Chapter 1
Structure and Infinity of Human Language

To begin, we want to understand the capabilities and limitations of some
primitive theories of language. Our initial criteria will be that a theory of
language needs to have some notion of structure and some way of repre-
senting infinity—that is, some way of capturing the fact that there is no
longest sentence of English or French or any other human language. Let’s
start by looking at certain elementary structural properties of human
languages.

1.1 STRUCTURE

1.1.1 Structure Dependence
Consider the following pairs of sentences, acceptable to native speakers of
English:

(1) a. Susan must leave
b. Must Susan leave?

(2) a. Bill is sleeping
b. Is Bill sleeping?

There are many interesting facts about these pairs of examples. One is
that for sentences like (a) in (1) and (2) there always exist sentences like
(b). Another is that the (a) and (b) sentences in both (1) and (2) “feel re-
lated” to all English speakers (importantly, to children as well). Assuming
that the acceptability of the (a) sentences may be somehow explained, can
we explain why the (b) sentences are possible too?

Sometimes it’s claimed that the (a) and (b) sentences in (1) and (2) feel
related because they “mean the same thing.” I’ve never understood that
claim. Even the most trivial semantic theory tells us that (a) and (b) in

Chapter 1

each of (1) and (2) do not mean the same thing. Further, two sentences
that do mean the same thing typically do not feel related. Consider the
following examples:

(3) a. My father’s brother purchased an automobile
b. My uncle bought a car

These examples certainly do not “feel related,” although they presumably
mean the same thing. On these grounds, at least, it seems pretty obvious
that the phenomenon in (1) and (2) can’t be grounded on sameness of
meaning.

Let’s imagine that there’s some process involved in “felt-relatedness’ of
(a) and (b) in (1) and (2) (such that the language-acquiring child’s task
is to figure out this process). In particular, suppose (substantially over-
simplifying) that this process takes the (a) sentences as basic and does
something to them, resulting in the (b) sentences. Notice that there’s not
yet any empirical or any other motivation for taking the (a) sentences as
basic. It might turn out that the (b) sentences are basic, or that something
else is basic. For now we simply assume that the (a) sentences are basic to
get the investigation off the ground. Given that, what might the process be
that we’re looking for?

Granting, as standardly assumed, the existence of such things as sen-
tences and words, suppose this process is the following:

(4) Invert the first two words in the (a) sentences.

This works well for (1) and (2), and it refers only to sentences and words
(surely irreducible) and, perhaps, “counting to 2.”” But now consider these
examples (the star indicates an example that isn’t accepted by native
speakers of English):

(5) a. Mary read the book
b. *Read Mary the book?

(6) a. The man left
b. *Man the left?

Here we applied (4) and got the wrong results, indicating that (4) isn’t the
correct hypothesis. In order to pose another hypothesis, we’ll need more
than just words, sentences, and counting to 2. Suppose that we (and the
child) distinguish what kinds of words can be involved in the process in
question and what kinds can’t be. For the moment let’s call must in (1)

Structure and Infinity

and is in (2) auxiliaries (without adding any substance to this term yet).
Our new hypothesis is this:

(7) Move the auxiliary to the front.

This still works for (1) and (2), and now also for (5) and (6) (i.e., it fails to
produce the unacceptable (b) cases, since read in (5) and the in (6) aren’t
auxiliaries). As good as it is, unfortunately, (7) still isn’t good enough.
Consider (8).

(8) Mary has been sleeping

Presumably, (8) has two auxiliaries (if be(en) is also an auxiliary), but (7)
presupposes that the sentence has only one. Changing the auxiliary in
(7) to an auxiliary wouldn’t help much, since then (7) would allow an un-
acceptable counterpart of (8) where the second auxiliary has moved.

(9) *Been Mary has sleeping?
Let’s try the following modified hypothesis:
(10) Move the first auxiliary to the front.

This straightforwardly applies to every example that has auxiliaries in it.
It seems then to serve as an adequate rule for English “interrogatives.”
But what about (5a) and (6a), sentences with no auxiliaries at all? One
might say that some other process operates there to give a corresponding
interrogative sentence. That suggestion isn’t ultimately desirable, although
for the moment we have to live with it.

Even apart from this limitation, Chomsky has pointed out a type of
example that’s problematic for the hypothesis in (10).

(11) The man who is here can swim

(11) has two indisputable auxiliaries, is and can. If, following (10), we
move the first auxiliary to the front, our result is (12).

(12) *Is the man who here can swim?

That’s complete gibberish.

What’s particularly interesting is that we have to look pretty far to find
cases where hypothesis (10) fails. For the vast majority of sentences, (10)
works fine (modulo the additional process needed to deal with sentences
like (5a) and (6a), where the desired results are Did Mary read the book?
and Did the man leave?). And cases lacking the complexity of (11)-(12)

Chapter 1

are going to be the entirety of the data that children are likely to be
exposed to. So we might expect that children would make mistakes like
(12) and then get corrected. But no child has ever been documented
making these mistakes. Notably, Crain and Nakayama (1987) did rele-
vant experiments involving elicited production of yes-no questions, which
clearly demonstrated that children don’t make this kind of mistake (which
they, following Chomsky, called a non-structure-dependent error). This is
a remarkable result. Why don’t children make these errors? By far, the
most plausible answer is that children are designed so as not to be able to
make them. When a child is hypothesizing what the question-forming
processes are, certain hypotheses are available, others aren’t. One that
isn’t available is the type shown in (10): count the words, label them,
and do something with them based on counting. By the same token, no
language relates interrogative sentences to declaratives by reading the
declarative sentence back to front, by inverting the second and fifth words
in the declarative, and so on. A priori, there’s no reason why this should
be the case (one can easily write a computer language that has these
properties). But no human language seems to have these properties.

The right description of the process we’re talking about will be stated in
terms of structures, in terms of hierarchical groupings of words, some-
thing like (13),

(13) Move the first auxiliary after the subject to the front.

where the subject can be characterized as a word, two words, three words,
and so on, or, more generally, some structure that might be indefinitely
long. The right rule is thus structure dependent, and, on the face of it, vastly
more complicated than the wrong rules rejected above. Chomsky has
pretty consistently argued over the years that transformational (displace-
ment) processes of human language never count words or do something to
such and such a word. Instead, they are structure dependent: they always
look at structures and do something with structured representations.
With the rule in (13), we get the right interrogative form of (11).

(14) Can the man who is here swim?

In order to correctly apply (13), we thus need to identify the subject: the
man who is here. This then is an argument against viewing sentences as
just strings of words, and in favor of viewing them as certain hierarchichal
groupings of words. We thus need some procedure that provides a labeled
bracketing. This procedure will “bracket” some words together and then

9 Structure and Infinity

label the group, so we can then identify the bracketed group of words as a
subject.

It will turn out that the label is not really going to be ‘“‘subject.”
Chomsky (explicitly in Aspects of the Theory of Syntax (1965)) rejects this
label for the following reason. In (11) the man who is here is certainly a
subject. But if we introduce the syntactic category “‘subject,” we will miss
an overwhelming generalization: the man who is here can also be an
object, or an object of a preposition, as in the following examples:

(15) a. I saw [the man who is here]
b. I talked to [the man who is here]

Similarly for Susan in (1) or Bill in (2) and so on. It would be a huge
coincidence that these same bracketings—these same units of structure—
can be found in different positions in a sentence. Thus, we do not want
“subject” and “object” to be basic notions in our analysis. Instead, we
want those bracketings to have the same label (Chomsky used the term
Noun Phrase (NP)) wherever they can appear—in the position of subject,
object, or object of a preposition—thus capturing the generalization.

Many further phenomena confirm the idea that sentences are struc-
tured, that the words in them are grouped into constituents.

1.1.2 Constituency Tests

1.1.2.1 Pronominalization

Various tests have proved to be useful in determining what groups of
words work together as units of structure, or constituents. One such con-
stituency test is whether or not elements can be replaced by pronominal
forms.

