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1 Introduction

The focus of this book is on a computational approach to the analysis

of macroeconomic adjustments in an open or globalized economy.

Specifying, calibrating, solving, and simulating a model for evaluating

alternative policy rules can appear to be a cumbersome task. There are,

of course, many different types of models to choose from, alternative

views about likely parameter values, multiple approximation methods

to try, and different options about simulation.

In this chapter we give a brief overview of the issues arising from

the agenda we set for this book and the rationale for the structure of

the book, the methodology adopted, and the economic experiments

considered. Since the same solution method will be used throughout

the book, to minimize repetitions, we provide more details here about

the solution method, the approximating functions and the optimiza-

tion algorithms used.

1.1 The Open Economy Setting

This book uses computational experiments to obtain insights about

macroeconomic adjustments in the open economy setting. These anal-

yses can then inform the design of policies such as the best inflation

targeting program or the best tax regime.

Benigno and Woodford (2004) have pointed out, that too often mon-

etary and fiscal policy rules have been discussed in isolation from each

other, but they opt to work in a closed economy setting, within a linear

quadratic framework to yield analytical closed form solutions for mon-

etary and fiscal policy rules. In contrast, we adopt the open economy

setting for our discussion of monetary and fiscal policies and abandon

the quest for analytical results in favor of numerical approaches. In so

doing, we also extend our discussion of policy issues to encompass



inflation targeting and the problem of recurring deficits or surpluses in

the fiscal and current-account deficits.

Incorporating the open economy setting, of course, raises issues

about international trade and finance, external borrowing conditions

and assumptions about ‘‘closing’’ the open economy. As Schmitt-Grohé

and Uribe (2003) have pointed out, there are many alternative ways

to do this, all of which involve further complications to the standard

models used for monetary and fiscal policy analysis.

Discussions about monetary policy, by their very nature, involve

assumptions about price stickiness. In the closed economy setting such

stickiness can come about either in wage or price-setting behavior in

monopolistically competitive markets. Once we move to an open econ-

omy environment, we face stickiness in the pricing of imported goods,

and thus the case of incomplete pass-through of exchange-rate changes

to the prices of imported goods.

The variety of shocks or exogenous forces affecting the economy also

expands when we move to the open economy setting. In addition to

the usual productivity changes driving a business cycle, there are terms

of trade shocks, foreign interest rate developments, and global demand

variables to consider. The open economy setting is much more exposed

to varying types of shocks.

Discussions of optimal policy in the open economy, then, involve

much more complexity than corresponding discussions in the closed

economy setting. The models need to be closed, and there are different

ways to do this (including the use of a two-country model). Further-

more a reasonable case can be made for ‘‘stickiness’’ in the pricing of

imported goods, as well as in domestic price-setting behavior, which

in turn involves both forward and backward-looking behavior in the

imported-goods sector of the economy.

The models we use in this book are in the class of so-called open

economy new neoclassical synthesis (NNS) models. Such models, as

Goodfriend (2002) reminds us, incorporate classical features such as the

real business cycle, as well as Keynesian features, such as monopo-

listically competitive firms and costly price adjustment. As Canzoneri,

Cumby, and Diba (2004) note, such models have been routinely used

to revisit the central issues of stabilization policy.

Different general equilibrium models can generate different effects,

so it is essential to have a good strategy for developing a good dy-

namic stochastic general equilibrium (DSGE) model. As McCallum

(2001) points out, it is desirable for a model to be consistent with both
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economic theory and empirical evidence, but this ‘‘dual requirement’’

is only a starting point for consideration of numerous issues. Mc-

Callum also points out that ‘‘depicting individuals as solving dynamic

optimization problems,’’ as is done in general equilibrium settings, is

‘‘useful in tending to reduce inconsistencies and forcing the modeler to

think about the economy in a disciplined way’’ (McCallum 2001, p. 15).

But adhering to dynamic general equilibrium models still leaves room

for enormous differences, as the reader will see as the chapters unfold.

