Random Variables and Probability Distributions:
Formalizing Uncertainty

Uncertainty is everywhere. Being able to organize and process uncertainty
helps distinguish good from mediocre planners. An essential planning
task is making predictions in the face of uncertainty: How many children
of school age will live in a new development? What peak level of traffic
can be expected in a vacation resort? How long will a tenant occupy
an apartment? How many graduates of a job-training program will be
employed six months after graduation? How likely is it that a small
town will employ a professional city manager if it grows to 50,000 people?
What is the likelihood that a patient will have to wait more than an hour
to be treated in a city hospital emergency room? The list of questions is
endless, and the questions lurk in every corner of city planning. This
chapter is about a language for answering such questions.

The language is probability theory. You will see only the bare bones
of the theory in this book, but you should learn enough to acquire useful
skills and to be able to learn more as necessary. Probability is about
random variables, which are variables whose values are not certain
ahead of time. The answer to each question above is a random variable.
For instance, the number of children in the new development could
range anywhere from zero to a large number. In two identical develop-
ments the numbers of children are likely to be different, and in any one
development the number will change over time. If we could only peek
ahead in time, we could actually count the children of the future tenants;
but we cannot, so we must make an educated guess. Our education for
guessing derives from our knowledge of other similar developments and
of typical tenants and perhaps from our own intuitions about the parti-
cular development in question.

We express our knowledge about the possible values of a random
variable in terms of its probability distribution. To every possible value of
the random variable there corresponds a number that represents the
probability the random variable will take on precisely that value. The
collection of possible values and their probabilities is the probability
distribution. The probability assigned to each value of the random
variable is a fraction between 0 and 1.0. If the probability is zero, the
corresponding value can never occur; if the probability is unity, the
corresponding value will certainly occur. The full set of possible values
of the random variable must be “mutually exclusive and collectively
exhaustive,” meaning that one and only one of the possible values will
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actually occur. Since the random variable must take on some value,
the probabilities assigned to all the possible values must sum to 1.0.

As an example, consider the eleven towns in Massachusetts with 1975
populations of 30 to 35,000. Suppose we wish to study their type of
local government. The random variable of interest is governmental
structure. It can take on three values: open town meeting, representative
town meeting, and city council. Note that the random variable need
not be a number; in this case it is a category. Note also that the govern-
mental structure is not random in the sense that the type of town govern-
ment changes from day to day like the weather. Each town among the
eleven has one form of government and has doubtless had that particular
form for a long time, and if someone named a particular town and asked
us its form of government, we would look up the answer. But if the
question were put more generally, we would have to use a probability
distribution: ““What is the chance that any given town has a representative
town meeting?” To answer this, we turn to the probability distribution
of the random variable shown in table 1.1. The answer is that, not knowing
the identity of the town (other than that it is in Massachusetts and has
30 to 35,000 people), there is a 0.37 probability that the town uses a
representative town meeting. Our formal notation for expressing this
result will be

Prob [town has representative town meeting] = 0.37.
Of course, any particular town either does or does not have such a
Table 1.1

Form of local government in 11 Massachusetts towns of 30 to
35,000 population

Form of government  Number of towns  Fraction of towns

Open town mecting 2 0.18

Representative town

meeting 4 0.37

City council 5 0.45
11 1.00

Source: Massachusetts League of Cities and Towns, Municipal
Directory, 1975-1976.
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forum, but all we can do when considering an anonymous town is give
the relative likelihoods of the alternative forms of government.

We can now make two observations about predictions using our
probability distribution. First, if someone asked us, “Which type of
government do you think a given town has,” we should answer, “City
council.” This is the modal, or most frequently occuring category, and
is our best bet for a guess. We stand a 45 percent chance of being right,
compared to only 37 and 18 percent for the other possible guesses. We
still have uncertainty, but we have marshalled our evidence and used it
to improve on a blind guess which treats all three answers as equally
likely. Second, if someone asked us how many of 100 towns of 30 to
35,000 population use either form of town meeting, we have our proba-
bility distribution as a starting place. If all the towns were like those in
Massachusetts, we would expect about 55 to have town meetings; if
all 100 towns were in the midwest, we might expect that 55 would be an
upper bound on the number, presuming that town meetings are more
common in New England than elsewhere. In this case we are using the
data to inform a subjective estimate of probabilities.

