
1 Introduction

1.1 Randomized Complexity

In the last decade randomization became an important tool in the design of algorithms .

There are many problems for which efficient randomized algorithms have been given even

though no efficient deterministic algorithm is known . This apparently enhanced power

, vhich randomization provides has become a major research topic in complexity theory .

For almost any natural complexity class , a corresponding randomized class may be

defined ( in fact several randomized variants can be defined ) . In most cases no nontrivial

relationship is known between the corresponding randomized and deterministic classes ,

and in many cases there are some interesting problems known to lie in the randomized

class but not known to lie in the corresponding deterministic one . Primality testing is

kno \ vn to lie in randomized polynomial time [ 5577 , Rab80 , AH87 ] , but not kno \ vn to

lie in deterministic polynomial time . Construction of a perfect matching in a graph is

known to lie in random - NC [ KUW86 , MVV87 ] , but not known to lie in NC . Undirected

connectivity is known to lie in random - Logspace [ AKL + 79 ] , but not known to lie in

Logspace . Graph non - isomorphism is known to lie in AM , the randomized analogue of

NP [ GMW86 ] , but not known to lie in NP .

This thesis continues the investigation into the power of randomization , and the relationships 

between randomized and deterministic complexity classes . The line of a .ttack

we pursue is the idea of emulating randomness , known as pseudorandom generation .

1 . 2 Pseudorandom Generators

The major conceptual idea behind pseudorandom generation is that sequences of events

may look random even though they are not truly random in the information theoretic 

sense . Sequences may look random to any observer that does not have enough

computational power to " understand " them .

This revolutionary idea was introduced and formalized in the early ' 80s by Blum and

Micali [ BM84 ] , who . were influenced by Shamir [ Sha8 ! ] , and by Yao [ Yao82 ] . Blum and

Micali and Yao proposed the idea of pseudorandom generators , functions which stretch

a short string of truly random bits into a long string of bits which looks random to

observers having limited computational power .

There are several motivations for research into pseudorandom generators . Perhaps the

most broadly stated one is merely getting better insight into the nature of randomness

from a behavioral point of view . More specifically , pseudorandom generation is perhaps
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the most general and natural method to reduce or eliminate the randomness required

by algorithms . Pseudorandom sequences may replace the random sequences required by

algorithms without changing the results in any way . This reduces the number of random

bits required for solving the problem . Moreover , the trivial exponential deterministic

simulation of randomized algorithms can now be used to obtain rather fast deterministic

simulations .

Another motivation for research into pseudorandom generation is cryptography . A

standard element implicit in many cryptographic protocols is to generate messages that

do not give any information to your opponent , in other words , messages that appear

random to him . Pseudorandom generators are a general framework to study these issues .

Indeed many cryptographic protocols may be based on pseudorandom generators ( see ,

e . g . , [ 1RS6 , I11S9 ] ) .

Finally , perhaps the practical motivation should be mentioned : in reality many computer 

programs use random numbers . Hardly ever are truly random bits supplied by the

computer ( or do they even claim to be supplied by some physical means such as Zener

diodes ) . Usually some pseudorandom generator supplies numbers which are hoped to be

as good as truly random ones . It is important to know how much and in what cases this

can be really justified .

1 . 3 Basic Definitions

Blum and Micali [ BM84 ] and Yao [ Yao82 ] were the first to define pseudorandom genera -

tors . They were concerned with pseudorandom generators that look random to polynomial 

time Turing machines , or to polynomial size circuits . We will consider the natural

extensions and give general definitions of pseudorandom generators that look random to

an arbitrary class of machines .

Another way in which we modify the definitions given by Blum - Micali and by Yao

is the requirement regarding the running time of the pseudorandom generator . Blum -

Micali and Yao defined pseudorandom generators to be computed in polynomial time .

We will remove this requirement from the definition . Of course , for our pseudorandom

generators to be interesting , we will need to show that they can indeed be computed

somewhat efficiently .

The definitions that appear here are generic , and more precise specific definitions for

particular complexity classes will appear where we use them .

Blum - Micali and Yao gave competing definitions of what a pseudorandom generator

should be . These two definitions turned out to be equivalent . Yao ' s definition is perhaps

the strongest one imaginable : that the pseudorandom bits will behave just like truly
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random ones in any way measurable by machines in the class.