(16) John left
(17) He left

We might conclude from these sentences that “A pronoun stands for a
noun,” just as the word pronoun suggests. But consider the following
cases:

(18) The man left
(19) *The he left
(17) He left

10

Chapter 1

Now, from all of (16)-(19) we might conclude that “A pronoun stands for
a noun or a noun preceded by the.” But look at these examples:

(20) The old man left

(21) The man in the room left
(22) *He in the room left

(17) He left

Adding these cases to the previous ones, we once again need to change
our conclusion and say that “A pronoun stands for a noun, or a noun
preceded by the, or a noun preceded by the and followed by...”

Clearly, we’re missing a generalization. Somehow, we have to say that
John has something in common with the man and with the man in the
room, and also with the old man, the old old old man, and so on. Plausibly,
there’s some higher-level abstract structural unit, such that the kind of
position that John fills in (16) can be filled by more complicated elements
like the man or the old man or the old old old man.

Following tradition, we will say that John is an NP (noun phrase, an
expression somehow based on a noun), the man is an NP, the man in the
room is an NP, the old man is an NP, and he is an NP. This is pretty
abstract, since NP is a symbol that has no phonetic manifestation; we
don’t pronounce it.

1.1.2.2 Topicalization
A second constituency test involves topicalization. Consider the following
pair:

(23) I like John
(24) John, I like

Looking at these sentences, we might conjecture that topicalization is a
process whereby we “take a noun and move it to the front of the sen-
tence.” Now consider (25)—(27).

(25) Ilike the man
(26) *Man, I like the
(27) The man, I like

From these sentences, we see that we need to refine our description of
topicalization to the following statement: “Take a noun preceded by a

11 Structure and Infinity

definite article, and move both to the front of the sentence.” But now
consider these cases:

(28) I like the old man
(28) *Man, I like the old
(30) The old man, I like

Given these examples, we need to refine our statement even further:
“Take a noun preceded by an adjective (or by adjectives) and a definite
article, and move it to the front of the sentence.”

Clearly, we’re facing the same type of problem we ran into with pro-
nominalization. How can we characterize the portion of the sentence that
undergoes topicalization? It’s not just John; it’s not just the man; it’s not
just the old man; it’s not just the old old man; and so on. It seems, then,
that we need a more abstract notion of structure that says that John, the
man, and the old old man are the same type of unit.

1.1.2.3 Coordination
A third constituency test involves coordination. Consider the following
examples:

(31) Ilike John and the man
(32) TIlike John and the old man

(33) *I like John and to go to the movies
(cf. T like John; I like to go to the movies)

Generally speaking (as the ungrammaticality of trying to coordinate John
and fo go to the movies shows), only elements of the same type can be
coordinated. Therefore, John, the man, and the old man must be of the
same type. Why should they be behaving like elements of the same type?
How can we characterize this other than in terms of a structural unit?

1.2 INFINITY

Earlier we excluded the possibility that the right answer to the question
“What is ‘knowledge of language’?” could be “Some kind of a list.” Why
is that? Because we’re dealing with individual psychology, and if the
answer to the question is “Some kind of a list,” then we are saying that
that list is in the human brain. If we go on to say that the set of potential

12

Chapter 1

behaviors we'’re interested in characterizing is infinite, then we’re saying
that there’s an infinitely long list in the brain. But how can there be an
infinitely long list in the brain? The brain is finite; it’s big, but it’s finite.
So, the simplest formal device that Chomsky was willing to discuss to
answer the question “What is ‘knowledge of language’?” is the simplest
one that can capture infinity. It’s called a finite-state machine[device (see
chapter 3 in Syntactic Structures).

1.2.1 Finite-State Grammars

A finite-state device (or Markov process) consists of

« An initial state

- A finite number of states

« A specification of transitions from one state to another (not necessarily
distinct)

+ A specification of a symbol (or a finite number of symbols) that will be
printed when a particular transition obtains

« A final state

Let’s look at the simple finite-state machine in (34) (equivalent to (7) on
page 19 of Syntactic Structures). The circles in (34) represent the five
states of the machine. The arrows represent transitions from state to state.
(D is designated as the initial state and @ as the final state. The words
above the arrows are the symbols that are printed when a particular
transition obtains. So, in (34), upon the transition from the first state to
the second state, the symbol The is printed.

(34) ©)

%
& 2,
The

@ >, @

®

The finite-state grammar in (34) is the representation of a language con-
sisting of only two sentences: The man comes and The men come.

Recall that we’re interested in infinity. Is there any way that we can
characterize infinity with a finite-state device? Let’s look at the finite-state
grammar in (35) (equivalent to (8) on page 19 of Syntactic Structures).

13

Structure and Infinity

(35)
Q
old[|

N
NS

The grammar in (35) generates the same sentences that the grammar in
(34) generated. But it can also generate The old old manfmen ... and The
old old old man[men. ... We can indeed capture infinity with this machine.

For exposition, and sticking to Syntactic Structures terminology, we're
temporarily taking a language to be a set of sentences. We're taking a
grammar to be a formal machine for generating sentences. A derivation is
a sequence of formal computations that results in a sentence (string of
symbols).

Let’s look at how a finite-state machine will generate a sentence like the
following:

The

D

&

(36) The man runs and runs and runs and runs
A machine that generates (36) is shown in (37).

37
(37) The man runs and runs

O—>0—>0—0

In addition to (36), the grammar in (37) can generate the following
sentences:

(38) The man runs
(39) The man runs and runs
(40) The man runs and runs and runs

The finite-state device in (37) also captures infinity.

1.2.2 Limitations of Finite-State Devices

It’s possible to construct some purely formal language and ask whether
it’s a finite-state language or not. That’s what Chomsky does in Syntactic
Structures (page 21).

Let’s look at some formal languages that aren’t finite-state languages
((101) in Syntactic Structures). Consider the sentences of the language in
(41).

14

Chapter 1

(41) ab
aabb
aaabbb
aaaabbbb

This language can be characterized as consisting of sentences with any
number of a’s followed by exactly the same number of ’s as long as that
number is greater than 0 (¢” b", n > 0, using a fairly standard notation).

Can we construct a finite-state grammar for the language in (41)? Let’s
see if (42) captures this language, whose sentences always contain equal
numbers of a’s and b’s.

(42) a b

a b

O—>

The language that the grammar in (42) can generate is ¢” o™, that is, any
number of a’s followed by any number of b’s; but this is different from the
language in (41) that we were trying to generate, where a certain number
of a’s are followed by exactly the same number of b’s.

The finite-state grammar in (42) overgenerates. It can generate all of the
sentences of the language in (41), but it also generates many more sen-
tences that aren’t part of the language. There’s no way to connect up the
number of &’s with the number of b’s. Because (42) has a loop on a, it can
generate an unbounded number of @’s, and because it has a loop on b, it
can generate an unbounded number of b’s; but neither loop can “see” the
other loop.

This is exactly what it means for a machine to be a finite-state machine.
When it’s in a particular state, all it knows is what state it’s in, what state
it can get to from there, and what symbol it will be printing. It doesn’t
know what state it used to be in or how many times it’s been in that state.
The limitation of finite-state machines is that they have no memory—
precisely the limitation that prevents them from successfully characteriz-
ing the language in (41).

Let’s look now at Chomsky’s second example, the formal language in
(43), called a mirror-image language ((10i1) in Syntactic Structures).

15

Structure and Infinity

(43) aa
bb
abba
baab
abbbba

Let’s see if we can construct a finite-state machine to generate this lan-
guage. First, let’s try to generate the first part of the sentences in (43). In
other words, can we write a finite-state machine to generate any number
of a’s and »’s in any order?

(44) a

D

With the finite-state machine in (44) we can indeed generate any number
of @’s and any number of »’s in any order. But now to generate (43) we
also have to be able to generate the mirror image of the sentences that
we’ve generated with the grammar in (44). We can’t do this with a finite-
state grammar, however, because as we just saw, finite-state machines
have no memory.

