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Air pollution calculations for urban
areas

2.1 Air pollution calculation - or modelling? a semantic discussion

'For the sake of persons of different types of mind, scientific truth should be
presented in different forms and should be regarded as eoually scientific
whether it appears in the robust form of the physical illustration or the
beauty and paleness of a symbolical expression.'

CLERK MAXWELL

'Perhaps the most fascinating aspect of Maxwell's genius is that, as soon as
he had worked out the mathematical formulae of his theory, he discarded
his model by means of which he reached it . . . . all that remained were
" fields" of an abstract non-substantial nature, and the mathematical
formalism which described the propagation of real waves in an apparently
non-existent medium.'

A. KOSTLER

It is necessary first of all to define the words 'model' and 'modelling' clearly
and definitively, as the colloquial use of technical jargon frequently causes the
meanings of words to deviate from their original sense.

Firstly , the word model can mean a tangible copy of the real object but at a
reduced scale. In this way, we have models of buildings, landscapes, airplanes,
ships, harbours, etc. These models are used for experiments under given
conditions and limits, when experiments on the real object would be
impossible or uneconomical. Landscape and building models are also used in
pollution engineering: they are outside the scope of this book which is limited
to calculations.

The second meaning of the word model refers to imaginary structures in
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physics which , it is hoped , are governed by the same mathematical laws as the
real object . In physics, the model is expressly not a miniaturised version of the
phenomenon to be modelled : model and phenomenon are of basically
different natures . Bohr ' s atom with elliptically orbiting electrons is an obvious
example of such a model ; the Kant - Laplace concept of the formation of the
solar system is a model ; the 'explanation ' of electric current and potential by
analogy with hydraulic flow and pressure is another model ; the lines of force
in electromagnetism are models ; and so was the ether , before being
supplanted by other concepts .

In the following discussion , the first type of model will be called a model
object , while the second type will be referred to as a model concept .

Model objects are used to simulate a given occurrence , provided a given set
of dimensional and analogous laws are adhered to . In this case, the set of laws
is called the similitude laws. For both model objects and model concepts , it is
the experimenter that must prove that the model is correct and must show that
the conditions under which the model is used allow extrapolation to a real
scale, as this is the purpose of the operation . For example , when a relief map
placed in a water channel under laminar flow conditions is used to simulate
the turbulent atmospheric boundary layer , adequate proof may be lacking .
However , as simulation by model objects is outside our scope, we shall end
our discussion here, with the clear definition of what model objects are. We
have indicated , but not clearly defined yet , what simulation actually is: the
definition will be provided later .

Although there is a difference between the ideas of model concept and
theory , these two words are often wrongly used as equivalents . For example ,
Bohr ' s atomic model is often called Bohr 's theory of the atom ; the Kant -
Laplace model of the solar system is called the Kant - Laplace theory ; and so
on . We can elucidate the difference between these two terms best by giving an
example . Let us consider the kinetic theory of gases. The modcl used in the
kinetic theory is that of a perfectly elastic spherical molecule , flying and
bouncing around . However , other concepts and observations make it
extremely unlikely that the molecule is a hard perfect ball . Nevertheless , a
great number of equations have been worked out by describing the behaviour
of molecules as identical with that ofbillard balls ; by using these equations the
kinetic theory works very well . The difference between a theory and a model is
the following : the theory gives an idea of how objects are and the model (the
conceptual model ) tries to describe how objects behare. The molecules of the
kinetic theory behare as elastic spheres, but no one believes that they actually
are elastic spheres. However , phenomena such as molecular diffusion show that
molecules do in fact move around , and so the idea of their flying around roughly 

approximates reality . While a theory tries to explain phenomena , a model
concept is a frame of thought to which a mathematical equation may be tied .

If the dispersion of smoke from a point source is described by a so-called
gaussian plume , may we call this description a mathematical model , at least in
the two precise senses defined above ? Certainly not .
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The initial assumption (or hypothesis ) was to describe this phenomenon by
an equation such as Fick ' s equation . By a sequence of purely mathematical
manipulations , we arrived at a gaussian plume . Experimental data supply its
spreading characteristics , and thus the concentration at a given point can be
computed . Provided that enough time and computing facilities are available ,
this can be done for a great number of point sources, and , by assuming one of
several hyoptheses , the concentrations can be added up .

By proceeding in this way , in principle the same steps are taken as when
calculating the area S of a rectangular fIeld by multiplying the length a of one
side by the length b of the other . In this case, the assumption is that the field is
rectangular . Next , the convenient mathematical expression a x b = S is
applied , by using a second assumption , that is, that a and b are experimentally
accurate . The formula a x b = S is unconditionally correct ; so is, for example ,

the integration of the differential equation of diffusion under given boundary
conditions to give a gaussian concentration distribution . However , whether
the result is correct depends on how far the basic hypothesis meets reality and
on the errors that are made in the process of measurements . For example , this

applies to the field : if the angles of the field are not right angles or if the sides
are measured with a large error , then the result will be false. The same is true
for the concentration calculation : perhaps the basic process is not governed

by a fickian equation or perhaps the parameters for the lateral or other spread
are far from real . Then , the surface (or the concentration ) will also have values

that are very far from their real values ; but the mathematics will not be at

fault . In both cases, the mathematics are absolutely correct ; only the

assumptions made during their application are erroneous .
Although the concentration calculatio \1 is analogous to the surface

calculation , it is even less clear why the concentration calculation should be
called plume modelling . We did not 'model ' the surface of the rectangle : we
calculated it . Similarly , for the plume , no conceptual model was involved ;
only a given formula was applied . For the rectangular surface, a model object
could perhaps be used, by cutting an analogous form out of cardboard and by
weighing this model ; however , we did not use this process: the concentration
and the area were calculated without the aid of modelling . If the same routine

(hypothesis ; the application of a mathematical formula ; the introduction of
experimentally measured parameters ) is used for concentration calculations
in an urban area, there are no grounds at all for calling this process urban
modelling .

