economy of Section 2.2 with the following modi�cations (same notation is
used).

Households. Let preferences be given byZ 1

0

log[ct � �(`st )�]e��tdt,

where `s is labor supply and �(> 0) and �(> 1) are parameters.3 The
household�s �ow constraint is given by

_bt = rbt + wt`
s
t � ct +
t;

where w is the real wage and 
t are the pro�ts from �rms (i.e., households
own the �rms). The corresponding intertemporal constraint is given by

b0 +

Z 1

0

(wt`
s
t +
t) e

�rtdt =

Z 1

0

cte
�rtdt:

Firms Firms face a static problem. Production is given by

yt = 	t
�
`dt
��
; � < 1; (166)

where `d is labor demand and 	 is a productivity parameter (which may
vary over time).

In the context of this model:

(a) Solve the household�s maximization problem. Using the �rst-order
conditions, derive a labor supply function (i.e., express `st as a func-
tion of wt). Explain the intuition behind your derivations.

(b) Solve the �rms�maximization problem. Explain the intuition behind
the results.

(c) After imposing labor market equilibrium (i.e., `st = `dt ), solve for a
perfect foresight path along which 	t is at some high value between
time 0 and time T and low afterwards. (For expositional clarity,
make sure that you plot the paths of all endogenous variables against
time, including the trade balance and current account.) Explain the
intuition behind all of your results.

3These are the so-called GHH preferences, after the paper by Greenwood, Hercowitz, and
Hu¤man (1998).
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(d) What key di¤erence do you notice in the behavior of consumption
relative to the model of Section 2.2? Show that if the labor supply
elasticity is small (as is the case in practice; see, for instance, Pencavel
(1986)) then, from a quantitative point, the behavior of consumption
in response to a �uctuating path of	t will not di¤er signi�cantly from
the behavior of consumption in response to a �uctuating endowment
path in the model of Section 2.2.4

Answer

(a) The �rst-order conditions are given by:

1

c� �(`s)� = �; (167)

��(`s)��1

c� �(`s)� = �wt:

Substituting the �rst condition into the second, we obtain:

��(`s)��1 = wt: (168)

Solving for `st , we obtain

`st =

�
wt
��

��
; (169)

where � � 1=(� � 1) > 0 is the labor supply elasticity. Two obser-
vations are worth making. First, notice that while condition (167)
implies that the marginal utility of consumption will remain constant
along a perfect foresight path (as in the model of Section 2.2), con-
sumption itself does not necessarily remain constant along a perfect
foresight path. Clearly, if labor supply �uctuates along a perfect
foresight path, so will consumption. Second, condition (169) may be
viewed as a labor supply function, which says that the higher the real
wage, the larger will be the supply of labor. Notice also that there
is no wealth e¤ect on labor supply (as indicated by the fact that `st
does not depend on �).

(b) Firms�pro�ts are given by:


t = yt � wt`dt ,
4 In practice, however, total labor hours do �uctuate considerably over the business cycle

due to entry and exit from the labor force (the extensive margin), as opposed to changes in
hours worked by existing agents (the intensive margin). To generate the observed comovement
between total labor hours and the cycle at an aggregate level, one needs to incorporate this
�extensive margin� into the model (see King and Rebelo (1999) for a detailed discussion.)
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which, using equation (166) can be rewritten as:


t = 	t
�
`d
�� � wt`dt :

The �rst-order condition is given by:

�	
�
`d
���1

= wt: (170)

Solving for `d, we obtain labor demand:

`d =

�
�	t
wt

� 1
1��

:

As expected, labor demand is a decreasing function of the real wage
and an increasing function of the productivity parameter, 	t:

(c) Impose labor market equilibrium, `st = `dt = `t, and solve for the
equilibrium real wage:

wt =
h
(�	)

1
1�� (��)

�
i 1

�+ 1
1�� : (171)

Equilibrium labor can then be read from the labor supply, given by
(169).
Let us now characterize a PFEP along which 	 is high from time
0 to time T and low afterwards (Figure 2, Panel A). From equation
(171), it follows that the real wage is high before time T and low
afterwards (Figure 2, Panel B). From (169), we can derive the path
of labor (Figure 2, Panel C). Given the path of labor, the path of
consumption follows from �rst-order condition (167).
What happens to the trade balance? By de�nition, the trade balance
is given by:

TBt = 	(`)
� � ct: (172)

Since both labor (and hence output) and consumption are higher be-
tween 0 and T , it is not obvious how the trade balance compares
before and after T . To show that a higher 	 leads to a larger trade
balance, consider a small (i.e., in�nitesimal) change in 	 and di¤er-
entiate equation (172) to obtain:

dTBt
d	

= (`)
�
+	� (`)

��1 d`

d	
� dct
d	
:

But from �rst-order condition (167), it follows that along a PFEP,
dct=d	 = ��(`)

��1d`=d	. Hence, after rearranging, we obtain:

dTBt
d	

= (`)
�
+
d`

d	

24	� (`)��1| {z }
=w

� ��(`)��1
35
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Since, as indicated, 	� (`)��1 = w (by the �rm�s �rst-order condition
170), the term is square brackets is zero by household�s labor supply
condition (168). Hence:

dTBt
d	

= (`)
�
:

This last equation says that, in good times, the trade balance will
be higher than in bad times. Assuming that initial net foreign assets
are zero, then the trade balance will be positive between 0 and T
and negative afterwards (Figure 2, Panel E). Intuitively, by envelope
considerations, the indirect e¤ect on output (i.e., via an increase in
labor) of a productivity increase is exactly o¤set by the associated
increase in consumption. Only the direct e¤ect of 	 on output re-
mains.
In sum, periods of high productivity (i.e., good times) will correspond
to high labor, high consumption, and a positive trade balance.

(d) The di¤erence lies in the fact that, in the model of Section 2.2, house-
holds fully smooth consumption regardless of the path of output. In
this case, consumption �uctuates together with output. Periods of
high output will coincide with periods of high consumption because
labor a¤ects the marginal productivity of consumption.
To formally show that a small labor supply elasticity will lead to a
relatively �at path of consumption, use equation (169) to obtain:

^̀
t = �ŵt;

where a hat over a variable denotes proportional change.
From (171), it follows that

ŵt =
1

1 + (1� �)� 	̂:

Intuitively, the lower is the labor supply elasticity, the larger the
increase in the real wage in response to a shift in labor demand.
Using (171), taking into account the last equation, yields:

^̀
t =

�

1 + (1� �)� 	̂.

This equation says that, for a given change in 	, the smaller is the
labor supply elasticity, �, the smaller will the be the change in labor.
At the limit (i.e., for � tending to zero), there would be no change in
labor and hence in consumption. In that case, quantitatively speak-
ing, the model would behave very much like the endowment model
of Section 2.2.
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6. Decentralized economy

This exercise asks you to check that the centralized production economy
analyzed in the text can be decentralized. Suppose that there are two
agents in the economy: consumers and �rms. Consumers own the cap-
ital stock and own the �rms. There is a market for physical capital in
which consumers rent the capital stock to �rms at a rate rk. Firms pro-
duce the good using the capital stock and give back pro�ts to consumers.
Preferences and technology are the same as in the text.

(a) Write down the consumer�s �ow constraint and then derive the con-
sumer�s intertemporal constraint. Derive the consumer�s �rst-order
conditions.

(b) Write down the �rm�s �ow constraint and derive the �rst-order con-
dition.

(c) Show that the optimality conditions characterizing consumption and
the capital stock are the same as in the centralized economy.

(d) Derive aggregate constraints (both the �ow constraint, or current
account, and the intertemporal constraint) and show that they cor-
respond exactly to those for the centralized economy (equations (41)
and (42)).