There’s also a human language analogue to the formal languages
mentioned above. This example (which I got from Morris Halle, my first
linguistics teacher) comes from the realm of word compounding. The
military arsenals of many countries have missiles. They may also have
so-called anti-missile missiles, designed to shoot an enemy missile out of
the sky. Now, in order to neutralize the anti-missile missiles, the enemy
may create something called anti-anti-missile missile missiles. There are
presumably technological limits on how far one can go in creating this
kind of weapon, but there are no linguistic limits as far as the corre-
sponding word formation process is concerned. Let’s notate the situation
as follows:

(45) anti” missile”*!
(n anti’s followed by n + 1 missile’s)

As in the case of the formal languages considered above, we can’t char-
acterize this language with a finite-state grammar, and for the same rea-
son: such a grammar can’t keep track of the number of anti’s in order to
make the number of missile’s greater by one.

16 Chapter 1

Finite-state devices have other limitations, as well. Recall that we had
proposed the following rule for forming yes-no questions in English:

(13) Move the first auxiliary after the subject to the front.

We’ve seen that there seems to be no limit on how long the subject of a
sentence can be. There’s no clear way of characterizing the notion “sub-
ject” in terms of number of words. Instead, we have to characterize it with
some notion of structure. We have to say that the, old, and man in (20),
for example, go together and make up some kind of unit. And so far the
finite-state device can’t capture this. For finite-state machines, sentences
are just strings of symbols that get printed on the transitions. This is an
obvious limitation of finite-state devices.

Finite-state devices allow us to generate sentences by printing out
symbols sequentially but don’t determine any abstract structure. We need
a more abstract theory that allows us to characterize structure, that allows
us to say that words aren’t just pearls on a string but entities that can be
grouped in natural ways.

It turns out that there’s no way to characterize languages like (41) and
(43) without introducing abstract structure. Such languages are said to
have unbounded discontinuous dependencies. The presence of one symbol
depends on the presence of another that’s an arbitrary distance away in
the string, a state of affairs that’s beyond the bounds of finite-state de-
scription. To overcome this fundamental limitation of finite-state gram-
mars, we will turn to a less elementary, more powerful model that will
allow us to describe the languages in (41) and (43) and that will auto-
matically determine abstract structure: phrase structure grammar.

1.2.3 Phrase Structure Grammars

We need a system that allows us to introduce two symbols at the same
time, such that these symbols aren’t necessarily adjacent to each other.
For example, for the “mirror-image language” (43) we need to ensure
that when we introduce an a at the beginning of a sentence, we’re also
introducing an « at the end of that sentence. We'll see that context-free
phrase structure (PS) grammars have that power, and with them we can
generate languages (41) and (43).

Context-free PS grammars (or [X, F] grammars in Chomsky’s termi-
nology) consist of

+ A designated initial symbol (Z)
« Rewrite rules (F), which consist of one symbol on the left, followed by
an arrow, followed by at least one symbol

17

Structure and Infinity

A PS rule like (46b) will allow us to introduce the symbol «a at the be-
ginning of a sentence and at the same time introduce the symbol b at the
end of the sentence. The rule allows us to introduce these two symbols
simultaneously, without their being adjacent to each other.

(46) a. Z: S
b. F: S — aSb

Here is what the symbols in (46) stand for:

S designated initial symbol; also, an abstract, nonterminal symbol
that will not be part of any sentence (nonterminal symbols are those
that appear on the left side of rewrite rules—hence, are rewritten)

— a symbol meaning ‘rewrite as’ or ‘consists of’

a,b terminal symbols (i.e., those that are not “rewritten”’—hence,
appear in the output sentence)

In contrast, the rewrite rules in a context-sensitive PS grammar consist of

+ A single symbol on the left

« An arrow

+ One or more terminal or nonterminal symbols

+ A specification of the circumstances under which the rewriting takes
place

For example:

47) ¢ — dJe f
(or, in other words: ecf — edf)

Many phonological rules in Chomsky and Halle 1968 are context-
sensitive rewrite rules. For our purposes right now, however, we will be
mainly concerned with rules of the context-free type.

We also need a (recursive) definition of a derivation. A derivation con-
sists of a series of lines such that the first line is the designated initial
symbol, and the procedure for moving from one line to the next is to re-
place exactly one symbol by the sequence of symbols it can be rewritten as.

For example, the portion of a PS grammar in (46b) will generate a
portion of a derivation that looks like this:

(48) Line 1: S
Line 2: aSb
Line 3: aaSbb
Line 4: aaaSbbb

18

Chapter 1

Notice that no matter how many times we reapply (46b), the resulting
string still contains a nonterminal symbol. In order to “turn off the
machine” and end the derivation, we must add one more rule:

(49) S — ab
With rule (49) we can rewrite S as ab and end the derivation with line (5):
(48) Line 5: aaaabbbb

Thus, the PS grammar incorporating rules (46) and (49) generates the
language in (41).

PS grammars allow us to pair up two symbols no matter how much
“stuff” is in between. Why? Because the two symbols were introduced by
the same application of the same rewrite rule.

The fundamental descriptive advantage of PS grammars compared
with finite-state grammars is that PS grammars can pair up elements that
are indefinitely far apart. They do this by introducing symbols that are
never physically manifested: the nonterminal symbols. We can’t turn off
the machine until we get rid of all nonterminal symbols. Nonterminal
symbols are what we will use to characterize the notion of structure we
were concerned about earlier. Why does John behave like the man, and
why does sleep behave like solve the problem? It’s because with respect to
the symbols that don’t get pronounced (nonterminal symbols), they’re the
same, even though with respect to the symbols that do get pronounced
(terminal symbols), they’re wildly different.

We’ll look now in detail at how PS grammars represent structure and
concentrate on a precise way of doing it.

Let’s look at an example of a PS grammar that more closely (though
still pretty abstractly) characterizes human language.

(50) a. Designated initial symbol: S
b. Rewrite rules (F):
S — NP VP
NP — N
VP -V
N — John
N — Mary
V — laughs
V — sings
V — thinks

19

Structure and Infinity

In this grammar the nonterminal symbols (symbols that can be rewritten)
are S, NP, VP, V, N;! the terminal symbols (symbols that can’t be re-
written) are John, Mary, laughs, sings.

Here’s an example of a derivation using the PS grammar (50):

(51) Line 1: S
Line 2: NP VP
Line 3: N VP?
Line 4: NV
Line 5: Mary V
Line 6: Mary laughs
= STOP =

Let’s not forget that we need to capture infinity. The PS rules in our
little model grammar don’t do so. Let’s then introduce the following rule
(anachronistically, since the Syntactic Structures model actually didn’t
have this type of “recursive’ PS rule):

(52) VP - V'S

Rule (52) is analogous to a loop in the finite-state grammar (recall, e.g.,
(35) and (37)). It is the ““cost” of infinity, which is, in fact, very cheap.
Adding rule (52) allows us to generate an infinite number of sentences of
the following type:

(53) a. John thinks Mary sings/laughs
b. John thinks Mary thinks John sings/laughs
c. John thinks Mary thinks John thinks Mary sings/laughs
etc.

Thus, by introducing a rule such as (52), which allows us to generate a
sentence inside another sentence, we have captured infinity.

Let’s now look at one of the many equivalent derivations of one of the
sentences in (53), namely, (53a).

(53) a. John thinks Mary sings

(54) Line 1: S
Line 2: NP VP
Line 3: N VP
Line 4: NVS3
Line 5: N V NP VP
Line 6: NV N VP

Line 7: NVNYV

20

Chapter 1
Line 8: JoonVNYV
Line 9: John thinks N V

Line 10: John thinks Mary V
Line 11: John thinks Mary sings
= STOP =

These rules also generate the following sentences:

(55) Mary thinks John laughs

(56) Mary thinks John sings

However, they generate the following unacceptable ones as well:
(57) *John sings Mary laughs

(58) *John laughs John sings

(59) *John laughs Mary sings

That is, our PS grammar is overgenerating. It’s able to generate sentences
that aren’t part of the English language. The sentences are ‘“English-like”
(in word order and structure), but aren’t acceptable. Eventually we will
address this apparent inadequacy of the model.