In this book we focus on variations of one prototype model of the

open economy; complexity is introduced, by adding extra economic

features, chapter by chapter. While there are many unresolved issues

about macroeconomic adjustments and the conduct of policy in the

open economy, the differing positions rest on specific assumptions in

the models. Rather than review a myriad of conflicting positions based

on differing models, we work with increasingly complex versions of

the prototype model. The same productivity shock is considered in

each case. However, to gain further insight, we also compare the dy-

namic responses of key variables to other shocks, such as exports and

the terms of trade. The progressive addition of complexity highlights

the contribution of each added economic feature and aids in the under-

standing of the economic results and the derived implications for pol-

icy rules in an open economy setting.

The model is calibrated rather than estimated—the recent develop-

ment of estimation techniques for DSGE models deserves a separate

book. However, the parameters are based on estimates which are

widely accepted. Thus our model is not only completely based on un-

derlying optimization decisions of economic agents, at the household,

firm, and policy-making level, it is also meant to be reasonably realis-

tic. To put this point another way, following Canova (2007), what is

relevant for us is the extent to which our series of ‘‘false’’ models yield

coherent explanations of interesting aspects of data, while maintaining

highly stylized structures (Canova 2007, p. 251). Thus the models we

use are widely shared, if not consensus, benchmarks of how to model

an open economy for policy evaluation.

1.2 Solution Methods

DSGE models, no matter how simple, do not have closed form solu-

tions except under very restrictive circumstances (e.g., logarithmic

utility functions and full depreciation of capital). We have to use
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computational methods if we are going to find out how the models

behave for a given set of initial conditions and parameter values.

However, the results may differ, depending on the solution method.

Moreover there is no benchmark exact solution for this model, against

which we can compare the accuracy of alternative numerical methods.1

There are, of course, a variety of solution methods. Every practicing

computational economist has a favorite solution method (or two). And

even with a given solution method there are many different options,

such as the functional form to use in any type of approximating func-

tion, or the way in which we measure the errors for finding accurate

decision rules for the model’s control variables. The selection of one

method or another is as much a matter of taste as well as convenience,

based on speed of convergence and the amount of time it takes to set

up a computer program.

Briefly, there are two broad classes of solution methods: pertur-

bation and projection methods. Both are widely used and have ad-

vantages and drawbacks. We can illustrate these differences with

reference to the well-known example of an agent choosing a stream of

consumption ct that maximizes her utility function U, which then

defines the capital k accumulation, given the production function f

and productivity process zt,

max
ct

Xy

t¼1

b tUðctÞ; ð1:1Þ

ktþ1 ¼ f ðzt; ktÞ � ct; ð1:2Þ

zt ¼ rzt�1 þ et; et @Nð0; s2Þ: ð1:3Þ

The first-order condition for the problem is

U 0ðctÞ ¼ bU 0ðctþ1Þ f 0ðktþ1Þ: ð1:4Þ

The system has one forward-looking variable for the evolution of ct,

and one state variable kt that depends on the values of the forward-

looking variable, ct, and the previous period’s values kt�1. The key to

solving the model is to find ways to represent functional forms (‘‘deci-

sion rules’’)2 for these controls, as these rules depend on the lagged

values of the state variables. Once we do this, the system becomes fully

recursive and the dynamic process is generated (given an initial value

for k).
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1.2.1 Perturbation Method

The first method—the perturbation method—involves a local approxi-

mation based on a Taylor expansion. For example, let hðxtÞ represent

the decision rule (or policy function) for ct based on the vector of state

variables xt ¼ ½zt; kt� around the steady-state x0:

hðxtÞ ¼ hðx0Þ þ h 0ðxoÞðxt � x0Þ þ
1

2
h 00ðx0Þðxt � x0Þ2 þ � � � :

Perturbation methods have been extensively analyzed by Schmidt-

Grohé and Uribe (2004). The first-order perturbation approach (a first-

order Taylor expansion around the steady state) is identical to the most

widely used solution method for dynamic general equilibrium models,

namely linearization or log linearization of the Euler equations around

a steady state (for examples, see Uribe 2003). The linear model is then

solved using the methods for forward-looking rational expectations

such as those put forward by Blanchard and Kahn (1980) and later dis-

cussed by Sims (2001).

Part of the appeal of this approach lies with the fact that the solution

algorithm is fast. The linearized system is quickly and efficiently solved

by exploiting the fact that it can be expressed as a state-space system.

