1
The Machine That Could Learn Anything

A highlight of the eighteenth SPWBA conference was ‘““The Machine That
Can Learn Anything.” Devised by the succinctly named “‘Professor A.,”
this exhibit drew attention from a broad cross section of delegates. Its
success appears to have been partly due to its striking visual appearance.
While other exhibits sported the chromium hi-tech look, the “Machine
That Can Learn Anything” offered something more primitive. A small,
black tent adorned with astrological motifs, relieved by the color screen
of a laptop just visible through a velvet-edged opening. On the outside of
the tent, a handwritten sheet welcomed visitors and encouraged them to
submit trial learning tasks to the machine. Instructions at the end of the
sheet specified the terms of engagement. “Tasks must be presented in the
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form of example association pairs,” it asserted. ““The machine can then
be tested by presentation of test items. A task will be considered to have
been successfully learned if the machine is able to produce correct asso-
ciations for test items in the majority of cases.”

Visitors wishing to test the machine’s ability had thus to express
learning tasks in the form of association pairs. Let’s say the visitor
wished to test machine’s ability to learn addition. He or she had

first to write down a list of suitably representative associations. For

example:
11 ->2
12 ->3
25 ->7
42 ->6
81 ->09
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This list had then to be presented to the machine via its “sensory
organ”: a hole in the tent’s rear panel. Having passed in their list of
associations, testers had then to move around to the screen at the front of
the tent and wait until such time as the machine printed out an instruc-
tion inviting the submission of a query. Testers could then type in items
and evaluate the machine’s responses (suggested associations) as correct
or incorrect. At each stage the machine would present performance
statistics, that is, show the proportion of test items upon which correct
associations had been generated. And without exception, testers found
that the machine performed in an exemplary fashion. It was, indeed, able
to generate correct associations in the majority of cases.

Many visitors were visibly impressed by the behavior of the machine.
Some were inclined to reserve judgment; a few showed complete dis-
interest. But from the practical point of view, the exhibit was a runaway
success. In addition to hosting an estimated 2000 visitors in less than a
week, it was the recipient of a quite unexpected level of media attention.
The day after opening, a national newspaper printed a 1000-word report
on Professor A.’s work under the banner headline “Learn-Anything
Machine Is a Labour of Love.” And on the final two days of the exhibi-
tion, no fewer than three TV stations ran news items covering the exhibit
itself. The media take on A.’s machine was unanimously upbeat, and
commentators were uncharacteristically supportive. In just a few years’
time, one suggested, members of the public could expect to be “teaching”
their computers to do things rather than laboriously “commanding” them
using the mouse and keyboard.

When asked how the machine worked, Professor A. noted there was
no magic involved; the machine simply applied well-known techniques
from the field of machine learning, a subfield of computer science
concerned with intelligent computers. But he admitted that the role
played by the machine’s “sensory organ” was significant. “The key to the
machine’s success,” he noted, “is that users can only present learning
tasks in a particular way, namely as association or prediction tasks. This
is the format assumed by many methods in machine learning. By forcing
users to present their problems this way, we open up the whole repertoire
of machine learning methods. We make it possible to employ any method
we like on any problem we’re presented with.”
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With his bold rhetoric, Professor A. quickly swayed the media to his
side. But the academic rank and file were less easily persuaded. As the
conference neared a conclusion, grassroots opinion turned against Pro-
fessor A., and at a plenary session held on the final day, his machine
became the focus of a rising tide of hostile attention. One critic suggested
that rather than being able to “learn anything,” A.’s machine was actu-
ally limited to the solving of formally specified prediction problems. An-
other argued that since the machine had no way of actively interacting
with the world, there was no basis upon which it could carry out any sort
of cognitive activity, let alone learning.

Professor A. remained unmoved. He accepted the proposition that the
machine’s abilities involved prediction. But, somewhat to the surprise
of his detractors, he rejected the idea that there was any real difference
between this task and that of learning. He then went on to challenge the
audience to come up with a learning problem that could 7ot be inter-
preted as a type of prediction problem.