PS grammars capture constituent structure by introducing nonterminal
symbols. Recall earlier arguments where we concluded that at some level
of abstraction the man, the old man, and the old old man all have to be the
same type of element. PS grammars allow us to group these phrases under
the same nonterminal symbol, NP.

Suppose we take (61), which is one derivation for (60), produced by the
grammar introduced in (50) and (52).

(60) John thinks Mary sings

(61) Line 1: S
Line 2: NP VP
Line 3: N VP
Line 4: NVS
Line 5: N V NP VP
Line 6: NV N VP
Line 7: NVNV
Line 8: JoomnVNYV
Line 9: John thinks N V

Line 10: John thinks Mary V
Line 11: John thinks Mary sings

21 Structure and Infinity

We now connect each symbol with the symbols it was rewritten as. In this
way we represent the derivation in the form of a PS free, shown in (62),
and we can trace back units of structure.

(62) S
NP VP
|
N VP
/\
N v S
/\
N v NP VP
N v N VP
N v N A%
John A% N A%
John thinks N \Y
John thinks Mary \%
John thinks Mary sings

Now we can get rid of the symbols that are mere repetitions. In this way,
we end up with (63), which is called a collapsed PS tree.*

22

Chapter 1
(63) S
/\
NP VP
| T
N A% S
| | N
John thinks NP VP
| |
N v
| |
Mary sings

Representing a derivation in this graph-theoretical manner implies a
mathematical claim: namely, that no matter which choices we make when
we're deriving a terminal string, we will end up with the same collapsed
PS tree (abstracting away from structural ambiguity; see below).

To see this point, let’s derive the same sentence in a different way and

confirm that we get the same collapsed PS tree.

(64) Line 1:
Line 2:
Line 3:
Line 4:
Line 5:
Line 6:
Line 7:
Line 8:
Line 9:
Line 10:
Line 11:

S

NP VP

NPV S?

NVS

N V NP VP

N VN VP
NVNV

John VN V

John thinks N V
John thinks Mary V
John thinks Mary sings

Indeed, the resulting collapsed PS tree (65) is the same as (63).

23

Structure and Infinity

(65) S
/\
NP VP
| T
N \Y% S
| | TN
John thinks NP VP
| |
N \Y%
| |
Mary sings

(61) and (64) are two different derivations, but they are in a crucial
sense “‘equivalent.” In producing them, we applied the same rules but not
in the same order. More generally, two PS derivations are equivalent if
and only if they involve the same rules, applied the same number of times,
but not necessarily in the same order. Recall that we looked at a mechani-
cal algorithm for collapsing a PS derivation down to a PS tree. Indeed, in
The Logical Structure of Linguistic Theory (1955) Chomsky proved that
two PS derivations are equivalent if and only if they collapse down to the
same PS tree.

1.2.4 A Note on Recursion

Infinity and structure are arguably the two most fundamental character-
istics of human language. We first used finite-state machines to capture
infinity; we then changed to PS grammar, a more powerful device that
captures both infinity and structure.

At this point I have to admit that (as I hinted earlier) I’ve been mis-
leading you about one aspect of the theory. Remember Chomsky’s formal
language arguments for PS grammar. On pretty much that model, I’'ve
been analyzing a structure like John thinks Mary sings as involving
recursive PS rules. Rather ironically, however, the theory in both Syntac-
tic Structures and The Logical Structure of Linguistic Theory (Chomsky
1955; henceforth LSLT) didn’t have recursion “in the base.” Instead,
complicated structures were created by special operations, called general-
ized transformations, which put together simpler structures. For example,
to derive John knew that Mary understood the theory, first the separate
structures underlying John knew it and Mary understood the theory were

24 Chapter 1

generated; then a generalized transformation inserted the second of these
structures into the first. In other words, in this theory recursion was in the
“transformational component.” Chomsky listed a few generalized trans-
as (22)—(26) on pages 113114 of Syntactic Structures. 1 will
return to this issue and to arguments surrounding recursion in the base

formations

versus generalized transformations.

1.2.5 Equivalent versus Nonequivalent Derivations

Consider a

vaguely human language—type situation involving equivalent
PS derivations and then a vaguely human language—type situation

involving nonequivalent PS derivations.

Suppose we have the following grammar, a fragment of one we looked
at earlier, where Vy and Vr stand for vocabularies of nonterminal and

terminal symbols, respectively:

(66) X:
F:

S

S — NP VP

NP — N

VP —V

N — John

V — left

Vn = {S, NP, VP, N, V}
Vr = {John, left}

One derivation for John left is the following:

(67) Line 1:
Line 2:
Line 3:
Line 4:
Line 5:
Line 6:

S

NP VP
N VP
NV
John V
John left

Another derivation for John left is the following:

(68) Line 1:
Line 2:
Line 3:
Line 4:
Line 5:
Line 6:

S

NP VP
NP V
NV

N left
John left

25 Structure and Infinity

It’s easy to verify that the collapsed PS trees corresponding to these two
derivations will be the same.

(69) S
NP VP
| |
N v
| |
John left

In addition to what we now know about equivalence of derivations,
there’s also a clear intuitive sense in which the derivations are equivalent.
They’re telling us the same information about the constituent structure of
the sentence. In particular, (69) contains the following information:

(70) John left is an S
John is an N
John is an NP
leftisa V
left is a VP

And that’s arguably everything there is to know about the structure of
this sentence.

Similarly, from the tree in (63)/(65) we can conclude the following
information:

(71) Mary is an N and an NP
singsisa V and a VP
Mary sings is an S
thinks Mary sings is a VP
John is an N and an NP
John thinks Mary sings is an S

This kind of information is represented as what Chomsky called in
Syntactic Structures “‘is a” relations. We needn’t worry about the details
of this notion at this point. In the next section I’ll give an algorithm for
determining ““is a” relations and discuss its importance for the theory.

Now let’s look at a more complicated grammar that allows for non-
equivalent derivations. Nonequivalent derivations are standardly referred
to as exhibiting structural ambiguity. Chomsky’s classic case of structural
ambiguity is (72).

26

Chapter 1

(72) Flying planes can be dangerous
I'll use a slightly simpler example right now.
(73) John hit the man with a stick

Suppose we have the grammar in (74) (as usual, not necessarily an
actual fragment of the grammar of English). (In this grammar PP =
prepositional phrase, P = preposition, Det = determiner.)

(74) % S

F: S — NP VP
VP — V NP
VP — V NP PP
NP - N
NP — Det N
NP — Det N PP
PP — P NP
Det — a
Det — the
N — John
N — man
N — stick
V — hit
P — with

In Aspects of the Theory of Syntax (Chomsky 1965; henceforth Aspects),
Chomsky called rules like the last seven rules in (74), which rewrite a
particular nonterminal symbol as a single terminal symbol, lexical inser-
tion rules. In Syntactic Structures he made no such distinction among
types of PS rules; this lack of distinction severely limited this model’s
descriptive power, as we’ll see later on.

Let’s look at two nonequivalent derivations of (73). The first is shown in
(75).

(75) Line 1: S
Line 2: NP VP
Line 3: N VP
Line 4: N V NP PP
Line 5: N V NP P NP
Line 6: N V Det N P NP

Line 7: N V Det N P Det N

27 Structure and Infinity

Line 8: NVDetNPaN

Line 9: John VDet NPaN

Line 10: John hit Det NPaN

Line 11: John hit the NPa N

Line 12: John hit the N with a N
Line 13: John hit the man with a N
Line 14: John hit the man with a stick

The collapsed PS tree of this derivation is (76).°
(76) S

NP VP

T

N \" NP PP
| NN
John hit Det N P NP
N
the man with Det N
|
a stick

A second derivation and the corresponding PS tree are shown in (77) and
(78).