It is important that you be able to read and write probability dis-
tributions. There are two varieties, corresponding to discrete and con-
tinuous random variables. A discrete random variable only takes on
values from a distinct set: the three types of local government in the
example above, the number of children in the new development, the
number of users of a neighborhood health center. Probability distri-
butions for discrete random variables all look generally like that shown
in figure 1.1a. The height of each vertical line represents the probability
that the random variable takes on the value in question. If you stack
the lines end to end they must form a line of length 1.0 (the probabilities
must sum to 1.0). Note that some probabilities (like the fifth value in
the graph) will be zero, meaning that the random variable can never take
that value.

Continuous random variables are not so restricted in the values they
can take on—there are an infinite number of possible values. An example
would be the length of time spent waiting for treatment in a city hospital
emergency room. There is no reason to expect this wait to occur exactly in
intervals of 5 minutes or 1 minute; although we may ultimately be
forced to record the time in discrete units of 1 second intervals, in principle
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Examples of probability distributions for discrete and continuous random variables
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we can treat the waiting time as if it were perfectly continuous. In the
case of continuous random variables, the probability distribution is
a smooth curve as in figure 1.1b, not a sequence of vertical lines, and
shows not the actual probability that the random variable takes on
the particular value, but the probability relative to other possible values.
While the curve cannot drop below the horizontal axis, it need not stay
below unity since the height of the curve represents the relative likelihood
of the value below it, not the actual probability as in the discrete case.
However, just as the sum of the discrete probabilities must equal unity
so must the area under the curve of the continuous probability distri-
bution. For continuous random variables we can ask only interval
questions, for example, “What is the probability that the waiting time
is between 15 and 20 minutes™; or “What is the chance that the waiting

0.02 Area = probability
® waiting time is between
g 15 and 20 minutes
E % Area = probability waiting
_§ é time exceeds 60 minutes

I / ] ] ]
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Possible value of waiting time {minutes)

Figure 1.2

Hypothetical probability distribution of waiting time in a city hospital emergency
department
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time exceeds 60 minutes?”’ The answers to these questions are the cor-
responding areas under the curve, as shown in figure 1.2 (the entire
area must equal 1.0).

Of course, we can ask similar interval questions of discrete random
variables. Consider the discrete distribution shown in figure 1.3 for the
number of patients who arrive at the emergency room during a certain
hour. From figure 1.3 it appears that the probability that seven or more
patients will arrive is less than 0.01, the probability that zero or one
will arrive is about 0.40, and the probability of three to five arrivals is
also about 0.40. These compound probabilities are obtained by adding
together the appropriate individual probabilities: the probability of zero
or one arrivals is the probability of zero arrivals plus the probability
of one arrival.

0.5

Probability of the indicated number of arrivals

| 1 N . .

0 2 3 4 5 6 7 8 9+

Number of patients arriving during one hour

Figure 1.3
Hypothetical probability distribution of the number of patients arriving at a city hospital
emergency department during one hour
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Where do the probability distributions come from? That in figure 1.3
follows a theoretical pattern (a Poisson distribution with a parameter
2.0, see chapter 4), and the probabilities are tabulated in statistical
reference books or can be computed from a formula. In practice, we
might not have a fully developed theory, so we might rely heavily on
measurements, counting the number of arrivals at the emergency room
during the same hour on a number of different days, and construct a
histogram of the number of days for which the arrivals totaled zero,
one, two, and so on. Such a histogram is shown in figure 1.4, which
displays the results of 26 2+ 7 +9 + 3 + 4 + 0 + 1) observation
days. On 3 of the 26 days there were exactly 3 patients arriving during
the hour chosen for study; on 9 of the 26 days exactly 2 patients arrived.
It is a trivial matter to convert the histogram into a legitimate probability
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Histogram of the number of patients arriving at a city hospital emergency department
during one hour
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distribution: just divide each number of days by the total (26) to make
the corresponding probability. Thus, for instance, the estimate from
the 26 days of observations is that there is a 4/26 = 0.15 probability
of exactly 4 arrivals.