Engineering sciences adopted the term to model from such subjects as
economics , demography and linguistics and so on and used it to mean to
calculate or to compute . Nowadays this usage has become commonplace in
atmospheric physics and engineering , and the term modelling is used
inter change ably with the term computing . In the following chapters we shall
mainly comply with this usage, but , when model object or model concept is
meant and not simply calculations , we shall emphasise this by using these
fuller terms .



2.2 Outline, systematisation and purpose: engineering calculations
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Similar comments apply to the use of the word simulation . A simulation
means an experiment performed on a model . It is obvious that experimental
manipulations can be made only on model objects . The model concept is used
to find a suitable mathematical expression ; afterwards the ' theoretical ' results
are compared with the observations . Sometimes it is more convenient to
proceed stepwise by trial and error instead of by deriving a theoretical
formula . Engineers have used this approach for centuries and quite often
apply it graphically . Most problems of the great nineteenth -century engineering 

projects were solved graphically , on the drawing board . However , the
expression the simulation of stress es by rule and compass was never used. It
only appeared when calculations were made on computers , when the term
computer simulation was coined . So we shall use the term computer
simulation to mean calculation .

The choice of an engineering calculation method for urban pollutant
concentrations depends on how the results are to be used. For a purely
scientific endeavour, when the aim is to gain knowledge for knowledge's sake,
the practical use is of no importance. When he was asked why he climbed
Mount Everest, Sir Edmund Hillary answered, 'Because it is there.' However,
an engineer \.\I'ould not choose between the projects of constructing a rack
railway, a ski lift , a helicopter platform , etc., to the top of Everest without first
enquiring as to the purpose of the enterprise. The design will be decided on a
cool cost effectiveness basis, and the project could \.\I'ell be abandoned, given
the actual number of visitors to the peak per year.

Sir Edmund Hillary 's approach is that of a sportsman and equivalent to
that of a pure scientist. On the contrary, ours must be a strictly engineering
approach, with calculations made either to avoid the unrealistically high cost
of real-scale experiments (it is easier to calculate the resistance ofa beam than
to shatter some real beams several times) or to estimate some future situation
not accessible by direct testing (for example, the next day's sulphur dioxide
concentration).

In this way, engineering decisions and calculations are made by asking two
questions.

(1) Why are these calculations being made?
(2) Which are the best methods to use?

The main purpose of this book is to indicate the problems involved; this
means finding out  'hat must be done, but it provides very little information
about ho~j.' to make the computation itself. Programme listings are mainly
provided by the references and are not included in this book as there was not
sufficient space.

Before undertaking any urban air pollution calculations, the following
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questions should be answered .

( 1) Who needs the information ?
(2) What purpose has to be attained ?

Table 2.1 presents a schematic outline of the answers to these questions .
The user has first to define his operational needs. If an annual arithmetic

mean is requested simply to check conformity with an air quality standard
expressed as an annual mean, it would obviously be foolish to obtain it from
8760 hourly estimates, when more direct and cheaper methods are available .
High resolution , here as everywhere , costs money . This money and labour are
spent first in gathering the high -resolution input data and then in working out
the fine details of the output . High -resolution data do not necessarily mean
accurate or true data . Thus the first consideration we must face before

adopting some computationally sophisticated method is whether the quality
and the quantity of the available input does in fact justify the computational
burden . However , some computationally simple methods need high -grade
input information (Hameed , 1974; Benarie , 1975). An obvious example is the
persistence model which without any calculations , \1y'hen projected a short
time forwards , will give a fantastically good fit , because it already contains a
tremendous amount of accurate information . Needless to say, extrapolation
for a few years or even a few days ahead \1y'ould be pointless .

This leads directly to another question . Is there some fundamental limit to
the accuracy of the model computations ? If there is such a limit , then it is
clearly pointless to use computational methods of much greater precision , as
these only contribute to the proliferation of non -significant figures in the
estimate . Much of the discussion in section 2 .3 will be concerned with the

search for such limits .

Table 2.1 is an attempt to systematise computations on the basis of their
purpose . Another classification can be based on the amount and the nature of

external (mostly meteorological ) information needed as input for the model
(figure 2.1).

Meteorologicalparameters have an overwhelming influence on the behaviour 
of pollutants in the urban air . Among them , wind parameters

(direction , velocity and turbulence ) and thermal properties (stability ) are the
most important . A classification of the models can be based on the method in
which this kind of input is generated . In the following discussion we shall use
the term wind fIeld as shorthand for all the dynamical and thermal properties
associated with the wind .

In some models , the wind fIeld is assumed to be known or has to be fed in by
forecasting techniques . Mahoney and Egan ( 1971) have coined the word
driven for this kind of input .

In a second category of computations , either a consistent wind pattern
(in the vicinity of the urban area) is calculated from a t'ull set of meteoro -
logical model equations or an actually observed wind fIeld is used as
input .
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Finally , there are representations (also called models ) that provide
statistical information on the occurrence of pollutant concentrations and
which do not make use of wind or other meteorologicalparameters as input .