(77) Line 1: S
Line 2: NP VP
Line 3: NP V NP
Line 4: NP V Det N PP

Line 5: N V Det N PP

Line 6: N V Det N P NP

Line 7: John V Det N P NP
Line 8: John hit Det N P NP
Line 9: John hit Det N P Det N

Line 10: John hit the N P Det N

Line 11: John hit the man P Det N
Line 12: John hit the man with Det N
Line 13: John hit the man with a N
Line 14: John hit the man with a stick

28

Chapter 1
(78) S
/\
NP VP
‘ /\
N A% NP
] T
John hit Det N PP
| PN
the man P NP
N
with Det N
|
a stick

We’ve generated the sentence we were trying to generate, and we’ve
generated it from the same [X, F] grammar we used before. Significantly,
though, the derivations (75) and (77) aren’t equivalent, because they
involve not just a different order of PS rules, but different PS rules. The
effect of using different PS rules becomes clear when we collapse the
derivations into PS trees ((76) for derivation (75) and (78) for derivation
(77)): these two PS trees are different.

Look at what the two different trees (76) and (78) say about the sen-
tence. They both say that John hit a man with a stick is an S, that John is
an N, and that John is an NP. They both say that Ait the man with a stick
is a VP, but now they begin to diverge. PS tree (78) says that the man with
a stick is an NP; however, PS tree (76) says that the man is an NP but not
that the man with a stick is an NP. Let’s use two of our constituent struc-
ture tests (see section 1.1.2) to see the difference between the interpreta-
tions of (76) and (78).”

(79) a. John hit the man with a stick (under the interpretation in (78))
b. John hit him

(80) a. John hit the man with a stick (under the interpretation in (76))
b. John hit him with a stick

(81) The man with a stick, John hit (has to be the interpretation in
(78))

29 Structure and Infinity

m Vuki¢: Let’s say we have a PS grammar with the following rules:

(82) S — NP VP
NP — NP PP
VP — PP VP

Would that introduce an ambiguity? Look at line 3 of (83a) and (83b)—
PP VP could be connected to VP, or NP PP to NP (see the corresponding
trees in (84)).

(83) a. Line 1: S b. Line 1: S
Line 2: NP VP Line 2: NP VP
Line 3: NP PP VP Line 3: NP PP VP
(84) a. /S\ b. /S\
NP VP NP VP
NP PP VP NP PP VP

Lasnik: Yes, in principle we can construct such ambiguous cases. This is
potentially a problem, since two clearly different derivations can appar-
ently yield the same sequence of lines. One possible answer to this is to
construct the tree “on-line.” That is, we don’t wait until we’re done with
the whole derivation to construct the tree. Rather, as we proceed from
one line to the next, we make the relevant connections.

1.2.6 Phrase Markers

1.2.6.1 *Is a” Relations
Recall that Chomsky’s theory we are considering is based on

» [X, F] grammars (context-free PS grammars)
« Derivations

» Equivalence classes of such derivations

« Set theory

Here is Chomsky’s set-theoretic formalization of phrase structure (see
Syntactic Structures, pp. 27-29, 87):

(85) Given a particular [Z, F] grammar and a particular terminal string
(i.e., string of terminal symbols):

30

Chapter 1

a. Construct all of the equivalent PS derivations of the terminal
string.

b. Collect all of the lines occurring in any of those equivalent
derivations into a set. This set is the phrase marker (PM), a
complete representation of the PS of the terminal string.

What do we want a PM to do for us? We want to know for each por-
tion of the terminal string whether that portion comprises a constituent or
not, and, when it comprises a constituent, what the “name” of that con-
stituent is.

This theory has an algorithm such that when we apply it, we know exactly
the constituent structure of the terminal string and the labeling of the con-
stituents. Specifically, this is an algorithm for determining ““is a” relations.
(In section 1.2.6.2 we will also discuss a way of simplifying this theory.)

Here is Chomsky’s empirical claim: All and only what we want a PM
to dois to tell us the “is a” relations between portions of the terminal strings
and nonterminal symbols. Anything that tells us those and only those is a
perfectly adequate PM; anything that doesn’t is inadequate as a PM.

We’ll go through an example and see that the resulting PM has some
superfluous elements, some things we don’t really need. Again, all we
need is to determine the “is a” relations. We might build the PM the way
we’ve been doing so far and knock out the excess; the other way is to
build it from scratch (Lasnik and Kupin (1977) took the latter course, the
simplification I alluded to a moment ago).

Consider the following PS grammar:

(86) X: S
F: S — NP VP
NP — he
VP -V
V — left

Now let’s construct all the equivalent derivations for the sentence He

left.

(87) a. Derivation 1
Line 1: S
Line 2: NP VP
Line 3: he VP
Line 4: he V
Line 5: he left

31 Structure and Infinity

b. Derivation 2
Line 1: S
Line 2: NP VP
Line 3: NPV
Line 4: he V
Line 5: he left
c. Derivation 3
Line 1: S
Line 2: NP VP
Line 3: NPV
Line 4: NP left
Line 5: he left

The next step is to collect all the lines occurring in any of these equiv-
alent derivations into a set. That set will be the PM (the PS representation
of the terminal string He left). Here is our resulting PM:

(88) PM = {8, he left, he VP, he V, NP left, NP VP, NP V}

Now the question is, looking at the set above, how can we determine
what the “is a” relations are? Some members of the set have exactly one
nonterminal symbol and any number of terminal symbols. Let’s call them
monostrings (they’re underlined in (88)). By comparing the monostrings
with the terminal string one by one, we can compute all the “is a’ rela-
tions as follows. We start by comparing ke left with he VP.

(89) he left
he VP

From (89), we can deduce that /left is a VP. Next we compare /e left with
he V.

(90) he left
he V

From (90), we determine that /eft is a V. Next we compare he left with NP
left.
(91) he left

NP left

From (91), we conclude that /e is an NP. Finally we compare he left with
S.

32

Chapter 1

(92) he left
S

From (92), we determine that /e left is an S.

Does that tell us everything we want to know about the ““is a” relations
in this sentence? Let’s look at the tree for He left, (93), and see what it tells
us about the “is a” relations. We know how to get the tree. We just pick
one of the equivalent derivations and collapse it.

(93) S

NP VP

he \Y

left
This tree indeed tells us what we’ve just established.

(94) he left is an S
left is a VP
leftisa V
he is an NP

These are all of the ““is a” relations involving the terminal string /e left.
According to Chomsky, an adequate theory of PS is a representation of
all and only the ““is a” relations that hold in a particular sentence, given a
particular [X, F] grammar—that is, a representation of what portions of
the terminal string bear the ‘““is a” relations to what nonterminal symbols.

Gutiérrez: We also have VP left in the tree.
\
v

Lasnik: According to Chomsky, we want the theory of PS to tell us the
“is a” relations, where the “is a” relations are defined as relations between
portions of the terminal string and nonterminal symbols. The tree we just
looked at in (93) actually encodes a bit of information beyond the “is a”
relations. The extra information, as you point out, is that this VP was
rewritten as V, and the V was rewritten as left. Now let’s look again at
(93), alongside another PS tree, (95).

33

Structure and Infinity

(93) S 95) S
/\
NP VP NP v
| | | |
he \Y% he VP
| |
left left

The two graphs (93) and (95) in the graph-theoretic version of PS will
collapse into the same set in the set-theoretic representation. Why is that?
Because he 7 will be a line in some of the derivations, and he VP will be a
line in some of the derivations; but the PM is a set, an unordered thing, so
there’s no way to say that se VP comes before he V. That’s incoherent.

Thus, the graph-theoretic representations encode some information
beyond the ““is a” relations. The empirical question is, do we need that
additional information, say, for phonological, semantic, or further syn-
tactic operations? If we do, then we reject the set-theoretic model; if we
don’t, then we accept the set-theoretic model, since we would like the
minimal theory that does what has to be done. Keep that empirical ques-
tion in mind as we proceed.

We’ve seen up to now that a PM is a representation of the constituent
structure of a sentence. For pedagogical reasons, standard presentations
of PMs are never set-theoretic; they’re always graph-theoretic. A tree on a
blackboard is a much more transparent presentation of structure than a
set. But in this theory PMs aren’t really graph-theoretic.

