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System Modeling: Why and Why Now?
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Introduction

Biology is the study of self-replicating chemical processes. Biology is the study of
systems accurately transmitting a genetic blueprint. Biology is the study of complex
adaptive reproducing systems.

What is systems biology if all definitions of biology implicitly or explicitly refer to
the study of a whole object, whether it is a virus, a cell, a bacterium, a protozoan
or a metazoan? We treat systems biology as the quantitative study of biological
systems, aided (or hindered) by technological advances that both permit molecular
observations on far more inclusive scales than possible even 15 years ago, and permit
computational analysis of such observations. Thus, for the purposes of this book,
systems biology is the promise of biology on a larger and quantitatively rigorous
scale, a marriage of molecular biology and physiology. Concretely, this defines the
focus of the book: data-centric quantitative modeling of biological processes and
systems.

Biology is an experimentally driven science simply because evolutionary processes
are not understood well enough to allow theoretical advances to rest on terra firma.
Systems biology is experimentally driven, computationally driven, and knowledge
driven. It is experimentally driven because the complexity of biological systems is
difficult to penetrate without large-scale coverage of the molecular underpinnings;
it is computationally driven because the data obtained from experimental investi-
gations of complex systems need extensive quantitative analysis to be informative;
and it is knowledge driven because it is not computationally feasible to analyze the
data without incorporating all that is already known about the biology in question.
Furthermore, the use of data, computation and knowledge must be concurrent.
Available knowledge guides experiment design, novel knowledge is generated by the
computational analysis of new data in light of available knowledge, and the cycle
repeats.

The difference between knowledge and data is central to understanding the
underpinnings of systems biology. The sequencing of whole genomes is a good
example. Any given genome is data. Without extensive analysis, it is just as
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uninformative about biological processes as a photograph of the night sky. First
steps in transforming a genome into knowledge include identifying genes, identifying
transcription factor binding sites, finding the transcription factor complexes that
control the expression of the genes, and finding the chromatin structure in the
cell being studied, to determine which genes are accessible for transcription. While
this is wildly optimistic in terms of the knowledge that can be extracted from the
genome data, it is still nowhere close to the level of understanding required to make
predictions about the response of an organism to a specific stimulus. A reductionist
approach to biology is bootless because complex adaptive systems are inherently
nonlinear, so their behavior is well summarized by the statement: the whole is more
than the sum of the components.

Handicapping the Bout

From a quantitative perspective, there are striking features of biological dynamics
that make analysis challenging:

1. Large range of spatial scales

2. Large range of temporal scales

3. A lack of separation between responses to external stimuli versus internal pro-
grams

. Multiple functionalities of constituents
. Multiple levels of signal processing
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6. Incomplete evolutionary record

7. Wide range of sensitivities to perturbations
8

. Genotypic variation

None of these challenges is an absolute barrier to progress. Nevertheless, these
challenges must be addressed to make real progress.
From an experimental perspective, the challenges of biology are better under-
stood:
Coverage in terms of components and interactions
Reproducibility
Spatial resolution
Temporal resolution
Cross-validation

Combinatorial perturbations
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Accuracy
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From a knowledge perspective, there are four central problems:

1. Find an appropriate level of abstraction for a given analytic problem.

2. Find a common basis to relate knowledge gained using different experimental
techniques on the same system.

3. Find a common basis to relate knowledge gained from the same experiment on
different model systems.

4. Incorporate knowledge incrementally as new data is analyzed.

Taking all these difficulties together, it is not surprising that researchers tradi-
tionally have considered the study of biological systems rather resistant to quan-
titative approaches. It is, therefore, worth pointing out to skeptics that in some
cases thorough quantitative analysis has produced insights into or explanations of
biological phenomena that would have been impossible without the application of
advanced mathematical tools. Various chapters in this book will discuss a great
variety of, often counterintuitive, examples. For instance, the advantages of a more
extensive mathematical analysis over simpler approaches are emphasized in chap-
ter 8 (pp. 170-173). When circadian oscillators are analyzed by formal logic, the
traditional analytical tool of molecular biology, or by macroscopic descriptors such
as differential equations, the experimentally observed behavior cannot be recon-
structed from the molecular machinery. Stochastic analysis, however, demonstrates
how, by random fluctuations, the system escapes the macroscopic point-attractor
and thus oscillatory behavior is maintained. Examples such as this will probably
contribute to the long-awaited common ground for discussions between biologists
and quantitative scientists. The mutual suspicion on both sides, which has been
difficult to overcome by intellectual curiosity alone, will probably be eliminated by
the mutual need for each other’s expertise.

“My Complications Had Complications”

The goal of systems biology is a predictive understanding of the whole. If the
whole is more than the sum of its parts, it follows that acquiring a catalog of
all the parts is mot necessarily the first order of business. In a caricature, there
are two avenues of attack possible: either one focuses on subsystems governing a
specific function in arbitrary conditions and gains a predictive understanding of the
system, one subsystem at a time, or one focuses on the system in a restricted set of
conditions and gains an understanding by gradually increasing the set of conditions
and, as required, the level of detail in the model of the system. The analogy is with
molecular biology in the former approach and with physiology in the latter.

The modeling associated with each approach is distinct. In the molecular biology
type approach, the aim is to go beyond traditional pathway-centric points of
view and deal with the challenges of feedback loops formed either directly or
indirectly due to interactions with other pathways. In the physiology type approach,
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interactions between the components in the model are added as needed to maintain
contact with the experimental data. The components in this approach are not
necessarily directly related to biochemical species. Eventually, these bottom-up
and top-down approaches should meet. However, each has its own strengths and
weaknesses and they complement each other.

