
1Introduction

In 1983, David H. D. Warren designed an abstract machine for the execution
of Prolog consisting of a memory architecture and an instruction set [War83].
This design became known as the Warren Abstract Machine (WAM) and has
become the de/ acto standard for implementing Prolog compilers. In [War83],
Warren describes the WAM in a minimalist's style, making understanding
very difficult for the average reader, even with a foreknowledge of Prolog's
operations. Too much is left untold, and very little is justified in clear tenns.l
This has resulted in a very scant number of W AM aficionados who could boast
understanding the details of its workings. Typically, these have been Prolog
implementors who decided to invest the necessary time to learn by doing and
to reach enlightenment painstakingly.

1.1 Existing literature

Witness to this lack of understanding is the fact that in six years there has
been little published that would teach the WAM, let alone fonnally justify
its correctness. Indeed, besides Warren's original hennetic report [War83] ,
there has been virtually no official publication on the WAM. A few years
ago, one could come across a draft authored by a group at Argonne National
Laboratory [GLLO85]. But, to be honest, we found that manuscript even
harder to understand than Warren's report. The flaw was that it insisted in

: complete WAM as is, rather than as a gradually transfonned andpresenting the
optimized design.

A gradual refinement style has in fact been used by David Maler and David
S. Warren2 in (MW88]. There, one can find a description of techniques
of Prolog compilation akin to the WAM's.3 However, we believe that this
otherwise quite commendable effort still suffers from a few drawbacks as a
definitive tutorial. First, it describes a close variant of the WAM rather than,
strictly speaking, the WAM itself. That is, not all of the WAM's features
are covered. Moreover, explanations are limited to illustrative examples
and seldom make explicitly and exhaustively clear the specific context in
which some optimizations apply. Second, the part devoted to compilation

�

1 David H . D . Warren ' s confides privately that he " felt [that the WAM] was important , but [its]

details unlikely to be of wide interest . Hence , [he used a] ' personal notes ' style . "

2 A different person than the WAM ' s designer , for whose research the WAM has been of great

inspiration . In turn , interestingly enough , David H . D . Warren has lately been working on a parallel

architecture for Prolog whose abstract model shares its essence with some ideas independently

conceived by David S . Warren .

30p . Cito , Chapter II .

Chapter 12

of Prolog comes very late in the book- in the penultimate chapter- relying,
for implementation details, on overly detailed Pascal procedures and data
structures incrementally refined over the previous chapters. We feel that this
sidetracks reading and obfuscates to-the-point learning of the abstract machine.
Finally, although it presents a series of gradually refined designs, their tutorial
does not separate orthogonal pieces of Prolog in the process. All the versions
presented are full Prolog machines. As a result, the reader interested in picking
and choosing partial techniques to adapt somewhere else cannot discriminate
among these easily. Now, in all fairness, Maler and Warren's book has the
different ambition of being a first course in logic programming. Thus, it
is actually a feat that its authors were able to cover so much material, both
theoretical and practical, and go so far as to include also Prolog compiling
techniques. More important, their book is the first available official publication
to contain a (real) tutorial on the WAM techniques.

After the preliminary version of this book had been completed, another
recent publication containing a tutorial on the WAM was brought to this
author's attention. It is a book due to Patrice Boizumault [Boi88] whose

Chapter 9 is devoted to explaining the WAM. There again, its author does not
use a gradual presentation of partial Prolog machines. Besides, it is written in
French- a somewhat restrictive trait as far as its readership is concerned. Still,
Boizumault's book is very well conceived, and contains a detailed discussion
describing an explicit implementation technique for the freeze metapredicate.4

Even more recently, a formal verification of the correctness of a slight
simplification of the WAM was carried out by David Russinoff [Rus89]. That
work deserves justified praise as it methodically certifies correctness of most
of the WAM with respect to Prolog's SLD resolution semantics. However, it is
definitely not a tutorial, although Russinoff defines most of the notions he uses
in order to keep his work self-contained. In spite of this effort, understanding
the details is consider ably impeded without working familiarity with the WAM
as a prerequisite. At any rate, Russinoff's contribution is nevertheless a
premiere as he is the first to establish rigorously something that had been taken
for granted thus far. Needless to say, that report is not for the faint hearted.�

40p. Cit., Chapter 10.