This is pure idealisation , as in most statistical calculations the independent
variables are still entities such as wind direction , wind velocity , etc., that are
presumed to be the causal link between source and receptor . In reality , some
causality and randomness exist in almost any calculation scheme; but for
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Figure 2.1 The systemisation of urban air pollution models
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argument 's sake we shall assume that both ends of the scale are found in a

pure form . The causal models are used to explain the underlying physical
phenomena ; the statistical models merely describe them numerically .

A further distinguishing feature , different from any of those discussed
above , appears in the nature of the model as to whether it is source or receptor
oriented . The distribution and the emission rate of pollutant sources are
assumed to be known in source-oriented models . Pollutant concentrations are

then calculated from this source distribution over the entire region of the
model .

The opposite is true for the receptor -oriented models : in their pure form no
assumptions are made about emissions, and only ambient concentration is
monitored at a number of receptor sites. Statistical or other inferences , which
mayor may not be linked to meteorological information , are then drawn , and
possibly extrapolated , from the observed data .

Source-oriented models tend mostly to be explanatory and involve causal
relationships between the pollutant emissions and concentrations . Only
explanatory models can provide the necessary means for controlling the
system and for producing the desired changes in performance . Receptor -
oriented models are generally descriptive and less directed towards establishing 

cause-and-effect relationships .

Figure 2.1 also distinguish es between short - and long -term objectires , that
is, whether the result of the calculation is needed in the next few hours or in a
few years. This aspect generally coincides with the distinction made between
the computation of short -time concentration values or forecasts and the

request for long -time averages. A typical , but rather arbitrary , separation
between these two classes would be 24 h. Anyway , the basic ideas in the 30-
min averaging time computation and in that for the seasonal or yearly average
show enough difference for recognition of two quite distinct classes for short -
and long -time mean calculations .

These principles enable us to classify the main types of urban air pollution
models , as shown in figure 2.1.

Examination of figure 2.1 shows that beyond the main classification criteria
(for example , by short - or long -term averages or by whether they are source or
receptor oriented ) four kinds of models may be distinguished in terms of the
type of information they provide . This distinction may be termed model
character and is denoted by the letters A to 0 in figure 2.1.

(A ) This letter denotes models which use either assumed or actually
observed values for the meteorologicalparameters . With assumed parameters

, the plume and volume -element models give numerical results , that

is, concentration values as a function of the space coordinates . It is beyond the
scope of the model to consider whether or when the assumed set of

meteorological descriptors will materialise . The results are only as good as the
input data . This category of models provides ambient concentration from
inputs and is analogous to the situation in chemical engineering where the



content of a reactor is computed from reactants , stirring , temperature , etc.
The output is primarily a numerical value assigned to a space and a time
coordinate .

(B) In forecasting pollution , the output from the calculation is expressed
sometimes numerically but more often by categories , by probabilities or in
some other convenient way as used in meteorology . The quality of the
forecast is limited by the atmospheric predictability .

(C) Statistical description , in either of its forms , is a summary of data
already on record . Although valuable for predicting trends or cycles, it is of
little use for a true forecast (for example , a certain day ' s estimate of the next
day 's pollution ).

(D ) Finally , we have the description (which may also be termed statistical )
or sum marisation of the data already on record , mostly in the form of graphs
or tables and intended mostly for long -term inferences . The output is in terms
of a frequency not assigned to any time coordinate .

14 URBAN AIR POLLUTION MODELLING

2.3 The bounds: ~'hat can be attempted and the limits of accuracy
.

We shall distinguish between the conservation of the identity of air parcels
and our ability to simulate or compute the trajectory of these air parcels.

Let us suppose that at a certain instant of time volume elements of air can
be marked by tracers, which are ' ideal' balloons that are able to follow every
motion of the surrounding air, and the tracks of which can be observed. Thus,
each mesh cube is determined by 8 balloons in the atmosphere. These 'mesh
particles' will undergo a rapid change in their shapes during the following
days, long bands will be stretching and finally the development will proceed to
a chaotic state where the 'particles' have lost their identity .

All particles have the shape of a cube, as bounded by squares at t = O. A
particle will be said to have ceased to exist if one of the corner points of the
quadrilateral crosses one or both opposite sides during the course of time.

Robinson (1967, 1971) found that a particle with mesh size equal to 300 km
should cease to exist wi thin the period 12 h < t < 75 h. Egger (1973), using the
data of Kao and AI-Gain (1968) and Kao and Powell (1969) on large-scale
dispersion of clusters of particles in the atmosphere, suggests 45 h < t < 72 h,
while, using the data of Eole (Morel, 1970; Larcheveque, 1972), he arrives at
t ~ 45 h.

This estimate is an upper limit for atmospheric predictability . No numerical
forecast model, however it is designed, can do better than this. Our ability to
predict is further limited by the following factors.

One factor arises from the finite representation of the atmospheric fields in
the models, which makes it impossible to describe scales of motion below grid
scale. Owing to the non-linearity of the hydrodynamic equations, the parts of
the turbulent energy which are contained in the subgrid range will appear
under an alias in the larger scales, thus limiting the predictability of these
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scales . Fleming ( 1971 ) states , ' It is this last type of uncertainty that is generally

felt to be responsible for the limit of predictability of various scales . ' Another

factor is insufficient knowledge of the initial conditions , such as errors in the

raw data .

For planning purposes , we want to be able to calculate the influence of

different sources at specific sites on specific locations of the urban area . By

using source - oriented models we attempt to establish a cause - to - effect chain

between the emissions ofa number of sources and the ambient concentration

at given locations . The main links of this chain are the following .

( 1 ) A knowledge of the source strength .

( 2 ) An adequate definition of the meteorologicaloarameters .
- .