The assembly was temporarily silenced. Then a shout rang out. “What
about concept learning?” demanded a man standing at the very rear of
the hall. Professor A. contemplated the question for a moment and then
moved cautiously toward the overhead projector. “OK. But let us pre-
tend that I have never heard of concept learning,” he said, taking a green
felt-tip from his pocket. “Now you tell me how you would like to specify
a concept learning problem.”

The man thought for a few moments before responding. “Something
that can do concept learning obviously has to be able to acquire the
ability to distinguish between things which are part of the concept and
things which are not part of the concept.”

“Fine,” said A. “And how should we specify this result?”

The man sensed that the question was intended to snare him. But he
was unable to prevent himself from falling into the professor’s trap. In
attempting to provide a formal specification for a concept learning
problem, the man found himself beginning to talk in terms of a mapping
between certain situations and certain responses.

“But this mapping you are describing can also be viewed as specify-
ing a prediction problem, can it not?” replied the professor when the
man finally come to a stop. No answer was forthcoming. The professor
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continued to his punch line. “And this is exactly the format which is
required by my machine, yes? So we find that in formally specifying a
learning problem we inevitably produce something which can be inter-
preted as a prediction problem. One has to conclude there is no formal
difference between the two types of tasks.”

It was a well-rehearsed performance. But still, many members of the
audience remained unconvinced. Some went so far as to offer further
responses to the “challenge.” The professor was thus given the opportu-
nity to demonstrate by similar reasoning that several other forms of
learning—including skill acquisition, function learning, language devel-
opment, classification learning, and behavior learning—were all equiva-
lent, under formal specification, to the task of prediction. When it
became obvious that there was no mileage to be gained on this territory,
the flow of criticism began to dry up. One hardy individual, however,
refused to give in.

“It amazes me,” he commented bluntly, “that anyone could think that
prediction and learning were the same thing. Surely it is obvious that
many natural organisms do the latter but not the former.”

“Well, that may be,” agreed the professor. “But so what? I never
claimed that prediction and learning are the same thing. The processes
may be—probably are—quite different. What I showed was that specifi-
cations of learning tasks are always equivalent to specifications for pre-
diction tasks. So the tasks have to be the same. Even if the solutions are
different.”

“But aren’t you just making a theoretical distinction?” responded the
truculent delegate. “Most interesting learning tasks can’t be given formal
specifications in advance. So the real issue is how a learning agent can
develop behavior that doesn’t have a neat, formal specification.”

The professor nodded, considering (or pretending to consider) the
point at length. “Well, 'm not sure that it makes sense to say you have a
learning task if you cannot formally specify what that task is. That seems
to me to be a contradiction. And changing the topic to behavior learning
makes no difference. Either there is a behavior or there is not a behavior.
And if there is, it must be possible, at least in principle, to say what that
behavior is, that is, to give it a formal specification. I cannot see how we
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can escape this. I really can’t. So it seems to me unavoidable that I have
been right all along.”

1.1 Back to Reality

So much for the story of Professor A. What are we to make of the
Machine That Can Learn Anything? How should we interpret the pro-
fessor’s immodest defense at the plenary session? Is the machine itself
some sort of fake? Are the professor’s arguments about the formal
equivalence of learning tasks and prediction tasks mere sophistry? The
reader will probably have formed an opinion. But the line pursued in this
book will be essentially pro. That is to say, it will tend to go along with
the argument that learning can be treated as an attempt to solve a pre-
diction task. The idea sounds implausible—even absurd—at first hear-
ing. But it becomes more digestible with familiarity.

Any dictionary definition will confirm that learning involves the acqui-
sition of knowledge or behavior. But since knowledge acquisition can
always be viewed as the learning of new “conceptual behavior,” we can
justifiably treat all learning as some form of behavior learning. This
simplifies things considerably. But we can go a stage further.