Why Read This?

The importance of feedback loops and crosstalk in almost all facets of biological
systems has been apparent for several decades. The cell cycle control circuitry or
the developmental programs in bilaterians are prime examples of this. The ability
of cancerous cells to evade targeted therapies results largely from biological systems
having evolved in ways that place a premium on robustness and adaptability.
Such properties, as yet only nebulously defined, are not localizable to a small
set of interactions. They reside in the network as a whole, as has been clearly
demonstrated in predictions on metabolic networks.

Modeling biological systems faces the challenge of appropriate abstractions—
levels on which to focus, and details to be left out. For instance, molecular biology
abounds with mechanistic analogies, but on a more detailed level often the un-
derlying interactions are driven by chemistry. This makes modeling subtle since
statistical biases are often the driving force in what superficially appears to be a
mechanical process, for example, chemotaxis. At what level does such detail be-
come relevant, and at what level can one ignore it? This is not a priori obvious,
and one needs rigorous approaches to model parsimony to answer such questions.
Indeed, the answer to the model selection question depends to a great extent on
the predictions required. This is an important point in all biological modeling: The
model, its purpose, and the experimental data are intimately related. A model that
predicts hepatic glucose uptake precisely but insulin levels with greater uncertainty
is not a useful selection if the only measurement available is insulin levels.

There are two main approaches to computational analysis of biological data.
The causal approach makes concrete deterministic or stochastic models (differ-
ential equations, stochastic differential equations, Boolean networks, et cetera) of
biological processes. The probabilistic view is associated with probabilistic infer-
ence approaches, using pattern recognition or learning algorithms (such as neural
networks and graphical models) for analysis of data from large-scale experimen-
tal methods. These two approaches rest on a large part of applied mathematics
(including numerical integration, optimization, interpolation, and control theory)
and computer science (search theory, coding theory, and database design). This
breadth necessitates collaborations between people with diverse backgrounds, but
an inadequate understanding of the limitations and applicability of techniques and
concepts from different fields hinders such collaborations. The background infor-
mation required makes biological modeling a difficult task, but the real challenge
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remains that of making computational models effective and efficient representations
of biological systems.

What’s Included and What’s Not

This book starts with generalities and progresses towards practicalities. Thus, the
first section is conceptual, with attempts to define the role of modeling in biology,
as well as attempts to cut through the miasma that surrounds the use of the terms
robust, complex, adaptive, and module in the systems biology literature. As will be
evident, these are important notions that need much further work to crystallize to
the point where they can be assigned the honorific concept. Nevertheless, these terms
may ultimately be quantitatively used as concrete guiding principles in modeling.
The next section provides introductions to general approaches to making models
of biology: qualitative models, constraint-based models, dynamical systems based
on differential equations, and stochastic models, as well as models with spatial struc-
ture. The other side of the modeling coin, probabilistic inference aimed at inference
from large-scale data sets, is also introduced. The section proceeds from relatively
simple towards mathematically more demanding approaches. Although each chap-
ter tries to convey its central messages in an intuitive as well as in a mathematically
rigorous way, readers arriving from biology will have to realize that each method
has a certain minimum difficulty level associated with it. While ordinary differential
equation—based or qualitative models can be quite readily introduced in an intuitive
manner, stochastic or spatial modeling cannot be described in simple terms and re-
quire an appropriate level of background in quantitative sciences. Key applications
of the various modeling approaches are also widely covered. Taken together, this
section will provide the reader with an overall impression of the relationship between
the potential utility of quantitative approaches and their associated analytical cost.
Reality bites. And models model biological reality. The section that follows next
contains introductions to the data that is available for systems biology and the
caveats that go with the data. It also contains introductions to inferring model
architecture from data, using control theory in models, and studying synthetic gene
networks. The antidote to these computational limitations is multi-level modeling,
and this is also introduced in this section. Limitations in observability, accuracy,
and coverage of biological data are widely recognized. One of the goals of this
section is to guide the readers through various data interpretation methods while
emphasizing what the data will or will not allow in terms of quantitative analysis.
The last section of the book contains the computational issues and techniques for
practical application of the preceding approaches: numerical methods for simulating
biochemical systems, and the software infrastructure for representing models in a
reusable and exchangeable manner. Biological data quality is not the only obstacle
systems biology is facing. The various numerical methods also have their well
known strengths and limitations and these should be considered when designing
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experiments and their associated models. For instance, computational limitations
form barriers to increasing model size arbitrarily.

The book ends with an eclectic list of the software tools that the contributing
authors of this book find useful.

While this book contains a plethora of approaches to biological modeling, we are
keenly aware that there are many that we have not covered. For instance, we have
eschewed much discussion of pattern recognition because this is only really useful
when combined with domain specific biological knowledge—for which no general
technique exists. Likewise, we do not cover approaches such as neural networks
or Petri nets that have either limited application in systems biology so far, or are
problematic regarding model interpretation. Our attempt has been to provide broad
basic coverage of fundamental approaches and techniques. In our view, picking some
of the techniques introduced in this book and combining them artfully leads to
almost complete coverage of modeling in systems biology.

Enjoy

Systems biology is an approach to quantitatively understand biological systems
that attempts to embrace the complexity of life as a fact of life. There is no
hope of understanding biological systems at the predictive level required for disease
detection, prevention, or cure other than by this means. Nevertheless, it would serve
us well to temper Burnham’s maxim of grand thinking, “Make no little plans ...”
with the story of the emperor’s new clothes.