( 3 ) A reliable method for the calculation of the dispersion from inputs 1

and 2 .

( 4 ) An adequate knowledge of the pollutant losses ( or formation ) by

chemical or photochemical reactions .

Almost all these requirements can be subdivided into many parts .

Therefore in passing from source to ambient concentration a total of ] O to 20

elementary process  es have to be estimated . Only a few of these can be

calculated free of error . Many can only be estimated approximately , so that

each estimate may be tainted by large instrumental or theoretical uncertainties

. Almost all of these errors increase with delireasing wind velocity .

A brief summary of the facts is as follows .

( 1 ) The wind velocity has no influence on the source strength .

( 2 ) The main meteorologicalparameters ( the wind velocity and direction )

are not monitored by currently available instruments when the wind velocity

sinks below 1 or 2 ms - 1 . However , this is not only an instrumental difficulty

that could be remedled in the future . The literature on turbulent motion in the

atmosphere is unusually scarce on the topic of the directional variance of very

light winds . This arises because the stability of high building structures and

the safety of aircraft is not affected by such winds . and s Decialists in these
-

areas of research have more immediate problems at the upper end of the scale .

Theoreticians are embarrassed by the lack of an exact approach and prefer to

pass on to other topics . In contrast the synoptic meteorologists are fully aware

that light winds most frequently are variable and have poorly defined

directions . The common observation of a weather  vane or of sailboats under

such conditions makes it unnecessary to cite in detail the few available

tetroon - flight experiments . These add very little to the already plentiful

evidence . In the book by Lumley and Panofsky ( 1964 , p . 151 ) which contains

extensive information about atmospheric turbulence , there is only the

following brief statement on the subject of the standard deviation of the wind

azimuth .

' The unexpected feature is the tremendously large scatter and the

frequently considerable values of standard deviations in stable air . Further
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analysis of the observations of inversions indicates that the largest standard
deviations of azimuth occur in light -wind conditions . . . gradual azimuth
drifts with periods of the order of 20 min were observed in light -Vv'ind
inversions . The origin of these drifts is unknown . Their occurrence adds
two difficulties to the estimation of the lateral diffusion : firstly , they make
lapse rate and wind speed poor indicators of lateral wind fluctuations ;
secondly , even if the standard deviation of azimuth is known to be large , it
is not known whether these large , but more or less local , standard
deviations produce rapid spreading of air pollution .'

(3) All known plume dispersion equations have a singularity near zero
wind velocity , and therefore their use at very low velocities becomes suspect.

(4) The incomplete knowledge available about pollutant transformations
and sinks is certainly just as important when considering light winds .
Optimistically , we can only hope that these deficiencies in knowledge will not
increase the error under calm conditions .

Thus , even if a low wind velocity did not influence questions I and 4, its
effect through questions 2 and 3 would be so overwhelming that source-
oriented models would break down completely during light winds . It can be
conjectured from evidence concerning urban air flow and urban heat islands
that , during conditions favourable to the formation of an urban heat island ,
source-oriented models will be of no use. In numerical terms , this limit might
be expected when the geostrophic wind diminish es to less than 3 ms - 1. Very
probably , this is not a rigid limit but varies with the city size.

It should be emphasised that , because of these arguments , we do not speak
about the use fulness of calculations based on plume dispersion formulae at
very low wind speeds. The whole model concept , as it is the causal chain
between the pollutant source and the ambient concentration , becomes
meaningless when the wind velocity falls below a certain value .

To express these considerations in the terminology of operational research,
we would say that we are dealing with a multinodal chain . At each node,
together with some information , we introduce more or less random noise.
Y et,just such a multinodal chain with a noisy input could be used to simulate
the outcome ofa throw at roulette . For , if we suppose that the torque applied
to the roulette wheel is electronically monitored and if we assume the same for
the velocity and the angle of the roulette ball , then we can apply the known
accurate equations of the mechanics of rigid bodies . If a few more steps of
computations are made, the final defInitive system to beat Las Vegas is
achieved .

Obviously , this is impossible to attain . However , by the same logic , multinodal 
models with the introduction of random noise at every step \\'ill not

indicate with accuracy the next day ' s pollutant concentration . On the
contrary , the more steps (nodes) that are used, the less accurate will be the
forecast of the outcome of anyone individual occasion (calculation ).
Sophistication may be a way to improve the precision of averages, to
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determine the categories or to observe trends , but it seems of no use for
improving the accuracy of forecasts .

This statement should not be interpreted as saying that all sophistication is
by definition to be rejected .. Some very simple one- or two -step schemes show
a creditable , ifnot outstanding , performance mainly in forecasting . However ,
if very sophisticated long -chain arguments must be bad , then there is some
intermediate length of operational chain which might give optimum results .
Research should be oriented towards methods which are intermediate

between utmost simplicity and noisy sophistication .
The roulette wheel is an example of a mechanical system beyond the reach

of mechanical cause-to -effect calculations , but we shall try to develop this
concept gradually , by considering a heavy beam supported by an axis of low
friction situated near to its centre of gravity . If the latter is below the axis , the
device becomes a sensitive balance . Any perturbation of the balance can be
described analytically , in terms of oscillation and equilibrium positions . If ,
however , the centre of gravity and rotation axis are made to coincide (they
never actually do), the angular position at which the beam will stop can no
longer be predicted analytically , and the problem becomes one of probability .
Somewhere in the process when the axis approach es the centre of gravity the
chain of causality has broken do \1y'n and has been replaced by a probability
situation . We shall not discuss the fundamentals here , as these are We' ll known

from probability calculus ; we shall only emphasise that the situation that
occurs in urban air pollution is similar to that of the beam example . When the
chain of governing equations between cause and effect becomes too long and
at each step rather unknown perturbations are introduced , then the use of
calculus should be abandoned , and a new probabilistic approach should be
attempted .