Vaughan’s method, popularized by Blanchard and Khan (1980), estab-

lished the conditions for the existence and uniqueness of a rational

expectations solution as well as providing the solution. Canova (2007)

summarizes this method as essentially an eigenvalue–eigenvector de-

composition on the matrix governing the dynamics of the system by

dividing the roots into explosive and stable ones.

This first-order approach can be extended to higher order Taylor

expansions. Moving from a first to a second-order approximation sim-

ply involves adding second-order terms linearly in the specification

of the decision rules. Since the Taylor expansion has both forward-

looking and backward-looking state variables, these methods also use

the same Blanchard-Kahn (1980) method as the first-order approach.

Collard and Julliard (2001a, b) offer first- and second-order perturba-

tion methods in their DYNARE software system.

Log-linearization is an example of the ‘‘change of variable’’ method

for a first-order perturbation method. Fernández-Villaverde and

Rubio-Ramı́rez (2005) take this idea one step further within the context

of the perturbation method. The essence of the Fernández-Villaverde

and Rubio-Ramı́rez approach is to use a first or second-order perturba-

tion method but with transformation of the variables in the decision
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rule from levels to power-functions. Just as a log-linear transformation

is easily applied to the linear or first order perturbation representation,

these power transformations may be done in the same way. The pro-

cess simply involves iterating on a set of parameters for the power

functions, in transforming the state variables, for minimizing the Euler

equation errors. The final step is to back out the level of the series from

the power transformations, once the best set of parameters is found.

They argue that this method preserves the fast linear method for effi-

cient solution while capturing model nonlinearities that would other-

wise not be captured by the first-order perturbation method.

We note that the second-order method remains, like the first-order

method, a local method. As such, as Fernandez-Villaverde (2006, p. 39)

observes, it approximates the solution around the deterministic steady

state and it is only valid within a specific radius of convergence. Over-

all, the perturbation method is especially useful when the dynamics of

the model consists of small deviations from the steady-state values of

the variables. It assumes that there are no asymmetries, no threshold

effects, no types of precautionary behavior, and no big transitional

changes in the economy. The perturbation methods are local approxi-

mations, in the sense that they assume that the shocks represent small

deviations from the steady state.

While these methods are fast and easy to implement, they suffer

from one important drawback: the shocks must be small.3 First- and

second-order perturbation methods go beyond linearization by making

use of first- and second-order Taylor expansions of the Euler equations

around the steady state. However, both linearization and perturbation

methods leave out any possibility of asymmetric behavior widely

observed in the adjustment of asset prices and other key macroeco-

nomic variables. While this is fine for discussion of very small shocks,

it is limiting for large or recurring disturbances.

1.2.2 Projection Methods and Accuracy Tests

This book applies the projection method to solve the DSGE models.

The solution method seeks decision rules for ct that are ‘‘rational’’ in

that they satisfy the Euler equation (1.4) in a sufficiently robust way.

It may be viewed intuitively as a computer analogue of the method of

undetermined coefficients. The steps in the algorithm are as follows:

� Specify decision rules for the forward looking variables; for example,

ĉct ¼ f ðW; xtÞ, where W are parameters, xt are explanatory variables and

f is an approximating function.
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� Obtain the Euler error from the Euler equations

�t ¼ U 0ðĉctÞ � bU 0ðĉctþ1Þ f 0ðktþ1Þ:

� Estimate W using various optimizing algorithm so that the Euler

equation residuals, or the difference between the left- and right-hand

sides of the Euler equation, is close to zero.

� Perform accuracy tests to check on the robustness of the results.

Approximating Functions For the example discussed here, the ap-

proximating function for consumption ct, expressed as a function of

the state variable known at time t, is

ĉct ¼ ccðWc; zt; kt�1Þ: ð1:5Þ

The function cc can be any approximating functions, and the decision

variables are typically observations on the shocks and the state vari-

able. In fact approximating functions are just flexible functional forms

parameterized to minimize Euler equation errors that are well defined

by a priori theoretical restrictions based on the optimizing behavior of

the agents in the underlying the model.