A complete specification of a behavior must show how it involves
the production of certain actions in certain situations. So whenever we
attempt to fully specify a learning task, we must identify the relevant
associations between situations and actions. But as soon as we do this,
we are caught on the professor’s hook. Our problem specification defines
the task in terms of a mapping. We can always read this mapping in two
ways: as saying what actions should be produced in a given situation or
as predicting which actions should be produced in a given situation. The
two readings are essentially equivalent. It does not make any difference if
we treat the mapping as specifying a prediction task or a learning task.

Professor A. is thus right in claiming that learning tasks and prediction
tasks are equivalent. But what of his claim that his machine can learn
anything? The professor’s argument rests on the fact that he can get his
machine to produce above-chance performance on any prediction prob-
lem. But does this prove anything? Can it really support the claim that



6 Chapter 1. The Machine That Could Learn Anything

the machine can perform universal learning? To get a better handle on
these questions, we need to take a closer look at the process of predic-
tion. We need to see what it involves and what sort of performance is
generally achievable.

1.2 Prediction Games

A prediction task stripped to the bones is really just a type of guessing
game. It is a contest in which an individual is given some information on
a topic, and is then asked to guess information that has been held back.
The game of “battleships” is a good example. In this game, two users
provide information about their battleship formation on a turn-by-turn
basis. The aim of the game is to sink the other person’s ships. This
involves guessing the locations of the opponent’s ships from the infor-
mation given.

Another common guessing game is that of sequence prediction. In
this problem a string of numbers is given, and the task is to continue the
sequence, that is, to make predictions about numbers that appear later
on. For instance, if we are given the sequence

2,4,6,8
and asked to predict the next number, we may well guess
10,
on the grounds that the numbers are increasing by values of 2. However,
if we are asked to continue the sequence
2,4,6,8,10,13, 16, 19,
we may guess that the next number is 22, or perhaps 23.
Of course, the data presented in prediction problems may be symbolic
rather than numeric. They also may take the form of an unordered set

rather than a sequence. For example, we might be presented with the
data

orange, banana, pear

and asked to predict another item in the same set. A plausible response
might be “apple” or “grape.” Similarly, a likely guess regarding
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Toyota, Ford, Mercedes, VW

might be Datsun.

A scenario that is particular interesting for present purposes occurs
when the data are structured objects. For example, let us say we are given
the following set of triples

(1,4,4),<8,4,1),42,6,1),43, 3, 3),<4,2,2)

and asked to guess another member of the same set. A plausible guess
would be

9,1,3),

on the grounds that in all the examples, the largest value in the triple is
perfectly divisible by both other values. Of course, there may be other
plausible rules.

In a variation on the structured data theme, the aim is to predict
missing values within partially complete data. For example, the task
might involve using the examples

(1,4,4>,¢8,0,1),<2,6,1>,¢3,3,3),<4,2,2>
to fill in the missing values in
6,2,15,<4,2,?>.
This actually brings us back to the data format required by Professor
A. Examples had to be presented to his machine in the form of associa-

tion pairs, that is, as objects consisting of a set of input values and an
associated output. For example,

11->2
12 ->3
25 ->17.

Such data are really just structured objects with an implicit partition
between the input values and the output values. The examples above
might have been written

<11 2>
<1 2 3>
<2 5 7>,

with the assumption being that the first two values in each object are the
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given data and the final value is the answer. Correctly formatted test cases
could then be written as partially complete triples, such as

<3 2 ?>

<4 1 ?2>.
1.3 Supervised Learning

Prediction tasks presented using Professor A.’s association format are
termed supervised learning tasks, on the grounds that the examples are
like information given to the learner by a teacher or supervisor. When
this terminology is used, the thing that is learned is generally termed the
target function, and the inputs and associated outputs are treated as the
arguments and values (respectively) of an unknown function. The learn-
ing is then conceptualized along computational lines. The given data (to
the left of the arrow) are viewed as input values, and the to-be-predicted
data (to the right) as output values. The learning process is then naturally
viewed as the process of acquiring the ability to compute the target
function.