This is what occurs in urban air pollution , when the wind velocity sinks
below approximately 3 ms - I; above this lower limit , atmospheric aerodynamics 

is a powerful tool , but below or close to it hydrodynamical equations

are of as much use as classical mechanics would be for calculating the faces on
which dice will fall . There are t~t'O di.'}'tinct re?Jimes in urban air pollution : onejor
.'}'trong to moderate ~t'inds and anotherjor light ~t'ind.'}' during calm conditions .

The difference between urban air flow conditions with moderate and strong

winds and those during light winds , and also the fact that street ventilation
changes character when rooftop wind speeds fall between 2 and 5 ms - I, has
already been well emphasised in the literature .

In so far as source-oriented models rely on classical analytical equations
and on a cause-to -effect chain , they will behave very poorly in warning
systems or in episode control strategies , because generalised and protracted
pollution episodes occur mostly during moderate and light winds . On the
contrary , plume concepts can be quite useful to localise pollution effects due
to point sources or groups , when the winds are above 3 ms - I.

By the same argument , source -oriented models , when used as a basis for

long -term averages, may be useful if treated with circumspection and



18 URBAN AIR POLLUTION MODELLING

provided that light winds and calm periods only happen infrequently .
However , when meteorological tables of the urban area of interest indicate
that even only 5 to 10 % of the winds are below 2 ms - 1, then the validity of the
concentration distribution as computed by a source-oriented plume model
should be questioned . Numerically , these concentrations will be in gross error
at the higher levels, which , even if they occur with low frequencies , are the
most important as regards effects.

Receptor -oriented models , sometimes with some empirical keying to the
source inventory , can be used for warning systems, provided that meteorologicalparameters 

are correctly forecast . The vital question is what can be

reason ably expected from this kind of forecast .
Though nowhere clearly stated , a widespread belief prevails in air pollution

circles . It seems to say that for any two time intervals , characterised by an
unchanged emission rate and by approximately meteorologicalparameters   
(such as wind direction and intensity , thermal gradient , cloudiness , the
situation of a given air parcel relative to a front , etc.), if all these parameters
were equal , then pollutant concentrations would also be the same for both
time intervals .

By the same logic , it could be expected that , if 40 to 60 appropriate
parameters were identical , then the same form of cumulus cloud would hover

over the same quarter of the city . Of course, no one would dare to assert this as
fact . Continuing in this vein , we should not expect that pollution concentration 

forecasts will be fully accurate all the time .

The following example may also emphasise what can be reason ably
expected as regards the accuracy of air pollution concentration computation .
The average deviation from scheduled arrival times at Paris airport , due to
weather conditions , was only 6 min during 1973 (personal communication ).
Flights cancel led before departure , as well as delays due to technical or
commercial reasons , are not included in this statistic . If we take the average

flight time as about 3 h, this means that the estimation was made with 4 (%
error . Now , these aircraft are driven by thousands of horsepower , are guided
by exceptionally skilled crew and are assisted on the ground by other most
competent people and the most powerful computers ever built . If all this
complex system results in a 4 % relative error , then how can we expect that the
calculation of an air parcel 's trajectory , driven by its own buoyancy and some
turbulent air flow only (instead of by ajet engine) should perform any better
( Benarie , 1976 ) ?

Finally , in considering the accuracy of our engineering calculations , we
should not outperform the engineers who seek the technically best estimate
within an economic frame . Ifan engineer conceives girders to support 10 tons ,
he does not mean that each girder will shatter when loaded at 10.01 tons . In
the same way , when computing a given concentration at a given stability and
wind speed, our ambition should not go beyond that of the engineers.
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2.4 How do we choose a

AIR POLLUTION CALCULATIONS FOR URBAN AREAS

Much has already been published on how to choose a model , without
achieving unanimity . The reason is that this question of choice is mixed up
with two fundamentally different but distinct questions .

( 1) How do we formulate , develop or improve a model ?
(2) Which of the available models performs the best?

The first is a question of research and better understanding of the
atmospheric process. As model -user engineers, we do not look for a deep
understanding but rather a logical use. Our problem is to choose a model from
those already formulated .

The answer to the second question is very simple : all models perform equally
in the sense of mathematical calculations , from the simplest to the most
expensive. The formulaeS = a2 and S = nr2 are equally effective, provided the
first is not applied to compute the surface of a circle and the second is not
applied to the surface of a square.

Now to revert to the original question , the following concise method can be
recommended .

(1) Make an inventory of your requirements regarding time and space
resolution . Look for the model yielding directly the required information
without synthesising it out of fragmentary bits . If you need the annual mean,
do not start computing 30000000 instantaneous values first , and make your
yearly average afterwards .

(2) Evaluate how many man hours are (or how much money is) available to

obtain the input data; their cost outweighs computation expenses (or time ) by
20 to 1 for the very simple models . For the complicated models , an adequate
emission inventory alone is easily 1000 to 10000 times more expensive than
just the computer time to treat the punched card batch (for the estimation of
computer time and expenses, see chapter 16). As a general rule consider that ,
the more complex the model formulation is, the more complex are the data and
parameterisation requirements also. The cost of non -source parameters , such
as, for instance , the continuous determination of the three wind components at

each grid point of a 100 x 100 x 10 grid , may be beyond any reasonable
or unreasonable spending . Other examples, such as the exact wind direction 

at some given point at 12:00 next Saturday , might be utterly unattainable
.