Answer

(a) In a decentralized version of the production economy, there would be
two agents: consumers and �rms.
Consumers own the capital stock and rent it to �rms at a rental
rate rk. In other words, there is a market where the capital stock is
rented. Consumers own the �rms and get pro�ts back. As before, b0
and k0 are given.

bt+1 + kt+1 = (1 + r)bt + (1 + r
k
t )kt +
t � ct

Iterating

b1 + k1 = (1 + r)b0 + (1 + r
k
0 )k0 +
0 � c0 (173)

b2 + k2 = (1 + r)b1 + (1 + r
k
1 )k1 +
1 � c1 (174)

Solving for b1 from last equation:

b1 =
b2 + k2
1 + r

� 1 + r
k
1

1 + r
k1 �


1
1 + r

+
c1
1 + r

Substituting into (173):
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b2 + k2
1 + r

� 1 + r
k
1

1 + r
k1 �


1
1 + r

+
c1
1 + r| {z }

b1

+ k1 = (1+r)b0+(1+r
k
0 )k0+
0�c0:

Rearranging terms, we get:

b2
1 + r

= (1+r)b0+k0+
0+

1
1 + r

+rk0k0+
rk1k1
1 + r

� rk1
1 + r

� k2
1 + r

�c0�
c1
1 + r

To make it comparable to the �ow constraint, add and substract k1
to the RHS and rewrite it as

b2
1 + r

= (1+r)b0+
0+

1
1 + r

+rk0k0+
rk1k1
1 + r

�c0�
c1
1 + r

�(k1�k0)�
(k2 � k1)
1 + r

Continuing to iterate and imposing the terminal condition

lim
t!1

bt+1

(1 + r)
t = 0;

we obtain:

(1+r)b0+
1X
t=0


t
(1 + r)t

+
1X
t=0

rkt kt

(1 + r)
t�

1X
t=0

(kt+1 � kt)
(1 + r)

t =
1X
t=0

ct
(1 + r)t

:

(175)
Maximization:

Max
fct;kt+1g

L =

1X
0

�tu(ct) +

�

"
(1 + r)b0 +

1X
t=0


t
(1 + r)t

+
1X
t=0

rkt kt

(1 + r)
t �

1X
t=0

(kt+1 � kt)
(1 + r)

t �
1X
t=0

ct
(1 + r)t

#
The �rst-order conditions are given by (assuming, as usual, � = r):

u0(ct) = �; (176)

� 1

(1 + r)
t +

rkt+1

(1 + r)
t+1 +

1

(1 + r)
t+1 = 0:

The last condition implies that the rental rate of capital is constant
over time and equal to world real interest rate:

rkt+1 = r: (177)

In equilibrium, the rental rate will be equal to the world real interest
rate. Intuitively, since bonds and capital are perfect substitutes in
the consumer�s portfolio, they must bear the same rate of return.
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(b) Firms will solve the following problem:

Max
kt


t = yt � rkt kt

Max
kt


t = Atf(kt)� rkt kt

The �rst-order condition is given by

Atf
0(kt) = r

k
t : (178)

(c) Substituting (177) into (178), we obtain

Atf
0(kt) = r (179)

As expected, optimality conditions (176) and (179) are the same as
those that we obtained in the text for the centralized case (equations
(45) and (46)).

(d) Combining the consumer�s �ow constraint with the �rm�s:

bt+1 + kt+1 = (1 + r)bt + (1 + r
k
t )kt +
t � ct

bt+1 + kt+1 = (1 + r)bt + (1 + r
k
t )kt +Atf(kt)� rkt kt| {z }


t

� ct

bt+1 + kt+1 = (1 + r)bt + kt +Atf(kt)� ct
bt+1 = (1 + r)bt +Atf(kt)� (kt+1 � kt)� ct

Since yt = Atf(kt), this is the same �ow constraint that we had for
the centralized case (equation (41) in the text).
Substituting 
t = Atf(kt)� rkt kt, into the consumer�s intertemporal
�given by (175) �we get:

(1 + r)b0

1X
t=0


t
(1 + r)t

+

1X
t=0

rkt kt

(1 + r)
t �

1X
t=0

(kt+1 � kt)
(1 + r)

t =

1X
t=0

ct
(1 + r)t

(1 + r)b0 +
1X
t=0

Atf(kt)

(1 + r)t
�

1X
t=0

(kt+1 � kt)
(1 + r)

t =
1X
t=0

ct
(1 + r)t

(1 + r)b0 +
1X
t=0

Atf(kt)

(1 + r)t
=

1X
t=0

ct + (kt+1 � kt)
(1 + r)t

:

which, since yt = Atf(kt), is the same as before (equation (42)).