Neural network (typically logistic) or the Chebychev orthogonal

polynomial specifications are the two most common approximating

functions used. The question facing the researcher here is one of

robustness. First, given a relatively simple model, should one use a

low-order Chebychev polynomial approximation or are there gains to

using slightly higher order expansion for obtaining the decision rules

for the forward-looking variable? Will the results change very much

if we use a more complex Chebychev polynomial or a neural network

alternative? Are there advantages to using a more complex approxi-

mating function, even if a less complex approximation does rather

well? In other words, is the functional form of the decision rule robust

with respect to the complexity of the model?

The question of using slightly more complex approximating func-

tions, even when they may not be needed for simple models, illustrates

a trade-off noted by Wolkenhauer (2001, p. ii): more complex approxi-

mations are often not specific or precise enough for a particular prob-

lem while simple approximations may not be general enough for

more complex models. As a rule, the ‘‘discipline’’ of Occam’s razor still

applies: relatively simple and more transparent approximating func-

tions are to be preferred over more complex and less transparent
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functions. Canova (2007) recommends starting with simple approxi-

mating functions such as a first- or second-order polynomial, and

later checking the robustness of the solution with more complex

functions.

In this book we use neural networks throughout. Sirakaya, Turnov-

sky, and Alemdar (2006) cite several reasons for using neural networks

as approximating functions. First, as noted by Hornik, Stinchcombe,

and White (1989), a sufficiently complex feedforward network can ap-

proximate any member of a class of functions to any degree of accu-

racy. Second, neural networks allow fewer parameters to be used to

achieve the same degree of accuracy as orthogonal polynomials, which

require an exponential increase in parameters. While the curse of

dimensionality is still there, its ‘‘sting’’—to borrow an expression from

St. Paul, and expanded by Kenneth Judd4—is reduced. Third, neural

networks, with logsigmoid functions, easily deliver control bounds on

endogenous variables. Finally, such networks can be easily applied to

models that admit bang-bang solutions [Sirakaya, Turnovsky, and

Alemdar (2006): p. 3]. For all these reasons, neural networks can serve

as a useful and readily available alternative or robustness check to the

more commonly used Chebychev approximating functions.

While the outcomes of different approximating functions will not

be identical since we cannot obtain closed form solutions for these

models, we would like the results to be sufficiently robust, in terms of

basic dynamic properties. In this book we also assess the performance

of the function using accuracy tests. Before discussing these tests, we

digress to present a brief overview of the neural network function.

Logistic Neural Networks Like orthogonal polynomial approxima-

tion methods, a logistic neural network relates a set of input variables

to a set of one or more output variables, but the difference is that the

neural network makes use of one or more hidden layers in which the

input variables are squashed or transformed by a special function,

known as a logistic or logsigmoid transformation. The following equa-

tions describe this form of approximation:

nj; t ¼ oj;0 þ
Xi�

i¼1

oj; ix
�
i; t; ð1:6Þ

Nj; t ¼
1

1þ e�nj; t
; ð1:7Þ
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y�
t ¼ g0 þ

Xj �

j¼1

gjNj; t: ð1:8Þ

Equation (1.6) describes a variable nj; t as a linear combination of a

constant term oj;0 and input variables observed at time t, fxi; tg,
i ¼ 1; . . . ; i�, with coefficient vector or set of ‘‘input weights’’ oj; i,

i ¼ 1; . . . ; i�. Equation (1.8) shows how this variable is squashed by the

logistic function and becomes a neuron Nj; t at time or observation t.

The set of j� neurons are then combined in a linear way with the

coefficient vector fgjg, j ¼ 1; . . . ; j�, and taken with a constant term g0
to form the forecast ŷy�

t at time t.

This system is known as a feedforward network, and when coupled

with the logsigmoid activation functions, it is also known as the multi-

layer perception (MLP) network. It is the basic workhorse of the neural

network forecasting approach, in the sense that researchers usually

start with this network as the first representative network alternative

to the linear forecasting model. An important difference between neu-

ral network and orthogonal polynomial approximation is that the

neural network approximation is not linear in parameters.