Input values typically represent the attributes of an object or class. For
example, in the association

red round smooth -> tasty

)

“red,” “round,” and ‘“‘shiny” might be the color, shape, and texture
attributes for a particular item (or class) of fruit. In such cases it is natural
to view each set of input values as a description of an object written in
terms of variables. A distinction may then be made between input vari-
ables and output variables, the former being placeholders for the input
values and the latter being placeholders for the output values. Further,
there is the obvious shortcut in which we refer to a complete set of input
values simply as an input and a complete set of output values as an out-
put. These conventions are illustrated in figure 1.1.

The supervised learning paradigm provides a convenient way of pack-
aging learning problems. But, appearances to the contrary, it does not
not impose any restrictions or constraints. As the fictional Professor A.
demonstrates in the story above, an association-mapping specification
merely “fixes the goalposts.” It is a specification of the zask rather than
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Second First
input output
variable variable
_n m _
233 -> 42
221 --> 55 o
Learning 635 -> 39 Training cases
problem or 7908 - 66 or examples
target function 742 -> 31 ]
788 -—>
582 - Test cases
-I ] L |-
Input Output

Figure 1.1
Supervised-learning terminology

the solution, and thus is completely neutral with respect to the way in
which a particular problem may be solved.

1.4 Concept and Classification Learning

Although work in machine learning concerns itself primarily with super-
vised learning (prediction) tasks, researchers have focused on a number
of variations. Attention has been given particularly to the so-called con-
cept learning problem. This problem has the same form as the standard
supervised learning problem except that target outputs are either “yes”
or “no” (sometimes written + and —). Inputs that map onto “yes” are
treated as positive examples of a particular concept. Inputs that map
onto “no” are treated as negative examples (i.e., counterexamples). And
the process of finding a solution to such a problem is then naturally
viewed as the process of acquiring the relevant concept.

A sample concept learning problem appears in figure 1.2.1 Here the
inputs are lists of attributes for items of fruit, and the concept is that of
edible fruit. Solving this problem can be viewed as the acquisition of the
“edible-fruit” concept. Once the problem has been solved, it should be
possible to classify test data, that is, novel items of fruit, as either edible
or nonedible.

A variation on the theme of concept learning is the classification
problem. This is just like the concept learning problem except for the fact
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hairy brown large hard --> no
smooth green small hard --> yes
hairy red small soft --> no
smooth red large soft --> yes
smooth brown large hard -->

Figure 1.2
Edible-fruit concept learning problem

gasoline hatchback FW-drive --> Ford

gasoline convertible FW-drive --> Ferrari

diesel saloon FW-drive --> Ford
gasoline hardtop RW-drive --> Ferrari
diesel hardtop FW-drive -->

Figure 1.3

Car classification problem

that we now have a number of target outputs that are the labels of
classes. The cases illustrate what sort of object belongs in which class. A
sample problem involving the classification of cars appears in figure 1.3.
(The variables here describe—working left to right—the fuel used, the
body style, and the location of the drive wheels.)

In another version of the supervised learning problem, the inputs take
the form of sets of truth-values, with “true” written as 1 and “false’ as 0.
The aim is to correctly learn the truth function exemplified by the exam-
ples. A sample problem appears in figure 1.4.

1.5 Behavior Learning

The supervised learning scenario also lends itself to the problem of
behavior learning. For example, imagine that we have a simple two-
wheeled mobile robot (a “mobot™), circular in shape and with two light
sensors on its leading edge, as in figure 1.5(a). Imagine we would like the
mobot to use a supervised learning method to learn how to steer away
from sources of bright light, as illustrated in the plan diagram of figure
1.5(c) We might proceed by constructing a training set of examples in
which each input is a combination of light-sensor values and each output
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11011 -->1
10000 -->0
01110-->1
11001-->0
00000 -—>
Figure 1.4