(3) Consider that the time needed to gather adequate input data (this means
mainly but not exclusively emission inventories to an accuracy, say, of : t 10 %)
is such that , at the time you will use them , socioeconomic or other factors may

have changed them already by :t 30 % in an unknown direction . The only
exception to this is pure assumption . Ifit is assumed that the source strength of
a stack (still unconstructed ) is 1 ton h - 1, then no more need be said , apart from

the fact that the power plant may never be constructed , and, even ifit is, then its
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instantaneous genuine emission will be quite ditfer ;ent from that assumed. All
this applies also to receptor -oriented models .

(4) Be certain that the output resolution can never be better than the input
rf':S O111tion. The utmost that computational mathematics can accomplish is to

display information in some novel more useful way. This differs from
deductive mathematics as in theoretical physics, for example . Apart from a
reasonable assumption of space and time continuity which allows interpolation 

between individually computed points , most smooth output plots

are either computational artefact & or else some generalised assumptions lie
hidden somewhere .

(5) With all this in mind plus a clear knowledge of the output requirements
(see figure 2.1 and the corresponding sections where the topic is discussed in
detail ), a choice of model should be made .

2.5 The verification of calculations : validation techniques

Information on the merits of a chi - square test , skill score , correlation , root -

mean -square error (RMSE ) and absolute error , etc ., can be found in the book

by Panofsky and Brier (1968). Other references are by Brooks and Carruthers
(1953), by Godske (1962) and by Eriksson (1962).

Validity and use fulness are sometimes confused . Let us try to clarify the
difference between them . The agreement of a model with observation is usually
referred to as validity (Brier , 1973). If the agreement is good , the model (theory )
is considered true , although it is generally recognised that the expression true
may be misleading since any model is at best an approximate description of
reality . If the numerical performance of a model concept is poor , this is not a
decisive reason for rejecting it . It might be that the experimental data used for
the check were not as good as they seemed to be. In first trials it will be difficult
to distinguish between conceptual errors and errors of physical parameters
used during the computation .

Lack of perfect agreement between prediction and observation might raise
questions of validity but does not preclude the possibility of use fulness. It
seems a reasonable point of view to interpret validity in a relative rather than in
an absolute sense and to consider use fulness in relation to available alternative

methods and their cost. Statistics might be helpful in providing the investigator
with a measure of confidence in the result of a particular procedure , but he

should still go ahead with attempts to develop better models .
In statistical models, numerical performance must be the ultimate test. The

very reason for its existence is its numerical performance . We shall discuss next
the type of numerical performance that should be chosen.

One of the pitfalls in the verification procedure arises when attempting to
compare the relative merits of models at two different locations . As no two

strictly identical cities exist, the difficulties of modelling or calculating vary
from site to site: a simple model might be adequate for one and invalid for
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another . This is also true for the seasons, the time of day and the length of
intervals over which the averaging is considered . When the merits of two
calculation methods are compared , it should be done for the same events and
on the same site.

Another danger is the comparison on a pure performance basis of two
calculation methods or concepts by making use of very different amounts of
input information . By input information we do not mean the involvement or
the length of the computation (as pure calculation may be assumed errorless)
but the data we start with . As an example , we shall consider the most
elementary persistence model , that is, the assumption that concentrations at
any given point will be the same at the time t + ~ t as they were at the time t. If
~ t is relatively very short compared with the sampling interval , say, a few
minutes , and if the sampling is taken over 1 h, then our extrapolation (with no
computation involved ) forwards in time will provide an almost perfect fit to
the values actually measured. Obviously , this is not a merit of the model 's
ingenuity but is due to the enormous amount of up-to -date information used
as input .

Thus it can easily be seen that the main problem of validation is to find
acceptable significance tests for obtaining the confidence limits of the results of
a model , particularly when these results are stated numerically . For forecast
scores a scale of goodness has to be defined .

Before any satisfactory verification scheme is adopted , it is necessary to
determine the primary purpose or purposes to be served by the verification .
Usually what occurs in one part ofa range will seem more important than what
happens in other parts of the range, and this must be considered when
specifying the purpose of verification . For example, the most important
characteristic in alert period forecasts are the episodes of exceptionally high
concentrations when only the percentage of correct values, in the high range,
may be taken into account .

In general, if each purpose of verification is exactly specified in advance, in
the form of a hypothesis , not only will it be much easier to select verification
scores to satisfy each purpose , but there will also be no doubt as to what action
is indicated by any numerical value which the verification score may have. It
will often be desirable to select the purpose and the score in such a way that the
result will either support or reject an Q priori hypothesis .

Different verification statistics will be required for different purposes. The
danger of using any goodness-of -fit index will be illustrated by means of an
example .

Table 2.2 shows the results of a model calculation in its second column

(Lamb , 1968); this is based on the concept of mass transport balance and takes
into consideration chemical reactions , although the nature of the model and
the method of calculation does not concern us here. This model was taken as

an example, since it is frequently quoted as a reference. Together with the
calculated values, a random estimate (fourth column ) and a constant (average)
estimate (fifth column ) are presented in table 2.2. To obtain the random



Computed carbon monoxide concentrations (ppm) ( 17-h day averages)
compared with the observed concentration (ppm) for 23 September 1966
for the Los Angeles basin

estimate , monotonically increasing values from 0 to 17 ppm were assigned in
alphabetical order to each station . In the last column , values of 14 and 13 (to
avoid fractional values as the true mean is 13.5 ppm ) were assigned alternately .
Incidentally , 13.5 ppm is not only the average of the first column but also a very
likely average figure for many urban areas ~'ith automobile trafiic anywhere in
the world .