You should never fall into the trap of believing that doing statistics
is a mindless, automatic process free of substantive judgment; the design
of histograms offers a simple but telling instance. I use the word “design”
consciously, since a statistical construct like a histogram is as much an
artifact as a built structure—having many possible forms, of which one
is chosen to fulfill a function. Both the component parts of the histogram
and their organization must be selected carefully by the analyst. In the
case of the histogram of the number of emergency department arrivals
during one hour, the first design choice involves the definition of *‘arrival.”
Since some nonemergency cases arrive at the emergency department
and are immediately directed to some other part of the hospital (or
out of the hospital altogether), there must a decision made as to whether
those people who receive no care count as arrivals. Likewise, family
members accompanying a patient may count as arrivals for the facility
designer who must arrange for their seating but not for the hospital
administrator who must determine the physician staffing level. A second
design choice involves which time periods to use for the hourly counts
of arrivals. If the arrival rate varies significantly by time of day (as it
almost always does for urban emergency services), then only counts for
the same hour of the day can be used. But if the arrival rate also varies
significantly by day of the week, then it may be necessary to gather data
only once each week rather than once every day. These decisions about
data pooling depend both on the nature of the random process generating
the data and the use to which the histogram will be put. A third design
choice involves the selection of categories for display of the data. Here
the histogram designer feels two opposing pressures. To preserve detail,
the designer wishes a large number of categories, yet to preserve com-
pactness and smoothness in the display he wishes a small number of
categories. This tension was resolved in figure 1.3 by combining all
large numbers of arrivals into the category 9+. The resolution is usually
less obvious when the random variable in question is continuous and
has no natural categories, as in the case of waiting times in the emergency
department. Finally, it may happen that there are no data available
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on which to base a histogram, or the available data are not directly
applicable (perhaps arising from the wrong time or place), so the distri-
bution becomes an exposition of the planner’s best subjective judgment.
In all cases, the histogram is the planner’s creation, formalizing his
uncertainty.

Summary

Much of planning involves a confrontation with uncertainty—predicting
the values to be taken on by random variables. By a combination of
empirical and/or subjective methods we summarize in a probability
distribution our knowledge of the relative likelihoods of the various
possible values of a random variable. The form of the distribution
varies depending on whether the random variable is discrete or con-
tinuous, but the knowledge provided is always the probability that the
random variable takes on some particular value or set of values.
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Problems

1.1

The table that follows reports on ambulance response time (the time
delay between calling an ambulance and its arrival at the scene of an
emergency) in rural areas around Wheeling, W. Va. Use the table to
plot a histogram of response time. Note that the table itself reports
cumulative response time.

Time (minutes) Percentage of calls answered
5 24
10 62
15 81
20 89
25 93
30 96
>30 100
1.2

The following data show the number of new housing units authorized
by building permits in Belmont, Mass., from 1960 to 1974. Prepare a
histogram of the number of units authorized each year.

Year Number of units authorized
1960 55
1961 67
1962 108
1963 81
1964 66
1965 37
1966 44
1967 14
1968 104
1969 12
1970 364
1971 25
1972 30
1973 27

1974 20
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1.3

The following data show the number of home sales in Boston neighbor-
hoods over a 2-year period. Use these data to make a histogram illustra-
ting the change in level of sales from 1975-76 to 1976-77. Justify the
choices you make regarding the issues of representing the changes in
each neighborhood (absolute vs. percentage differences) and aggregating
the cases into groups.

Home sales
Neighborhood 7{75 to 6/76 7/76 to 6/77
Roxbury 266 148
North Dorchester 663 479
South End 180 144
Jamaica Plain 258 200
South Boston 250 176
West End 134 84
South Dorchester 686 536
Charlestown 154 83
East Boston 275 200
Roslindale 292 218
Back Bay-Fenway 361 325
Hyde Park 300 318
Allston-Brighton 297 241
North End 45 53

West Rosbury 292 233