Truth-function learning problem

Sensor input  Motor outputs
0.86 0.85 -> 0.3 0.0 Mobot path
0.76 0.17 —> 1.0 1.0
0.86 0.81 —> 0.3 0.0

e 055 080 = 1030
@Sensors@ ggg 8;3 -> ?g ?8
50 079 -> 1.0 1. )
0.88 0.83 -> 0.3 0.0 Light source

0.51 0.78 —> 1.0 1.0
(a) Mobot (b) Training data (c) Behavior

Figure 1.5
Learning light avoidance

is the combination of signals to be sent to the wheel motors. If the light
sensors return higher values for stronger sources of light, and the motors
produce an amount of wheel rotation proportional to the relevant signal,
then a subset of the input/output pairs might be as shown in figure
1.5(b). The data exemplify the fact that rotational moves (achieved by
turning the left wheel only) should be executed whenever either of the
input signals exceeds a certain threshold.

If we equip the mobot with supervised learning capability and have it
process the data in figure 1.5, then the result should be that the mobot
acquires the ability to respond in the desired fashion with respect to
sources of light.

1.6 Financial Prediction

One of the most intriguing supervised learning scenarios involves pre-
diction of financial data, such as prices of stocks, bonds, and other
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Price of x Price of y Future price of z
0.979248 0.058547 -—> 0.057332

0.178428 0.784546 -—> 0.139985

0.103902 0.024725 -—> 0.002569

0.268517 0.639011 -—> 0.171585

0.495132 0.159034 -—>

Figure 1.6

Financial prediction problem

commodities. In this variant, the values of the variables are numeric. The
input values are given financial data (i.e., current prices of given com-
modities) and the outputs are to-be-predicted financial data (e.g., the
future price of some commodity). An illustrative set of data is shown in
figure 1.6.

Finding a good solution to this sort of problem might enable us to
make money, since it would provide the means of accurately predicting
prices from current prices. Imagine that the output values in this mapping
are wheat prices and that the application of a learning method to the
data produces an inputfoutput rule which, when applied to current
prices, suggests that the price of wheat is about to increase. The implica-
tion is clear: if we buy wheat stocks now, we should realize a quick profit
by selling after the price has risen.

1.7 Learning Problems to Solve by Hand

The best way to come to grips with what supervised learning is all about
is to try to do it, that is, try to solve some nontrivial, supervised learning
problems by hand. The three problems presented below may be used for
this purpose. All follow the concept learning model, that is, they all take
the form of an input/output mapping in which there are just two distinct
outputs. And they all involve a manageably small amount of data, less
than one page of input/output pairs. The first problem involves predict-
ing the results of football games. The second involves distinguishing
phrases with a certain linguistic property. The third involves deriving a
plausible interpretation for a set of card game rules.
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Problem 1: Predicting the Football Results

Careful investigation of the football results over a number of weeks
shows that the performance of team X can be predicted on the basis of
the results for teams A, B, C, D, and E. Thus, it is possible to predict
whether X will win or lose just by looking at the results for A, B, C, D,
and E. (It is assumed that X never plays A, B, C, D, or E.)

The data set below presents the results for teams A, B, C, D, E, and X
recorded over 16 consecutive weeks. Each line shows the results for a
particular week. The five input variables represent—working left to
right—the results for teams A, B, C, D, and E, and the single output
variable represents the result for team X. In all cases, 1 signifies “win”
and O signifies “lose.” The problem is to use the 16 examples to derive
the rule that allows team X’s result to be predicted from the other teams’
results.
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Problem 2: The Incoherent Tutor

A student takes a course titled ““The Production of Coherent Nonsense.”
Her tutor’s method is to present his students with examples of good
practice. In one session he takes a set of examples of three-word nonsense
phrases and shows which of them should be classified as coherent and
which as incoherent. The examples are shown below. The question is,
What rule is the tutor using to classify the examples?