The entries that give the RMSE are a caution against validation by just one
statistical criterion . The model shows a higher RMSE than the (almost )
random or the constant value guesses. The correlation coeflicient entry
rectifies this situation . The constant estimate (a line parallel to the abscissa
axis) shows, as expected, no correlation with the observed values. The model 's
correlation attains the 5 ~) signi !icance le\ 'cl for II degrees of freedom .
Ho ~'e\ 'er, e\'en the random guess presents a correlation which could not be
entirely rejected. It should bc noted that this guess is not completely at random
but rather an educated guess, since the lowest and highest \ 'alues are linked to
some kno ~ ledge about the concentrations which might actually be observed .

This simple and some~'hat superficial example can be generalised and
provides a warning against some of the pitfalls . The lack of representativeness
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for any single goodness-of -fit index has already been mentioned . A second
point is that pure chance can frequently produce a fit which is not too bad,
provided that the series to be fitted is short and that the span of the estimation
limited . A third point , also linked to a limited span of possible values, is that ,
when judged by the RMSE , the mean is often a very good bet, in fact better
than most calculations . Finally , no validation should be presented without a
comparison with the random estimate (the skill score does just this ).

The correlation coefficient that measures the association between two sets of

values, such as between the observed and computed concentrations , has the
advantage (in forecast verification scores) of not influencing the forecaster in
an undesirable way . However , it is insensitive to any bias or error in scale , so

that it should not be used as a calibration procedure .
The standard linear regression procedures for the respective formulae (for

example , those of Snedecor and Cochran ( 1969)) are based on a number of
assumptions , the most important of which are the following .

(1) The regression is linear .
(2) The distribution of }' for a given x is at least approximately gaussian.
(3) The variance of the departures from the regression line is constant .
(4) The sample observations must be statistically independent for valid

significance tests and reliable estimates of the confidence intervals .

Assumption 1 is usually made for reasons of simplicity and convenience;
standard methods of curvilinear regression are available .

In regard to assumption 2, it is not necessary that the errors (measurement 
or computational ) are normally distributed in order that the computed 

sample variance should be an unbiassed estimate of the population
variance . Normality is only important for the standard tests of significance .

Instead of assumption 3 other assumptions can be made, such as the
variance can be taken to be proportional to the value of the abscissa. However ,
in this case, different estimating procedures must be used.

Assumption 4 is important , and unfortunately it is very often neglected in air
pollution calculation validations . The reliability of statistical estimates
depends upon the size of the sample. If the observations are not independent
because of spatial or temporal correlation , then the estimated standard errors
will tend to be too low . This will produce too many 'significant ' results
and will make the confidence bands appear narrower than they actually
should be .

It should be stressed, however , that graphical checks on the performance of
the models are also absolutely necessary. Anscombe (1973) has emphasised this
in a striking manner using specific numerical examples. He showed that pure
regression analysis can be extremely misleading . He gave a very impressive
analysis of what can happen for a purely numerical analysis of data. In table
2.3, 5 artificial data sets of x and }' values are given; the sets have the same
regression line , }' = 0.5."( + 3, and the same correlation coefficient which is
equal to 0.66.



Figure 2.2a to e shows the extreme contrasts of the actual data characteristics 
that can be revealed by graphical presentation but which are totally

concealed by the above results of standard analytical procedures . Figure 2.2a
shows a t }'pical scatter plot , but figure 2.2b to figure 2.2d reveal regularities
that may be missed by linear regression analysis , for example , a smooth
curve , a different straight line v,,'ith an outlier or a constant .\' value with an
outlier .

Although these examples can be applied generally by any user of statistical
tests, the example of set 6 (figure 2.2f ) is that most frequently required by an
air pollution modelier . Sometimes the concentration range in space or time is
predicted correctly at the ends ofa relatively \\'ide range, but there is no event-
by-event correlation . This happens, for instance , when there is a station that
records very little pollution , while another reports frequent high concentrations

; another example is of a minimal average summer concentration
which contrasts \\'ith a heavy wintertime pollution . Provided that the averages
of the extremes are well estimated , even a random value of these means

will show a good correlation coefficient . This is illustrated in figure 2.2e
where correlation at either end of the scale is non - existent and yet v,,'here the

overall correlation coeffIcient is the same as in Anscombe 's sets. This point is
stressed even more in figure 2.if \\ herc t \\'O groups of values \\'ere chosen at
random with only the limits set beforehand . These limits v,,'cre 1 ~ x ~ 3,
3 ~ .v ~ 6 and 18 ~ .\' ~ 20 , 11 .5 ~ } ' ~ 12 .5 . The correlation coefilcient
is 0 .98 .

We may conclude that , if measurements are confined to the usual statistical

tests, a large amount of information can be lost . This loss of information tends
to emphasise trends in the calculations \\'hich might otherwise be eliminated .
Therefore we should be cautious about using only a correlation analysis by
itself .