1.2.6.2 Reduced Phrase Markers

If all we’re trying to do is what Chomsky was trying to do (i.e., determine
all and only the ““is a” relations), then we have a straightforward algo-
rithm for doing that: namely, look at the terminal string and the mono-
strings. But in general, a set-theoretic PM will contain much more than
the terminal strings and the monostrings. Typically, the monostrings
constitute a tiny percentage of all of the strings in the PM.

The question is whether we need all this “extra stuff”” or not. Lasnik
and Kupin (1977) argued that we don’t. Since to determine the “is a”
relations we only need the terminal strings and the monostrings, Lasnik
and Kupin proposed a construct called a reduced phrase marker (RPM),
which includes only the terminal strings and the monostrings.

34

Chapter 1

In order to construct an RPM, we could construct a PM in Chomsky’s
sense and then “knock out” everything except the terminal strings and the
monostrings. But Lasnik and Kupin didn’t do it this way. Instead, they
built RPMs from scratch. They asked, what is a PM in a set-theoretic
sense? It’s a set of strings. So why don’t we start by saying that any set of
strings is an RPM, but with some conditions imposed on it. Lasnik and
Kupin formalized these conditions: a completeness condition, a consis-
tency condition, and so on. That worked out pretty well and it seemed
operationally simpler.

In this model it wasn’t necessary to go through all the equivalent deri-
vations to get to the PM. Kupin and I actually worried about that at the
time. Here was a theory of PS, but it wasn’t based on PS rules at all,
totally unlike the classic theory. The job of PS rules is to construct
equivalent derivations, but this theory didn’t need those equivalent deri-
vations. So the question was, does it make sense to have a theory of phrase
structure without PS rules? A few years later a very nice answer emerged,
most explicitly in Stowell 1981, where it was argued that PS rules are
redundant, duplicating information that must be available in other ways
regardless. There’s some discussion of this in chapter 1 of Lasnik and
Uriagereka 1988.

Exercises

1. Present a finite-state grammar, in graphic form, for each of the following
languages:

a. My sister laughed
My sister laughed and laughed
My sister laughed and laughed and laughed
etc.

b. Mary saw three old men
Mary saw three very old men
Mary saw three very very old men
Mary saw three very very very old men
etc.

2. Provide a PS grammar that generates the “mirror-image language” in (43).
How many PS rules are necessary and sufficient for this grammar?

3. Given the following context-free PS grammar, give derivations for the sen-
tences ab, aaab, aabbbbb.

S — AB

A — aA

35

Structure and Infinity

A—a
B — bB
B—b

4. Consider the following PS grammar and provide the information requested in
A-C.

S — AB

A — Aa

B—b

A—a

A. Provide all of the equivalent derivations for the sentence aab.

B. Give the set phrase marker for the sentence aab.

C. Give the reduced phrase marker for the sentence aab (that is, the phrase
marker consisting of the terminal string and the monostrings).

[Remember that in getting from one line of a derivation to the next, exactly one
rule applies once. Also, recall that two derivations are equivalent if they differ only
in the order of application of rules.]

5. Consider the following languages and provide the information requested in A
and B.

a. a’bc” (abce, aabee, aaabcecc, etc.)
where n is greater than 0 (n > 0)

b. b"la" (bba, bbbaa, etc.)
n>0
A. Write context-free grammars for each of these languages. (Make the
grammars as simple as possible.)
B. Give derivations for two sentences from each of the languages.

1.3 ENGLISH VERBAL MORPHOLOGY

With this much formal background, let’s go through some of the English
phenomena that Chomsky brilliantly examined in Syntactic Structures.
We’ll begin by looking at a set of complicated facts quite superficially.

1.3.1 English Auxiliaries

In English a sentence can have a main verb and no “auxiliary verb,” as in
(96).

(96) John sang
A sentence can also have one auxiliary verb, as in (97).

(97) a. John may sing
b. John has sung

36

Chapter 1

c. John will sing
d. John is singing
e. John can sing
f. John could sing

These might be divided into two groups. One group is the following:

(98) a. John may sing
b. John will sing
c. John can sing
d. John could sing

The main verb occurs in its bare form in (98). The second group is the
following:

(99) a. John has sung
b. John is singing

The main verb does not occur in its bare form in (99). Other cases in the
same group as (99a) and (99b) are these:

(100) a. John had sung
b. John was singing

We’ll temporarily ignore the differences in the cases above and analyze all
of them as forms of sing, which collectively we’ll call SING (allomorphs
of sing).

Now consider the modal auxiliaries. Intuitively, they too are some sort
of “helping verb.” Syntactically, they all can participate in interrogative
inversion: Must John sing?, Could John sing?, and so on. All of them share
the interesting property that when they’re followed by the main verb, the
main verb is always in its bare form.

Here’s a list of modal auxiliaries in English:

(101) may
might
will
would
can
could
must
shall
should

37

Structure and Infinity

English also has the auxiliary category HAVE, which can take any of the
following forms:

(102) has/had/have

And it has the auxiliary category BE, which can take any of the following
forms:

(103) am/is/are/was/were

Some sentences have two auxiliary verbs, and in those cases additional
forms emerge.

(104) a. John has been singing
b. John could have sung
¢. John must be singing
d. John will be singing

A sentence can even have three auxiliary verbs.
(105) John could have been singing

We now have plenty of data. Let’s start by formulating some gen-
eralizations about auxiliaries; then we’ll see how we can formalize those
generalizations.

Here’s one generalization:

(106) When a sentence contains a modal auxiliary (M), it is always the
first thing after the subject.

Here’s another:
(107) When HAVE and BE cooccur, BE immediately follows HAVE.
That this is indeed so can be seen from the following examples:

(108) a. John has been singing
b. John had been singing
c. John could have been singing

(We hold constant the fact that there will always be a “main’ verb.)
Taking modals and HAVE/BE to constitute a natural class of auxil-
iaries, we notice the ordering information in (109)—(111).

(109) Cases with one auxiliary
M (can occur alone)
HAVE (can occur alone)
BE (can occur alone)

38 Chapter 1

(110) Cases with two auxiliaries
a. HAVE BE
M BE
M HAVE
b. *BE HAVE
*BE M
*HAVE M
c. *HAVE HAVE
*BE BE
*M M

(111) Cases with three auxiliaries
M HAVE BE

To capture the desired generalization regarding modals and auxiliaries,
let’s represent a sentence as consisting of the following three parts:

(112) Subject | Aux | Main Verb

That is, we’ll say that there’s an auxiliary position Aux.® What can appear
in Aux? The following PS rules, in accord with our observations, say that
Aux can contain any of the elements shown:

(113) Aux - M
Aux — HAVE
Aux — BE
Aux — M HAVE
Aux — M BE
Aux — HAVE BE
Aux — M HAVE BE

That doesn’t look like a generalization at all. Counting the case where
there is no apparent auxiliary, there are eight cases and eight rules. What
could be worse? How can we possibly make a generalization? Chomsky’s
proposal in this respect might seem trivial, but it’s actually very deep. To
fully appreciate it, we need to look at some intellectual background that
wasn’t made explicit until several years later in Aspects.

Throughout his career Chomsky has been concerned with the major
questions we’re concerned with here: What is our knowledge of language?
Where does it come from? How does this knowledge get into our heads?
The first question, regarding the nature of linguistic knowledge, Chomsky
characterizes in terms of descriptive adequacy. A theory of language

39

Structure and Infinity

attains descriptive adequacy if it provides grammars that truly describe
the facts of each language. How this linguistic knowledge gets into the
head is the question of explanatory adequacy. A theory of language
attains explanatory adequacy if it provides a procedure by which the
learner selects the right grammar on the basis of primary linguistic data
(the utterances an infant is exposed to).

In Aspects Chomsky proposed a rather precise (if still programmatic)
answer to the question of explanatory adequacy. He suggested that certain
information is “wired in” the human brain. This information includes the
following definitions:

« Definition of a possible syntactic rule: This determines what is and what
is not a possible syntactic rule.

 Definition of a possible grammar (grammar as a set of rules): Not just
any set of rules counts as a possible grammar.