Definition 1 A function G = { Gn : { o, l } m(n) - T { O, l } n} is called a pseudorandom
generator for class C if for every algorithm A in C , every polynomial p( n) , and for all
sufficiently large n :

I Pr [A (y) = 1] - Pr [A (Gn (x )) = 1] 1 ~ 1/ p(n) (1.3.1)

Where x is chosen uniformly at random in { O, l } m(n), and y in { O, l } n.

The definition given by Blum -Micali seems to be a rather minimalist one: that given
any prefix of the pseudorandom sequence, the next bit would look random .

Definition 2 A function G = { Gn : { O, l } m(n) - + { O, l } n} passes all class C prediction
tests if for every algorithm A in C , every 1 ~ i ~ n , every polynomial p(n) , and all
sufficiently large n :

I Pr [A (Yl , ...Yi- l ) = Yi] - 1/ 21 ~ l / p(n) (1.3.2)

Where Yi is the j 'th bit output by Gn , and the probability is taken over a random input
to Gn -

It was proven by Yao [Yao82] that these two definitions are equivalent .

T' HE OR EM 1 (Yao) G is a pseudorandom generator for class C iff it passes all class C
prediction tests .

This fact is extremely helpful , since the usual method of proving that a generator is
pseudorandom is to show that it satisfies the weaker definition , and then to conclude

that it has all the nice properties of the stronger one.

1 .4 Previous Work

Most work regarding pseudorandom generators has been directed towards pseudorandom
genera.tors for P , polynomial time Turing machines . The first pseudorandom number generator 

was designed by Blum and Micali [BM84 ] . It is based on the unproven assumption

that computation of the "discrete log" function cannot be done in polynomial time . They
first showed that , under this assumption , the most significant bit of the discrete log cannot 

be approximated by any polynomial time computation , and they proceeded to give

a general scheme to produce many pseudorandom bits using this fact .
Yao [Yao82] generalized this construction . He showed how anyone -way permutation

can be used in place of the discrete log function .
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Definition 3 A function I = { In : { O , l } n - t { O , l } n } is called a one - way permutation

if ( 1 ) For all n , In is one - one and onto ( 2 ) I can be computed in polynomial time ( 3 )

Any polynomial size circuit that attempts to invert I errs on at least a polynomially

large fraction of the inputs .

Yao first showed how to " amplify " the " unpredictability " of condition 3 and obtain

a " hard bit " , a bit that cannot be predicted at all . This amplification is achieved by

taking multiple copies of the hard function on disjoint sets of input bits and xor - ing

them ; Yao shows that this operation indeed " amplifies " the unpredictability of the bits .

Once a " hard bit " is obtained , a pseudorandom generator can be designed using the

Blum - Micali scheme :

A seed Xo of size nf bits is given as the random input . The one - way permutation is

applied to the seed repeatedly , generating a sequence xo , f ( xo ) , f ( f ( xo ) ) , . . . , j < n ) ( xo ) .

The pseudorandom output of the generator is obtained by extracting the " hard bit " from

each string in this sequence . The proof that this is indeed a pseudorandom generator

proceeds by showing how a test that this sequence fails can be used to invert the one - way

permutation f .

THEOREM 2 (Yao) If a one-way permutation exists then for every f. > 0 there exists a
polynomial time computable pseudorandom generator G : { a, l } n~ -+ {a, l }n.

Recently, Impagliazzo, 1evin and 1uby [111S9] and Hastad [Has90] proved that the
existence of anyone-way function (not necessarily a permutation ) suffices for the construction 

of pseudorandom generators. This condition is also necessary for the existence

of pseudorandom generators that can be computed in polynomial time . The pseudorandom 
generators described so far can indeed be computed in polynomial time .

All the work described so far concerns generators that pass all polynomial time tests ;

pseudorandom generators for P . Some work has also been done regarding the construction 
of pseudorandom generators for other complexity classes.

Reif and Tygar [RTS4] describe a generator that passes all N G tests and, moreover,
can itself be computed in N G . This generator is based on the assumption that " inverse

mod p" cannot be computed in NG . The main innovation here is showing that for this
particular function , the original Blum -Micali - Yao generator can be parallelized .

Ajtai and Wigderson [AWS5] considered pseudorandom generators for AGo. They use
an ad-hoc construction based on the lower bound methods for constant depth circuits to

construct a pseudorandom generator that passes all AGo tests . The significance of this
result is that it does not require any unproven assumptions . Instead , it builds upon the
known , proven lower bounds for constant depth circuits .
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Hardness vs . Randomness1.5

The second chapter of this thesis is devoted to a new general construction of pseudorandom 

generators for arbitrary complexity classes . This construction overcomes two basic

limitations of the known pseudorandom generators :

. They require a strong unproven assumption . ( The existence of a one - way function , an

assumption which is even stronger than PIN P . )

. They are sequential , and cannot be applied to an arbitrary complexity class . E . g .

there is no known construction of pseudorandom generators for N C that is based upon

a general complexity assumption about N C .