Optimizing Algorithm The parameters Wc are obtained by minimiz-

ing the squared residuals �:5

�ct ¼ U 0ðĉctÞ � bU 0ðĉctþ1Þ f 0ð f ðzt; ktÞ � ĉctÞ: ð1:9Þ

To obtain the parameters, we use an algorithm similar to the parame-

terized expectations approach developed by Marcet (1988, 1992), and

further developed in Den Haan and Marcet (1990, 1994) and in Marcet

and Lorenzoni (1999). We solve for the parameters as a fixed-point

problem. We make an initial guess of the parameter vector ½Wc�, draw
a large sequence of shocks ðetÞ, and then generate time series for the

endogenous variables of the model ðct; ktÞ. We next iterate on the pa-

rameter set ½Wc� to minimize a loss function L based on the Euler

equation errors � for a sufficiently large T.6 We continue this process

until convergence.

Note that the projection method does not require linearization, nor

does it need the Blanchard-Khan algorithm. Instead, once expressions

can be found for determining the forward-looking variables, the non-

linear model is solved for the other endogenous variables given the

exogenously determined variables. A variety of optimization methods
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can be used to obtain the global optimum.7 Fortunately optimization

methods are becoming more effective for finding the global minima.

There are, however, drawbacks of this approach, as Canova (2005,

p. 64) points out. One is that for more complex models, the iterations

may take quite a bit of time for convergence. Fernández-Villaverde

and Rubio-Ramı́rez (2006) also note that this is expensive in terms of

computing time. We have found that with the right set of initial values

the speed can be greatly reduced.

There is also the ever-present curse of dimensionality. The larger the

number of state variables, the greater is the number of parameters

needed to solve for the decision rules. There is no guarantee the Euler

equation errors will diminish as the number of iterations grows when

we deal with a very large number of parameters. The method relies on

the sufficiency of the Euler equation errors. If the utility function is

not strictly concave, for example, then the method may not give appro-

priate solutions. As Canova (2005) suggested, minimization of Euler

equations may fail when there are large number of parameters or

when there is a high degree of complexity or nonlinearity.

Heer and Maußner (2005) note another type of drawback of the

approach. They point out that the Monte Carlo simulation will more

likely generate data points near the steady-state values than far away

from the steady state in the repeated simulations for estimating the

parameter set ½Wc� (Heer and Maußner 2005, p. 163). Fernández-

Villaverde and Rubio-Ramı́rez (2006) have elaborated on this point.

We want to weight the Euler equation errors by the percentage of time

that the economy spends at those points. More to the point, we want to

put more weight on the Euler equation errors where most of the action

happens and less weight on the Euler equation errors that are not fre-

quently realized. The problem, of course, is that we do not know the

stationary distribution until we solve the model—that is, minimize

the Euler equation errors.

That criticism is true, of course, if the innovations to the model rep-

resent small normally distributed disturbances around the steady-state

equilibrium. If we simulate out for large sample, we are just staying

close to the steady state. However, if we use, as Fernández-Villaverde

(2005) suggests, either distributions with fat tails or with time-varying

volatility, then the repeated simulations will be less likely to generate

realizations concentrated near to the steady state. Similarly, if the

process for the innovation distributions are realistic, based on well-
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accepted empirical results, then we are more than likely to stay in

regions of the state space likely to be realized.

We have used normally distributed errors for most of this book, in

order to show the effects of increasing model complexity and non-

linearity in the structural relations in the model. But we note that fat

tails and volatility clustering are pervasive features of observed macro-

economic data, so there is no reason not to use wider classes of dis-

tributions for solving and simulating dynamic stochastic models. As

Fernandez-Villaverde (2005) and Justiniano and Primiceri (2006) em-

phasize, there is no reason for a stochastic dynamic general equilib-

rium model not to have a richer structure than normal innovations.

However, for the first-order perturbation approach, small normally

distributed innovations are necessary. That is not the case for projec-

tion methods.

In summary, we work with one basic approach for solving models:

the projection method, which is closely related to the Wright and

Williams (1982, 1984, 1991) smoothing algorithm. We show that this

method may be viewed as a computerized analogue of the method of

undetermined coefficients commonly used to solve rational expecta-

tions models. With this method, as noted by Canova (2007), the ap-

proximation is globally valid as opposed to being valid only around a

particular steady-state point as is the case for perturbation methods.