Is this an adequate theory of language acquisition, even if the two defi-
nitions are made precise? Well, no. It’s the beginning of a theory of lan-
guage acquisition, but in the Aspects model there are just too many
possible rules and grammars available to the child. In order to address
this problem, Chomsky proposed the following concept:

« An evaluation metric

The evaluation metric is a procedure that looks at all the possible gram-
mars compatible with the data the child has been exposed to and ranks
them. On the basis of some criterion, it says that G| is a more highly
valued grammar than G;, and it picks Gy, even though G| and G, are
both compatible with the data.

For the moment, think of a language as a set of sentences, and think of
a grammar as a formal device for generating all and only those sentences.
Now, what is the child’s task? Born not knowing what the grammar is,
and confronted with some primary linguistic data (PLD), the child makes
a guess about what the grammar is. And the guess has to be such that it
will generate the PLD. It will invariably generate more than the PLD.
Why? Because a human grammar has to provide an infinite language.
That is the strongest linguistic universal there is. All human languages are
infinite. That guarantees that whatever the child’s guess is, it will generate
vastly more than the (necessarily finite) PLD.

Suppose a child’s guess is a grammar G, that generates a language L
(PLD a subset of L;). Now, one can imagine a second child being

40

Chapter 1

exposed to exactly the same PLD and coming up with a grammar G, that
is compatible with the PLD and generates L, # L. And let’s say a third
child comes up with grammar Gj; that generates L3. Suppose that all these
languages, an infinite class of them, agree on the PLD and disagree on
virtually everything else. This is the most extreme case (to make the point
clear), represented in (114).

(114)

X

&

So, these grammars are compatible with the PLD (and, by hypothesis,
with the formal constraints on possible grammars); hence, all are avail-
able to the child as potential grammars. But suppose that G; (generating
L3) is the grammar valued most highly by the evaluation metric. Then,
when confronted with the PLD, the child is forced to posit Gj3, the
grammar valued most highly by the evaluation metric that is also com-
patible with the PLD. This will give the presumably correct result that
learners confronted with the same data will acquire the same language; in
other words, the situation depicted above, where three children exposed to
the same PLD arrive at different grammars, can’t arise.

What exactly is the evaluation metric? This is something we don’t know
a priori (a point that is often seriously misunderstood). It’s an empirical
question. It’s the same kind of question as asking what’s a possible rule,
or what’s a possible grammar. Chomsky made proposals about possible
rules (he formalized the notion of PS rule, of transformational rule) and a
possible grammar (some specific arrangement of these PS rules and
transformations). He further proposed that the evaluation metric is this:
Given two permissible grammars G; and G, both compatible with the
PLD, G, is more highly valued than G, if and only if G; has fewer sym-
bols than G».

With this in mind, let’s return to the arrangements of auxiliary verbs.
Chomsky proposed in Syntactic Structures that there is always at least
one item in Aux position, and that that item is there whether or not the

41

Structure and Infinity

structure has any auxiliary verbs. The first item in Aux is always the
symbol C (= tense and agreement information; later we’ll look at C in
much more detail). If so, then instead of the PS rules in (113) we have the
ones in (115).

(115) Aux — C
Aux - CM
Aux — C HAVE
Aux — C BE
Aux — C M HAVE
Aux — CM BE
Aux — C HAVE BE
Aux — C M HAVE BE

Chomsky made the following empirical claim: It’s very natural for a
language to have the eight rules we’ve been discussing, rather than some
random eight rules for Aux. After all, we could imagine all kinds of dif-
ferent sets of eight rules using these symbols. So, we want to introduce
some notation that will allow the evaluation metric to give us the result
that the rules in (115) form a natural set. The notation also will be wired
in, of course.

Here’s the notation that Chomsky proposed:

(116) Aux — C (M) (HAVE) (BE)

What does this notation mean? It represents exactly the eight rules we’ve
been discussing, but counted by the evaluation metric as having the cost
of only one rule: Aux — C M HAVE BE. Informally speaking, M,
HAVE, and BE in (116) are each optional.

This move seems seductively natural, but one could imagine that the
world could have been otherwise. Imagine a language that has the fol-
lowing rules for auxiliaries:

(117) Aux — C M HAVE BE
Aux — C HAVE BE M
Aux — C BE M HAVE

As far as I know, no language on earth is like that. But maybe Martian is.
One may think, then, that Martian is impossible to characterize, because
the notation we used for English doesn’t work there. But in fact, it could
be characterized. We just have to make up a new notation. One natural
possibility is this:

4

Chapter 1

(118)

M/_\
Aux — C L HAVE
BE/

By using this notation, we’re saying that the three rules in (117) count as
no more expensive than any one of them. Why is this a natural notation?
Because what comes after C is a set of cyclic permutations of M, BE, and
HAVE: first pick any one of the elements on the circle, and continue
clockwise until all of them are taken.

Mathematically, there’s nothing to choose between (116) and (118). A
mathematician might want to use the notation in (118); and the study of
cyclic permutations is an area of mathematics. It’s only for empirical rea-
sons that we choose the notation in (116). In other words, the fact that we
choose (116) means that Chomsky’s notation has nothing to do with
mathematical “elegance’ or formal possibility; instead, it has to do with
empirical facts of human languages.

(116) is the core of the analysis of auxiliaries presented in Syntactic
Structures. It wasn’t until Aspects that Chomsky explicitly claimed that
the notation is wired in, but the claim was implicit in the earlier work.

The rule in (116) embodies a generalization about the gross order of M,
HAVE, and BE. But there are a lot of finer generalizations about how M,
HAVE, and BE are actually realized. Recall that M, HAVE, and BE take
on a lot of different forms. Even if we know that M, HAVE, and BE
occur in the order specified in (116), what tells us which instances of M,
HAVE, BE—and, finally, V—can actually occur? Here, Chomsky argued
that we need something more powerful than just PS rules to account for
all of the facts.

1.3.2 Verbal Morphology: More Generalizations

A further look at the examples with which section 1.3.1 began will lead us
to the next step. In particular, we will now look more carefully at the finer
details of the verbal morphology of English. First let’s consider the fol-
lowing alternations:

(119) John sings/sang
John is/was singing
John has/had sung
John can/could sing

43

Structure and Infinity

Here we seem to have four present/past alternations, holding the subject
constant. It’s a little tricky to prove that canfcould is a present/past alter-
nation as opposed to two separate modals. But Chomsky suggested an
argument that this is the case, based on a phenomenon often called
sequence of tenses.

(120) a. John says he owns a house
b. John said he owned a house

(120b) is ambiguous. One reading is that John said, “I own a house”’; the
other is that John said, “I owned a house.” Similarly for the following
examples:

(121) a. John said he is tired
b. John said he was tired

(122) a. John says he has solved the problem
b. John said he had solved the problem

When the main verb is past tense, past tense on the embedded verb can be
understood as present with respect to the time of the main clause, along-
side the expected past tense interpretation. Now note that (123b), with a
modal, shows just the same ambiguity.

(123) a. John says he can/will swim
b. John said he could/would swim

So there’s some reason for thinking that Chomsky’s treatment of modals
as showing tense alternations is correct. Thus, we’ll assume here that
modals do take tense. Ultimately nothing crucial will depend on this
treatment, but it’s the one that Chomsky gave, so for consistency, and in
the absence of a strong counterargument, we’ll adopt it too.

Now consider sentences with no auxiliary verbs.

(124) a. John owns a house present
b. John owned a house past
c. *John own a house bare
d. *John owning a house progressive
e. *John owned a house perfect

Here’s the generalization that describes these cases:

(125) Generalization 1
If the main verb is the first “verblike thing” in the sentence, then it
can appear in the “present” or “past’” form, but not in the “bare”
or “progressive” or “perfect” form.

44

Chapter 1

We have to tease apart “past” and “perfect,” which are often phono-
logically identical. By putting a star on (124¢) as opposed to (124b), we’re
assuming that the “past” and the “perfect” are different. (126) will make
this clearer.