 1.2 This tutorial

Introduction 3

1.2.1 Disclaimer and motivation

The length of this monograph has been kept deliberately short. Indeed, this
author feels that the typical expected reader of a tutorial on the W AM would
wish to get to the heart of the matter quickly and obtain complete but short
answers to questions. Also, for reasons pertaining to the specificity of the topic
covered, it was purpose fully decided not to structure it as a real textbook, with
abundant exercises and lengthy comments. Our point is to make the WAM
explicit as it was conceived by David H. D. Warren and to justify its workings
to the reader with convincing, albeit informal, explanations. The few proposed
exercises are meant more as an aid for understanding than as food for further
thoughts.

The reader may find, at points, that some design decisions, clearly correct
as they may be, appear arbitrarily chosen among potentially many other
alternatives, some of which he or she might favor over what is described.
Also, one may feel that this or that detail could be "simplified" in some local
or global way. Regarding this, we wish to underscore two points: (1) we
chose to follow Warren's original design and terminology, describing what
he did as faithfully as possible; and, (2) we warn against the casual thinking
up of alterations that, although that may appear to be "smarter" from a local
standpoint, will generally bear subtle global consequences interfering with
other decisions or optimizations made elsewhere in the design. This being
said, we did depart in some marginal way from a few original WAM details.
However, where our deviations from the original conception are proposed, an
explicit mention will be made and a justification given.

Our motivation to be so conservative is simple: our goal is not to teach
the world how to implement Prolog optimally, nor is it to provide a guide
to the state of the art on the subject. Indeed, having contributed little to
the craft of Prolog implementation, this author claims glaring incompetence
for carrying out such a task. Rather, this work's intention is to explain in
simpler terms, and justify with informal discussions, David H. D. Warren's
abstract machine specifically and exclusively. Our source is what he describes
in [War83, War88]. The expected achievement is merely the long overdue
filling of a gap so far existing for whoever may be curious to acquire basic
knowledge of Prolog implementation techniques, as well as to serve as a
spring board for the expert eager to contribute further to this field for which

as well as to those

languages. As a

Chapter 14

the WAM is, in fact, just the tip of an iceberg. As such, it is hoped that this
monograph would constitute an interesting and self-contained complement to
basic textbooks for general courses on logic programming ,

on compiler design for more conventional programming

stand - alone work , it could be a quick reference for the computer professional

in need of direct access to W AM concepts .

1 . 2 . 2 Or ~ anization of presentation

Our style of teaching the WAM makes a special effort to consider carefully
each feature of the WAM design in isolation by introducing separately and

incrementally distinct aspects of Prolog . This allows us to explain as limpidly

as possible specific principles proper to each. We then stitch and merge the
different patches into larger pieces, introducing independent optimizations one
at a time , converging eventually to the complete WAM design as described
in [War83] or as overviewed in [War88]. Thus, in Chapter 2, we consider
unification alone. Then, we look at flat resolution (that is, Prolog without

backtracking) in Chapter 3. Following that, we turn to disjunctive definitions
and backtracking in Chapter 4. At that point , we will have a complete, albeit

naive, design for pure Prolog . In Chapter 5, this first -cut design will be

subjected to a series of transformations aiming at optimizing its performance,
the end product of which is the full W AM . We have also prepared an index for

quick reference to most critical concepts used in the WAM , something without
which no (real) tutorial could possibly be complete.

It is expected that the reader already has a basic understanding of the

operational semantics of Prolog- in particular , of unification and backtracking
. Nevertheless, to make this work also profitable to readers lacking this

background, we have provided a quick summary of the necessary Prolog
notions in Appendix A . As for notation , we implicitly use the syntax of
so-called Edinburgh Prolog (see, for instance, [CM84]), which we also recall

in that appendix. Finally , Appendix B contains a recapitulation of all explicit
definitions implementing the full WAM instruction set and its architecture so
as to serve as a complete and concise summary.