7. Small changes in productivity
This exercise asks you to revisit some of the experiments performed in the
text for the model with investment for the case in which the change in
productivity is small (i.e., the change is given by dA). This exercise will
shed light on the reaction of saving to changes in productivity.

Consider the model with investment described in Section (5). In this
context:
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(a) Analyze the e¤ects of a (small) unanticipated and permanent increase
in A. [In other words, assume that A changes by dA.] In particular,
show that there will be no change in saving. Explain the intuition
behind the results.

(b) Analyze the e¤ects of a (small) unanticipated and temporary increase
in A that lasts for T (� 2) periods. Derive a reduced form for the
change in the current account in period 0 and show how it depends
on T . Explain the intuition behind the results.

Answer

(a) The economy is initially in the stationary perfect foresight equilib-
rium characterized in Subsection 5.3 with the capital stock given by
�k. All changes below will be relative to this initial steady state.
Clearly, k0 is given and does not change. The change in the capital
stock from period 1 onwards follows from di¤erentiating �rst-order
condition (55):

dk0
dA

= 0; (180)

dkt
dA

= � f 0(�k)
�Af 00(�k)

> 0; t = 1; 2; ::: (181)

Hence, investment in period 0 will be positive (recall that, by de�ni-
tion, I0 � k1 � k0) and will go back to zero in period 1.
What will be the path of output? Output rises in period 0, further
increases in period 1; and is �at thereafter. In period 0, the cap-
ital stock has not changed yet but A is higher. In period 1, both
the capital stock and A are higher relative to their pre-shock levels.
Formally, di¤erentiate (37) and use (180) and (181) to obtain:

dy0
dA

= f(�k); (182)

dyt
dA

= f(�k) + r
dk1
dA

t = 1; 2; ::: (183)

By (46), consumption will be constant along the new perfect fore-
sight equilibrium but at a higher level. To compute the change in
consumption, di¤erentiate (42) to obtain:

dc

dA
=

r

1 + r

" 1X
t=0

�
1

1 + r

�t
dyt
dA

� dk1
dA

#
: (184)

Using (182) and (183), this expression simpli�es to:
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dc

dA
= f(�k): (185)

Intuitively, by envelope considerations, at an optimum the output
increase that results from the rise in the capital stock is exactly o¤-
set by the cost of increasing the capital stock. Hence, net output
increases only by the direct e¤ect of the increase in A.
How does the trade balance respond in period 0? Di¤erentiate (50)
and use (182) and (185) to obtain:

dTB0
dA

=
dy0
dA

� dc0
dA

� dk1
dA

= �dk1
dA

< 0:

The trade balance worsens in period 0 due to the rise in investment.
In subsequent periods, the trade balance will need to improve rela-
tive to its pre-shock level to �nance period 0 investment. Formally,
di¤erentiate (50) and use (183) and (184) to obtain:

dTBt
dA

=
dyt
dA

� dc

dA
= r

dk

dA
> 0; t = 1; 2; :::

How does saving in period 0 respond to the increase in A? Using
equations (53), (182), and (184), it follows that:

dS0
dA

=
dy0
dA

� dc0
dA

= 0:

Saving in period 0 does not change. Hence, since investment in period
0 is positive, there will be a current account de�cit:

dCA0
dA

=
dS0
dA

� dI0
dA

= � dk
dA

< 0:

Since the economy is stationary again from period 1 onwards, the
current account should be zero. To check this, let us �rst compute
saving in period 1. Since the economy ran a de�cit in period 1, it will
have to service this increase in debt from period 1 onwards. Hence,
using (183) and (185):

dS1
dA

= �r dk
dA

+
dy1
dA

� dc1
dA

= 0: (186)