24

Table 2.3

Set 1 Set 2� �

10 .0 8 .04 10 .0 9 . 14 10 .0 7 .46 8 .0 6 .58 0 4 .4

8 .0 6 .95 8 .0 8 . 14 8 .0 6 .77 8 .0 5 .76 1 0 .7

13 .0 7 .58 13 .0 8 .74 13 .0 12 .74 8 .0 7 .71 2 3 .9

9 .0 8 .81 9 .0 8 .77 9 .0 7 . 11 8 .0 8 .84 2 .5 7 . 1

11 .0 8 .33 11 .0 9 .26 11 .0 7 .81 8 .0 8 .47 4 2 .9

14 .0 9 .96 14 .0 8 . 10 14 .0 8 .84 8 .0 7 .04 7 7

6 .0 7 .24 6 .0 6 . 13 6 .0 6 .08 8 .0 5 .25 10 11

4 .0 4 .26 4 .0 3 . 10 4 .0 5 .39 19 .0 12 .50 12 3

12 .0 10 .84 12 .0 9 . 13 12 .0 8 . 15 8 .0 5 .56 14 10

7 .0 4 .82 7 .0 7 .26 7 .0 6 .42 8 .0 7 .91 15 18

5 .0 5 .68 5 .0 4 .74 5 .0 5 .73 8 .0 6 .89 17 8

URBAN AIR POLLUTION MODELLING

Sample of data sets; sets from 1 to 4 given by Anscombe (1973)
�

�

�

.X" } ' .\" } ' } ' } ' } '�



  10 . /
. . . ./ '

y .:..;..~............. . .
5

0 I 15 20
x

( b )

.

I 0 ...-...--" "" '/
y 5 I

0
x

( d )

. . " " "

~ .

10 ...........................................

Y 5 ~ I ~ """""""""" """"""""" ' -
. .

. . .

0 5 10 15 20
x

( f )

coefficient

25AIR POLLUTION CALCULATIONS FOR URBAN AREAS

  . /
10 . / .

. . . .

. ........ .

y . / .
5 .

0 I I
x

( 0 )

/ /10
.

. .

y . . ., '
5 ...

0
x

( c )
.

.

10

Y
.

5

0 5 10 15 20
x

( e )

Artificial data sets; a to d are from Anscombe (1973); a to e have the same
of 0.66; f has a correlation coefficient of 0.98

Egger, J. (1973). On the
Tellus, 25, 435- 43

Figure 2 . 2

correlation

References

  Anscombe , F . J . ( 1973 ) . Graphs in statistical analysis . Am . Stat . , 27 , 17 - 21

Benarie , M . ( 1975 ) . Modelling urban air pollution . Atmos . Enriron . , 9 , 552 - 3 ,

discussion

- ( 1976 ) . Urban air pollution modelling without computers . US Enriron . Proto

Agency ' , Publ . , No . EP A - 600j4 - 76 - 055 , 72 pp . ( Natl Tech . In ! Serr . , No . NTIS - PB -

262393 )

Brier , G . W . ( 1973 ) . Validity of the air quality display model calibration procedure . US

Enriron . Proto Agenc ) ' , Rep . , No . EPA - R4 - 73 - 017 , 28 pp .

Brooks , C . E . P . , and Carruthers , N . ( 1953 ) . Handbook o. f Statistical Method .'! in

Meteorolog ) ' , HM Stationery OfT . , London

determination of an upper limit of atmospheric predictability .



26 URBAN AIR POLLUTION MODELLING

Eriksson , B. ( 1962). Simple methods of statistical prognoses . Statistical Anal } 'sis in
Meteorolog } ', World Meteorol . Organ ., Tech. Note , No . 71, pp . 87- 114

Fleming , R. J. ( 1971). On stochastic dynamic prediction , I I , predictability and utility .
Mon . Weather Rer . , 99 , 927 - 38

Godske , C. L . ( 1962). Methods of statistics and some applications to climatology .
Statistical Anal }'sis in Meteorolog } '. World Meteorol . Organ .. Tech. Note , No . 71,
9 - 86

Hameed , S. ( 1974 ) . Atmos . Ent ' iron ., 8 , 555 - 61

Kao , S. K ., and AI -Gain , A . ( 1968). Large -scale dispersion of clusters of particles in
the atmosphere . J . Atmos . Sci., 25, 214- 21

Kao , S. K ., and Powell , D . ( 1969). Large -scale dispersion of clusters of particles in the
atmosphere , II , stratosphere . J . Atmos . Sci ., 26, 734- 40

Lamb , R. G . ( 1968). An air pollution model for Los Angeles . Unit' . Calif :. Los
Angeles . Calif :, M .S. Thesis

Larcheveque , P. ( 1972). Turbulent dispersion - Eole experiment . Comm. Space R '!J'.
X ~'. Madrid , Publ .

Lumley , J. L ., and Panofsky , H . A . ( 1964). The Structure of Atmospheric Turbulence ,
Interscience , New York , 239 pp .

Mahoney , J. R., and Egan , B. A . ( 1971). A mesoscale numerical model of atmospheric
transport phenomena in urban areas. Proc . 2nd Int . Clean Air Congr ., WashingtonD

.C.. 6 to II December 1970 (eds H . M . Englund and W . T . Beery), Academic Press,
New York , pp . 1152 - 7

Morel , P. ( 1970). Satellite techniques for automatic platform location and data relay ,
Comm . Space Res . XV , l' Yfadrid . Publ .

Panofsky , H . A ., and Brier , G . W . ( 1968). Some application of statistics to
meteorology . Penn.5} 'ft'ania State Unit ' .. Unit' . Park , Pa. Publ ., 224 pp .

Robinson , G . D . ( 1967). Some current projects for global meteorological observation
and experiment . Q. J . R. Meteorol . Soc., 93, 409- 18

- ( 1971). The predictability ofa dissipative flow . Q. J . R. Meteorol . Soc., 97, 300-
12

Snedecor , G . W ., and Cochran , W . G . ( 1969 ) . Statistic  a  I Method ~', 6th edn , Iowa State
Univ . Press , Ames , Iowa