eypnv gdukk kagpi --> coherent
psgdr gbaiz htyls --> incoherent
ihytw xbfkg yxcxw --> coherent
panct jlege kkirg --> incoherent
gpcrz vygkr ygawe --> coherent
ahvlh xggcz nsgff --> incoherent
urmle zybyx gxslm --> incoherent
mbrfc plpkp rojva --> coherent
gdzxa vvjre ztdyj --> coherent
gpmuu begvu rmukx --> incoherent
riijf xdvxm xegum --> coherent
gpheq udrrw zguei --> coherent
gbiha zitck yegyx --> incoherent
sjvva ribyr ggeku --> incoherent
gcsgu gterv hulmf --> incoherent
duzsr rpjao zhmds --> coherent
iruih rxjaw xkgjn --> coherent
fppen mdasf wvfmj --> coherent
eatwk semgd cgewc --> incoherent
cnzbt ilzvl zzmkl --> coherent
hygtt xscza hiijl -->

xibkd uxgzl opcmf -->

eppps bbvtz zggil -->

lhwnu kltla kwzmg -->

Problem 3: The Card Player

One evening, a man wandered into town and bought himself a beer in
the local saloon. While he drank his beer, he studied a group of settlers
gathered around a large table. The settlers appeared to be engaged in
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some sort of trading activity involving the exchange of small, rectangular
cards. The man had no idea what the basis of this activity was. But, being
bold, he strode across the room and sat down at the table. The settler
immediately to his left nodded to him and began scribbling numbers on a
sheet of paper. When he had filled the entire sheet, he pushed it across
the table, saying, “If you want to play, you’d better learn the rules.”
The numbers on the sheet of paper were as shown below. How should
they be interpreted? And what rule allows one to predict output values

correctly?

1319 41219 19 4 -->4
2 29 12 29 22 2-=>5
1334 111 4 11 4 11 1 --> 4
3 31236 31331 3 -->6
2 12 12 41212 2 -->9
8 38 28 28 47 1-->09
4 44 24 45 24 1-->9
7 47 45 45 25 4 -->5
6 41216 16 49 1 -->4
4 49 29 44 14 2-->5
6 41041349 48 4 -->6
11111 41128 3 111 —-=> 9
4 17 15 11 1131 -->6
10 4 2 312 4 12 3 12 2 —->

5 17 11 11314 1 -—>
1325 2134101 13 1 -->

1.8 A Reasonable Learning Criterion

To conclude the chapter, let us return once more to Professor A. and the
Machine That Can Learn Anything. We obviously would like to know
whether the machine really does what it is supposed to do, or whether
there is some kind of trickery going on. The professor’s arguments with
respect to the formal equivalence of prediction tasks and learning tasks
are sound. Thus we know that any attempt to discredit the machine on
the basis of its input limitations fails. But does this mean we have to
accept the professor’s claims as stated?
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The answer is No! Of course the ability to “learn anything” sounds
impressive. But when we look carefully at what is really being offered, we
find that what you see is not quite what you get. Recall that, according to
the rules of engagement, the machine is to be deemed as having success-
fully learned the task presented, provided it gets the answers right in the
majority of cases. This means it can get 49% of the associations wrong
and still end up counting itself a winner! Some mistake, surely.

Undoubtedly, Professor A. is conning his audience. But the con has
nothing to do with the restricted task presentation format. It has to do
with the success criterion that is applied to the learning. When we read
the phrase “the majority of cases,” we tend to think in terms of figures
like 80% or 90%. And, for the unwary, it may therefore sound perfectly
reasonable that the machine should be deemed to have successfully
learned something provided it produces appropriate answers in the
majority of cases. But the criterion is too weak. We would never deem a
person to have successfully learned something were he or she to produce
inappropriate results in up to 49.99999% of cases. A.’s machine should
be treated the same way. The Machine That Can Learn Anything thus
has to be considered a fake, pending the introduction of a more restric-
tive success criterion.

1.9 Note

1. Note that this and the other “sample problems” in this chapter are merely
illustrations. In practice, problems involve a much larger number of associations.