The method is computationally more time-consuming than the pertur-

bation method. But it has the advantage in that it is very useful for ana-

lyzing dynamics involving movements of key variables far away from

their steady-state variables. And, of course, it allows us to incorporate

asymmetries, threshold effects, and precautionary behavior. As Can-

ova notes, the advantage of using this method is that the researcher or

policy analyst can undertake experiments that are far away from the

steady state, or involve more dramatic regime changes in the policy

rule. Canova further notes two specific advantages of this approach:

first, it can be used when inequality constraints are present, and sec-

ond, it has a built-in mechanism to check if a candidate solution sat-

isfies the optimality conditions of the model. These advantages are

important when we take up open economy issues, such as constraints

on foreign debt accumulation or the zero bound on nominal interest

rates.

Another important reason for staying with the projection method is

that it is a natural starting point for introducing learning on the part of
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the policy makers or on the part of the private decision makers in the

model. Learning can be straightforwardly introduced and contrasted

with the rational expectations when the setup comes from projection

methods. Such learning represents stickiness in information in contrast

to stickiness in price-setting behavior. As Orphanides and Williams

(2002) put it, learning adds an additional layer of dynamic interactions

between macroeconomic policies and economic outcomes.

Finally, Oveido (2005) argues, for us, convincingly, that the projec-

tion method is the appropriate approach to use for open economy

models. The reason is that the net foreign asset position can deviate

quite a bit from its steady-state value, since access to nearly frictionless

world financial markets effectively separates saving from investment

decisions. Since first- and second-order perturbation methods assume

only small deviations of state variables from their steady-state vari-

ables, solutions based on these methods will overstate the volatility of

macroeconomic aggregates.

Accuracy Tests To test the accuracy of stochastic simulation results,

we have to work with the Euler equations. Since the model does not

have any exact closed form solution against which we can benchmark

numerical approximations, we have to use indirect measures of accu-

racy. Too often these accuracy checks are ignored when researchers

present simulation results based on stochastic dynamic models. This

is unfortunate, since the credibility of the results, even apart from

matching key characteristics of observable data, rests on acceptable

measures of computational accuracy as well as theoretical foundations.

The accuracy tests used throughout the book are those due to Judd and

Gaspar (1997) and to den Haan and Marcet (1994). They are based on

the Euler equation errors.

Judd-Gaspar Statistic A natural way to start is to check to see if the

Euler equations are satisfied, in the sense that the Euler equation errors

are close to zero. Judd and Gaspar (1997) suggest transforming the

Euler equation errors as follows:

JGc
t ¼

j�ct j
Ct

; ð1:10Þ

that is they suggest checking the accuracy of the approximations by

examining the absolute Euler equation errors relative to their respec-
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tive forward looking variable. If the mean absolute values of the Euler

equation errors, deflated by the forward-looking variable ct, is 10�2,

Judd and Gaspar note that the Euler equation is accurate to within a

penny per unit of consumption.

Den Haan-Marcet Statistic A drawback of the Judd and Gaspar cri-

terion is that it is not based on any statistical distribution. It is purely a

numerical method. At which point do the errors become statistically

significant? For this reason we use another commonly used criterion,

due to den Haan and Marcet (1994). This test is denoted DMðmÞ and is

defined as

DMðmÞ ¼ TQ 0A�1Q@ w2ðmÞ; ð1:11Þ

Q ¼ 1

T
ð� 0xÞ; A ¼ 1

T

X
xtx

0
t�

2
t ;

where the vector � represents the vector of Euler equation errors, x is

the instrument matrix with m columns. Under the null hypothesis of

an accurate solution, Eð� 0xÞ ¼ 0.

The authors recommend the following procedure for implementing

this test: first, draw a sample of size T of den Haan and Marcet test of

accuracy, with m degrees of freedom, repeatedly, say 500 times and

calculate the DM statistics; second, compute the percentage of the DM

statistics that is below the lower or above the upper 5 percent critical

values of the w2ðmÞ distribution. If these fractions are noticeably differ-

ent from the expected 5 percent, then we have evidence for an inac-

curate solution. They also recommend performing a ‘‘goodness-of-fit’’

type of test and to compare the empirical and theoretical cumulative

density w2ðmÞ function.
One of the goals of this book is to promote the reporting of accuracy

statistics in computationally based research publications. We are no

longer in the world of closed form solutions. However intuitively plau-

sible the results of any research endeavor may be, it is important to

know that they pass a minimum degree of computational accuracy.