(126) a. John writes present
b. John wrote past
c. *John write bare
d. *John writing progressive
e. *John written perfect

The perfect form of write in (126¢) is different from the past form of write
in (126b). This is the beginning of an argument to show that the past is
generally different from the perfect even though in (124) they have the
same phonological form.

Gutiérrez: Suppose we have a sentence like 7 write. Do we say that this is
the bare form? Or do we say that it’s the present form, but that the present
form and the bare form are phonologically equivalent?

Lasnik: Yes, that’s a very important question. Chomsky gave a com-
pelling answer to that question in Syntactic Structures showing that
there’s indeed a “zero morpheme” in a case like that.®

Can we extend Generalization I to other types of sentences? What’s
special about a sentence with no auxiliaries is that the main verb is the
first ““verblike thing.” What we want to do is to investigate whether
something like Generalization I holds for other things that might happen
to be the first “verblike thing” in a sentence. By ‘“‘verblike thing” we
mean, in addition to a verb, a modal or HAVE or BE. For Chomsky,
crucially, modals, HAVE, and BE aren’t verbs at all—that’s why I'm
calling them “verblike things.”

So let’s consider sentences with one auxiliary, starting with HAVE.
What forms of HAVE can occur when it’s the first “verblike thing” in the
sentence?

(127) a. John has written present
b. John had written past
c. *John have written bare
d. *John having written progressive
e. *John had written perfect!®

The generalization that covers these cases is similar to Generalization 1.

45

Structure and Infinity

(128) Generalization I’
If HAVE is the first “verblike thing” in the sentence, then it can
appear in the “present” or “past” form, but not in the “bare’ or
“progressive” or “perfect” form.

What happens when the first “verblike thing” in a sentence is BE?

(129) a. John is writing present
b. John was writing past
c. *John be writing bare
d. *John being writing progressive
e. *John been writing perfect

The generalization that describes these cases is very similar to General-
izations I and I'.

(130) Generalization I"
If BE is the first “verblike thing” in the sentence, then it can appear
in the “present” or “past” form, but not in the “bare’ or
“progressive” or “perfect” form.

Rather trivially, a parallel generalization holds for modals.

(131) a. John can write present
b. John could write past

(132) Generalization 1"
If a modal is the first “verblike thing” in the sentence, then it can
appear in the “present” or “past” form and no other form.

Modals seem to trivially fall under Generalization I since they have only
present and past forms, and no others, such as a progressive (*canning),
perfect, or bare form. (Bare forms can occur after fo in the infinitive
construction in English, so we can say to write or to be able to, but we
can’t say *fo can.)

Putting all these specific generalizations together, we have the following
overall generalization:

(133) Generalization I'
Whatever “verblike thing” is the first in a sentence, it will appear in
the “present” or “past” form.

Can we find any generalization about the second ‘‘verblike thing” in a
sentence? Consider the following examples:

46

Chapter 1

(134) a. Hecan go bare
b. He is singing progressive
c. He has written perfect
d. *He can goes present
e. *He can went past

The second “verblike thing” can be progressive, perfect, or bare. But it
cannot be past or present. Abstractly, English sentences can have these
sequences of two ‘“‘verblike things™:

(135) BEV
MV
HAVE V

The form of the second ““verblike thing” depends on what the preceding
“verblike thing” is. One combination is “BE + progressive.”

(136) a. John is singing
b. John was singing

A second is “modal + bare.”

(137) a. John can swim
b. John could swim

A third is “HAVE + perfect.”

(138) a. John has written
b. John had written

From these facts, we can deduce Generalization II.

(139) Generalization IT
a. When a sentence has two “verblike things” and the first is
HAVE, then the second appears in the “perfect”” form.
b. When a sentence has two “verblike things” and the first is BE,
then the second appears in the “progressive’ form.
c. When a sentence has two “verblike things” and the first is a
modal, then the second appears in the “bare’”” form.

What happens when a sentence has three ““verblike things” and the first
is HAVE? As (140) shows, the “verblike thing” that follows HAVE still
appears in the perfect form.

(140) a. John has been writing
b. John had been writing

47

Structure and Infinity

Finally, what if a sentence has more than three “verblike things™?
(141) John could have been writing

The generalization is the same. We can therefore state the following
overall generalization:

(142) Generalization IT"
Whenever HAVE occurs, the very next “verblike thing” appears in
the “perfect” form.

Now let’s look at modals. What kind of thing can come after a modal?
(143) gives some examples, and (144) the generalization we can draw from
them.

(143) a. John must write
b. John must have left
¢. John must be singing

(144) Generalization III
Whenever a modal occurs, the very next “verblike thing” appears
in the “bare” form.

Finally, let’s look at BE. What kind of thing can follow BE? (For the
moment I’ll abstract away from sentences like John is tall and John was
arrested, which are sentences where BE seems to be the only “verblike
thing.”)

(145) a. John is sleeping

John was sleeping

John has been sleeping

John may be sleeping

John may have been sleeping

°oao0 o

The generalization we can draw about BE is the following:

(146) Generalization IV
Whenever BE occurs, the very next “verblike thing” appears in the
“progressive” form.

So, when a sentence has BE, it has ing (progressive). When a sentence
has HAVE, it has en (perfect). When a sentence has M, it has the bare
form. BE and ing do go together, but they don’t go fogether. There’s
something in between. HAVE and en do go together, but they don’t go
together. There’s something in between. We have a paradox. The rule that

48

Chapter 1

Chomsky proposed to resolve the first part of the paradox, the depen-
dency, is the following, an extension of (116):

(147) Aux — C (M) (have en) (be ing)

As before, this rule is an abbreviation of eight rules. First, as before, C
(tense-agreement morphology) precedes the first “verblike thing.”” Second,
this rule correctly guarantees that have and en are always introduced to-
gether, and similarly for be and ing. But notice that have actually intro-
duces the perfect form of the next “verblike thing” and be introduces the
progressive form of the next “verblike thing.”” This situation is shown in
(148).

e

have be en writ ing

(148) represents a cross-serial dependency. PS rules can’t in general deal
with these dependencies; they’re good at characterizing nested depen-
dencies, as we saw, but not cross-serial ones.

To see this point, recall what a derivation is in a PS grammar. It’s a
sequence of lines, such that the first line is the designated initial symbol,
maybe S, we derive the second line from the first by rewriting one occur-
rence of one symbol, and we keep going until we reach symbols that can’t
be rewritten. The symbols that can’t be rewritten, the terminal symbols,
are those that don’t occur on the left-hand side of any arrow.

Let’s see just how effective a PS grammar is in capturing the general-
izations discussed above. Suppose we want to generate the following
sentence:

(149) John might have been kissing Mary

We’ll be using Chomsky’s PS rules (page 111 of Syntactic Structures), but
we’ll add two more rules just to simplify the derivations.

(150) NPg;,, — John
NPg;pe — Mary

The PS rules give us the following derivation, among numerous possible
ones:

(151) S
NP VP
NP Verb NP

49 Structure and Infinity

NP Aux V NP

NPgpe Aux V NP

NPg,, C M have en be ing V NP
John C M have en be ing V NP

John C M have en be ing V NPy,
John C M have en be ing V Mary
John C may have en be ing V Mary
John C may have en be ing kiss Mary

We already know that if we collapse all the equivalent derivations, we get
the PM for the sentence in (149). Let’s look at (152), the collapsed PS tree.

(152) S
/\
NP VP
| T
NP, Verb NP
T |
John Aux \% NP,

AN N

C may have en be ing kiss Mary

Apparently, we end up with something that we don’t want to generate.
(153) John C may have en be ing kiss Mary

(152) captures the fact that have and en are introduced together, but not
that en ends up on be. It captures the fact that be and ing are also intro-
duced together, but not that ing ends up on kiss. The question is, how can
we rectify this? With PS rules we can’t generate this sentence in any illu-
minating way. The best we can do with PS rules is to list all the cases.
Chomsky argued on this basis that we need a device more powerful
than PS rules, a device that’s capable of capturing these paradoxical
regularities.