The construction which we propose avoids both problems : It can be applied to any

complexity class C I it is based on an arbitrary function which is hard for C I and gives

a pseudorandom generator that looks random to the class C . Although our generator

cannot necessarily be computed in the class C , we will show that it can be computed

efficiently enough for our simulation purposes .

Perhaps the most important conceptual implication of this construction is that it proves

the equivalence between the problem of proving lower bounds for the size of circuits

approximating functions in EXPTIME and the problem of constructing pseudorandom

generators which run " sufficiently fast " . This should be contrasted with the results of

Impagliazzo , 1evin , 1uby and Hastad [ 11189 , Has90 ] showing the equivalence of proving

the existence of one - way functions and constructing pseudorandom generators that run

in polynomial time . Our construction requires much weaker assumptions but yields

less efficient pseudorandom generators . This loss does not have any effect when using

pseudorandom generators for the deterministic simulation of randomized algorithms .

This construction has many implications , and a large part of the second chapter describes 

them . We first show that efficient deterministic simulation of randomized algorithms 

is possible under much weaker assumptions than previously known . The efficiency

of the simulation depends on the strength of the assumption and can be good enough

to show P = BP P . Since the assumptions required for our generator are so weak and

natural , we believe that this work provides overwhelming evidence that the gap between

deterministic and randomized complexity is not large .

We then turn to pseudorandom generators for constant depth circuits . Since lower

bounds for constant depth circuits are known ( e . g . , [ Has86 ] ) , our construction yields

an unconditionally proven pseudorandom generator for constant depth circuits . This

generator improves upon the known generator , due to Ajtai and Wigderson [ AW85 ] , and

implies much better deterministic simulation of randomized constant depth circuits .

Our generator for constant depth circuits turns out to have some interesting conse -
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quences regarding the power of random oracles for complexity classes in the polynomial

time hierarchy . We show that N P with a random oracle is exactly the class AM , solving
an open problem of Babal [BM88 ] . We also show that a random oracle does not add
power to the polynomial time hierarchy .

A new proof is given of the fact that BP P is in the polynomial time hierarchy . Our
final application is a surprising connection between simulation of "time by space" and
simulation of "randomness by determinism " . We show that one of these simulations can
be substantially improved over known simulations .

The results in this chapter have appeared in [Nis91a, NW88] and are joint work with
A vi Wigderson .

1.6 Pseudorandom Generators for Logspace

The third chapter in this thesis describes the construction of a pseudorandom generator
for Logspace. This result is unique in that it is not based on any unproven assumptions .

The only other class for which pseudorandom generators were unconditionally proven to
exist is AGo .

In order to prove the correctness of our pseudorandom generator we use the following

multiparty communication game, first introduced by Chandra, Furst and Lipton [CFL83]:
Let f (Xl . . . Xk) be a Boolean function that accepts k arguments each n bits long. There
are k parties who wish to collaboratively evaluate f ; the i 'th party knows each input
argument except Xi ; and each party has unlimited computational power . They share a
blackboard , viewed by all parties , where they can exchange messages. The objective is
to minimize the number of bits written on the board .

We first prove lower bounds for the number of bits that must be written on the board in

order to get even a small advantage on computing certain functions . We then sho\v ho\v

to use these lower bounds in order to construct a pseudorandom generator for Logspace.
We conclude by giving some applications of our pseudorandom generator . We describe 

a construction of universal sequences for arbitrary regular graphs ; no nontrivial

such construction was previously known . We also show that random Logspace machines
with two-way access to the random bits are better , in some specific sense, than random
Logspace machines with the usual one-way access to the random bits .

The results in this chapter have appeared in [BNS89] and are joint \vork with Laszlo
Babal and Mario Szegedy.
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1 .7 Recent Results

Since this thesis was originally written (in December 1989), several new results related to
problems considered here were obtained . The most relevant ones are a different , improved
construction for pseudorandom generators for Logspace [Nis90] and a further sharpening
of the conditions under which the pseudorandom generators presented in chapter two

can be constructed [BFNW91] .
The fourth chapter briefly describes these as well as other recent results related to the

subject of this thesis .