Given that investment is zero from period 1 onwards, the current
account is zero in period 1. The increase in the stock of debt thus
remains unchanged. It follows that saving in period 2 is therefore
also zero and, hence, so is the current account. This is, of course,
true for any subsequent period.
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Finally, notice that all the expressions derived in this exercise could
have been obtained directly from the results that we obtained in the
text for a discrete change in A by proceeding as follows. Note that,
in response to small change in A, the change in k will also be small.
Taking a �rst-order approximation for the change in k, we get

f(kt) = f(�k) + f
0(�k)dkt; t = 1; 2; :::; (187)

where dkt � kt � �k. We will show that, for a small change in A,
the net present value of investment (captured by the term in square
brackets on the RHS of equation (62) is zero. In other words, we
want to show that for a small change in k,

�A[f(�kH)� f(k0)]
r

= �kH � k0

Using the Taylor approximation for t = 1 and noting that �kH = k1,
k0 = �k, and dk1 � �kH � k0, this expression reduces to

�Af 0(�k)

r
= 1,

which, of course, holds for the initial equilibrium.5 Since the net
present value of investment is zero, we can rewrite (62) and (63) as
(recall that k0 = �k)

�c = rb0 + �AHf(�k) (188)

S0 = 0 (189)

These equations tell us that, after a small change in A and thus in
k, consumption and saving would be given by (188) and (189). It
follows that there is no change in saving and that the (small) change
in consumption is given by f(�k)( �AH � �A) which is equal to f(�k)dA,
as indicated by expression (185).
We thus conclude that, in the presence of investment, a permanent
(but small) increase in productivity leads to no change in saving and
to an increase in investment.

(b) Let us begin by deriving the path of the capital stock. From condition
(55), it follows that

dk0
dA = 0
dkt
dA = � f 0(�k)

�Af 00(�k)
> 0; t = 1; ::T � 1

dkt
dA = 0; t = T; :::

(190)

5Notice that it would be incorrect to infer that because the net present value of investment is
zero in equilibrium, household will choose not to invest. Clearly, households have an incentive
to invest as di¤erentiation of the �rst-order condition for investment shows. Think also about
the analogy with the standard consumer�s problem when faced with a change in the price
of a good. By envelope considerations, the �rst-order welfare e¤ect of changing quantities
consumed is zero; all the welfare gain comes from the direct e¤ect of a lower price.

29



The capital stock in period 0 is given and does not change. From
period 1 and until period T �1, the capital stock is higher. In period
T , the capital stock returns to its pre-shock level. As in the case
analyzed in the text, the rise in the capital stock in period 1 does
not depend on the duration of the shock, T . Hence, it follows that
investment is positive in period 0 and negative in period T � 1.
Let us now derive the path of output. From (37) and (190), it follows
that

dy0 = f(�k)dA > 0;

dyt =
h
f(�k)� r

�Af 00(�k)

i
dA > 0; t = 1; 2; :T � 1

dyt = 0; t = T; :::

(191)

Output thus rises in period 0, increases further in period t = 1, and
then remains at that higher level up to, and including, period T � 1.
In period T , output returns to its pre-shock level.
To compute the change in consumption, it will be useful to proceed in
steps and �rst compute the changes in the present discounted value
of output and net output. Using (191), the present discounted value
of output is given by:

dPDV (y) =
T�1X
t=0

�
1

1 + r

�t
f(�k)dA+

1

1 + r

T�2X
t=0

�
1

1 + r

�t
Af 0(�k)dkt

=
1 + r

r
f(�k)dA

"
1�

�
1

1 + r

�T#
+Adkt

"
1�

�
1

1 + r

�T�1#
:(192)

To compute the present discounted value of net output (i.e., output
net of investment), we must subtract from the present discounted
value of output, given by (192) the investment that takes place at
time 0 and the disinvestment that takes place at T � 1:

dPDV (net output) = dPDV (y)� dI0 �
�

1

1 + r

�T�1
dIT�1: (193)

Since, by de�nition, I0 = k1 � k0 and IT�1 = kT � kT�1 and k0 and
kT do not change relative to their pre-shock values, then dI0 = dk1
and dIT�1 = �dkT�1. Hence, using (190), we can rewrite (193) as

dPDV (net output) = dPDV (y)� dk1 +
�

1

1 + r

�T�1
dkT�1(194)

=
1 + r

r
f(�k)