1.3 Policy Goals, Welfare, and Scenarios

Whenever we discuss optimal policy, we have to specify the objectives

of policy makers. Central banks, of course, have low inflation goals,
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and fiscal authorities may be concerned with fiscal sustainability.

However, when we evaluate the overall performance of particular

policy rules or stances of policy makers over the medium to long run,

the overarching criterion for the performance of policy should be the

welfare of households in the economy. By welfare, we mean an inter-

temporal index or measure of current and future consumption and lei-

sure available to households.

Of course, policy is not made in a vacuum: the economy is subject to

a variety of change, from external and internal sources, such as pro-

ductivity, foreign interest rates, foreign demand, and terms of trade,

all well beyond the control of any policy maker. So the measures of

welfare, resulting from alternative rules for fiscal and monetary policy,

also depend on factors beyond the scope of policy decisions. How can

we evaluate the welfare consequences of specific policy rules when

changes beyond the scope of policy are also taking place?

We make our case for computational approaches to policy evalua-

tion precisely on this issue. With computational methods we can

evaluate the distribution of welfare measures over a wide variety of

realizations of shocks or exogenous changes affecting the economy, for

different monetary and fiscal policy settings. We can specify a func-

tional form for household utility and develop an intertemporal index,

and compute this measure over a variety of policy settings. There is no

need to substitute these direct welfare measures with quadratic loss

functions or other ad hoc measures, since we are not linearizing the

welfare function.

Moreover, whenever we discuss welfare, we present a histogram of

welfare distributions. Given that any welfare index is based on realiza-

tions of one set of random shocks based on a given seed to a random

number generator, it is important to know the dispersion of this wel-

fare index for a wide set of realizations based on different seeds. We

hope that this book will promote more widely the use of welfare distri-

butions for assessing the payoff of different policy rules.

All chapters contain an alternative scenario or policy experiment, in-

tended to motivate our readers to engage in computational experi-

ments on their own. Many of the results come from one important

difference between the open and closed economy setting. In the open

economy consumers have access to international financial markets to

smooth their consumption over time, when they face distortions in the

domestic economy in the form of price or wage stickiness.
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1.4 Plan of the Book

This book has eleven chapters. The goal of the computational ex-

periments is to find robust conclusions regarding policy response to

external and internal disturbances, under alternative assumptions

about the structure of the economy and how agents react to new devel-

opments and policy change. We start with a very simple setting

with no distortions or rigidities and gradually incorporate more dis-

tortions (e.g., in the form of price and wage stickiness, taxes, real ri-

gidities in investment, financial frictions, and habit persistence in

consumption).

Chapter 2 lays out the basic theoretical framework or model with

fully flexible prices and with a simple Taylor rule for monetary policy.

The model is closed by allowing for a debt elastic interest rate. We dis-

cuss how we calibrate the model and solve for the steady-state initial

conditions of the model. Overall, we show that even this very simple

framework involves forward-looking behavior and requires carefully

constructed approximation methods for solution and simulation. Fol-

lowing the traditional literature, we show how the model can be

solved for a given productivity shock with the projection method. We

also present the results of the suggested accuracy checks. This chapter

includes discussion about impulse-responses in response to a once-

only shock as well as discussion of results from stochastic simulations

resulting from recurring changes in productivity.

We believe that it is useful to consider simple flexible models be-

cause they are the benchmarks to evaluate welfare gains and loses of

policy approaches under different types of rigidities and distortions.

Consequently from the simulations we obtain benchmark welfare dis-

tributions under fully flexible prices for domestic and foreign goods,

but bearing in mind that in these benchmark scenarios the monetary

authority follows a simple Taylor rule aimed simply at inflation tar-

gets. The experiment conducted in this chapter is for the case of recur-

ring changes in foreign demand. The results are compared with those

obtained in response to changes in domestic productivity.