"
1�

�
1

1 + r

�T#
dA > 0:

Two observations are worth making. First, notice how, due to en-
velope considerations, the changes in output due to changes in the
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capital stock cancel each other out with the investment terms. As a
result, the change in net output is just the present discounted value
of the direct e¤ect of a higher A on output for T periods. Second,
the larger is T , the larger is the rise in the present discounted value
of net output.
We are now ready to compute the rise in consumption. Once again,
consumption will be constant along the new perfect foresight equilib-
rium path. The change in this constant level of consumption follows
from di¤erentiating (42) and using (194):

d�c

dA
=

"
1�

�
1

1 + r

�T#
f(�k) > 0: (195)

The larger is T , the larger is the increase in consumption because the
bigger is the increase in the present discounted value of net output.
For any �nite value of T , the rise in consumption in period 0 will
be smaller than that in output.6 Consumption remains below until
the shock is reverted. Intuitively � and as we have learned in the
�rst part of this chapter �consumers smooth out the e¤ects of the
positive shock over time by consuming less than output during the
good times and more than output once the good times are over.
To �nd out the path of the trade balance, di¤erentiate (50) and use
(191) and (195) to obtain:

dTB0
dA

= f(�k)

�
1

1 + r

�T
| {z }

saving
e¤ect

� dI0
dA|{z}

investment
e¤ect

: (196)

The RHS of equation (196) captures the two key e¤ects that come
into play. The saving e¤ect �which is positive and thus tends to
improve the trade balance �captures the households�desire to save in
order to smooth consumption over time. The larger is T , the smaller
will be this e¤ect because the more permanent is the shock. The
investment e¤ect �which is also positive and thus tends to worsen
the trade balance �captures the increase in investment in response
to the increase in productivity. Depending on the relative strength
of these two e¤ects, the trade balance could either improve �as in
the standard case without investment �or worsen.
From period 1 up to, and including, period T � 2, the trade balance

6For T ! 1 (i.e., when the rise in productivity is permanent), consumption in period 0
would rise by the same amount as output.
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will improve relative to its pre-shock level.

dTBt
dA

=
dyt
dA

� dct
dA
; t = 1; 2; ::; T � 2

= f(�k)

�
1

1 + r

�T
+ r

dk

dA
> 0:

In period t = T � 1, the trade balance improves further because
there is a fall in investment in anticipation of the fall in A in period
T . Formally,

dTBt
dA

=
dyt
dA

� dc

dA
� d(kt � kt�1)

dA
; t = 1; 2; ::; T � 2

dTBt
dA

=
dyt
dA

� dct
dA

+
dk

dA

= f(�k)

�
1

1 + r

�T
+ (1 + r)

dk

dA
> 0

From period T onwards, there is a trade de�cit, given by:

dTBT
dA

= � dc
dA

= �f(�k)
"
1�

�
1

1 + r

�T#
< 0:

Let us now derive the path of the current account. Since the initial
stock of net foreign assets, b0, is given, the initial impact on the
current account is the same as for the trade balance. Hence, equation
(196) also gives us the change in the current account. To compute
the entire path of the current account, we need to keep track of the
path of net foreign assets, as the latter in�uences saving through
the returns on net foreign assets. While straightforward, the algebra
is somewhat tedious and we omit it here. Intuitively, as the trade
balances moves into surplus in period 1, so does the current account
balance. It then continues to improve over time because while the
trade balances remains constant up to, and including, period T � 2,
returns on assets keep accumulating. In period T � 1, the current
account surplus is further fed by the disinvestment. In period T ,
the current account balances falls to zero as the economy becomes
stationary thereafter.
Finally, let us turn to saving. In period 0, saving increases:

dS0
dA

=
dy0
dA

� dc0
dA

= f(�k)� f(�k)
"
1�

�
1

1 + r

�T#

= f(�k)

�
1

1 + r

�T
> 0
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If the change is permanent (i.e., if T �! 1), then the change in saving is
zero. This is the particular case analyzed in subsection 4.1 above. The smaller
is T , the larger is the fall is saving.
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Figure 1. Time inconsistency of preferences
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Figure 2.  Temporary high productivity
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