Chapter 3 takes up stickiness in domestic price setting. We examine

how this form of stickiness reduces welfare, relative to the benchmark

welfare distribution under fully flexible prices. We also explore more

extensive Taylor rules responding not only to inflation targets but also

to output gaps. The output gap is the difference between the actual
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level of output and the output which would occur in the flexible

price economy. This chapter illustrates the effects of alternative policy

targets.

The first few chapters were only concerned with monetary policy. In

chapter 4 we analyze the welfare effects of alternative fiscal systems or

tax bases, when there are recurring productivity shocks, for a given

inflation-targeting monetary regime. We compare the case where the

income tax rate is greater than the consumption tax rate with the re-

verse case where the income tax rate is less than the consumption tax

rate.

The issue of domestic debt leads naturally to a consideration of the

‘‘twin’’ deficits in chapter 5. Here we let export demands react to the

real exchange rate, and we explore the sensitivity of the relationship

between the fiscal and current account deficits as the export elasticity

of demand range from low to high for a productivity shock. Collec-

tively, chapters 4 and 5 illustrate the sensitivity of results to alternative

base case and alternative parameters.

Chapter 6 introduces capital accumulation into the basic models and

considers the role of Tobin’s Q in policy analysis. While the earlier

chapters dealt with nominal stickiness associated with prices, this

chapter is concerned with real rigidities and other types of distortions.

Chapter 7 expands the model to two sectors, which then allows us to

broaden our scenario analysis to a consideration of a terms-of-trade

shock. In particular, this chapter examines the case of productivity ver-

sus terms-of-trade shocks for an economy with a rich natural resource

sector.

Chapter 8 introduces financial frictions by allowing for banking and

financial frictions. This type of model is also called a limited participa-

tion model, since households are now restricted on the types of assets

they can hold. In this chapter we compare the case of inflation target-

ing with a flexible exchange rate with the case of no inflation targeting

with an effectively fixed exchange rate (which is akin to imported

goods inflation targeting).

Chapter 9 is concerned with wage rigidities as a source of stickiness.

Scenarios are simulated to explore how labor–leisure choices affect the

outcomes of the productivity shock.

Chapter 10 introduces habit persistence into the consumption deci-

sion and considers the simulated results for two sets of comparisons:

inflation targeting and no-inflation targeting, and productivity and

terms-of-trade shocks.
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The final chapter, chapter 11, makes use of the model with all of the

bells and whistles and simulates a sudden stop as well as a large con-

tinuing capital inflow (and increasing external deficit) for an economy.

Sudden stops have plagued emerging market economies in the last

two decades, while the United States has experienced large and con-

tinuing external debt accumulation. This final chapter brings into sharp

focus the advantages of using our nonlinear approximation algorithm

for solving and simulating open economy stochastic dynamic models

with sudden large shocks or increasing external debt levels. The aim

of this chapter is to highlight, once again, the insights that can be

obtained from simulating (nonlinear) DSGE models.

Of course, the order in which we have progressed, with increasing

complexity—from the flexible price model, to sticky prices, to distor-

tionary taxes, to capital accumulation, to sectoral production, to finan-

cial frictions, to sticky wages, to habit persistence—is a matter of taste.

We are not suggesting that there is any deep evolutionary pattern in

the ordering we have chosen, just that it follows roughly the develop-

ment of the literature in open economy business-cycle analysis. Also as

a final comment, we note that while we cover a range of topics familiar

to students of open economy macroeconomics, this book is about

methods for policy evaluation and not about policy evaluation itself.

Computational Exercises

At the end of chapters 2 through 10, we have added computational

exercises. The MATLAB codes for the base flexible price model dis-

cussed in chapter 2 appears in the appendix at the end of the book.8

This program estimates the decision rule coefficients as well as gener-

ates the impulse-response paths and the stochastic simulations for the

model presented in chapter 2. As we move from chapter to chapter,

the reader is invited to modify the codes from the base flexible price

model to more complex extensions. Quite apart from programming to

suit one’s personal style and taste, we believe that the act of program-

ming is an integral part of open economy macro research as it en-

hances the comprehension of the models and the simulated results.
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