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1.1 State Variables and Communication Theory

A state variable description of systems and random process es otTers
several advantages from both theoretical and practical viewpoints . From
a theoretical aspect, such a description provides a very general charac-
terization in terms of which a large class of systems, possibly time
varying and nonlinear , can be modeled . Many powerful and elegant
statements can be made with regard to systems described in this manner .
From a practical aspect, they often provide a more representative
physical description of the actual dynamics of the systems involved .
More importantly , a state variable approach often leads to solution
techniques that are readily implemented on a computer . This is highly
desirable when specific numerical results are required .

The essential feature of a state variable approach is that the systems
and process es of interest are described in terms of dif Terential equations
and their excitation , which is usually a white noise process. This is in
contrast to the impulse response and covariance function description of
systems and process es commonly used in the analysis of communication
problems . Since a computer is ideally suited for integrating dif Terential
equations , one can easily see how a state variable formulation leads to
ef Tective computational solution methods .

In the area of automatic control , state variable concepts have been
used extensi\'ely, so much so that they are the approach used in the
majority of problems now studied . In communication theory , by contrast

, they are not employed nearly as extensively . While a state variable



description is certainly not appropriate in many situations , there are a
large number of problems in communication theory where these concepts 

can be used advantageously . This monograph is directed to those

people in communication theory who want to exploit some of the concepts 
and methods of state variables in the analysis of their problems .

The use of state variables is not novel in that they have already provided
ef Tective solutions to several important problems in communication
theory . Undoubtedly , the most significant of these is the original work
of Kalman and Bucy on optimal linear minimum mean square error
realizable filtering .35 In the classical approach , as used by Wiener , the
random process es are represented in terms of their covariances . The
impulse response of the optimum filter then is determined in terms of
these covariances , or their associated spectra. Consequently , the
optimal estimate is the result of the explicit operation of this impulse
response upon the observed signal . In contrast , Kalman and Bucy
represented the random process es in terms of state variables . They then
found a structure for the optimum filter in which the desired estimate is
specified implicitly as the solution to a set of dif Terential equations . The
principal advantage here is that it is usually more convenient , especially
computationally , to implement solving the dif Terential equations than
it is to realize the operation implied by the impulse response.

Starting with the concepts introduced in their papers, several people
have used state variable techniques in analyzing problems concerned
with the detection and estimation of random process es. Particularly
noteworthy contributions have been made by Schweppe in the detection
of Gaussian random signals in Gaussian noise,52 Kushner in the general
theory of nonlinear filtering ,4O and Snyder in the application of state
variable , nonlinear filtering to communication systems.61 Certainly ,
many other results published in the control literature are also relevant
to communication problems .

I Iere, we are principally interested in how state variables can be
used ef Tectively to solve several of the integral equations that frequently
appear in communications theory . These equations and their associated
theory assume an important role in communications . One often
encounters situations where a fundamental result ofa particular analysis
is succinctly stated, or formulated , in terms of some appropriate integral
equation that needs to be solved.

There are several prominent examples of this . The Karhunen -Locve
theorem describes an orthonormal expansion of a random process
where the set of orthonormal functions {<Pi Ct) } is chosen such that
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* Ref. 22, pp. 96- 101, Ref. 67, pp. 178- 198.
t Ref. 67, pp. 287-325, or Ref. 29, pp. 95- 121.
; Ref. 67, Chap. 6 and Ref. 68, Chaps. 3-5.
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the coefficients are uncorrelated .* These functions are specified by the
solution of a homogeneous integral equation

where the kernel Ky ( t , -r) is the covariance of the expanded random

process , <Pi ( t ) is an eigenfunction solution , and Ai is its associated

eigenvalue , which is equal to the mean square value of the ith generalized

Fourier coefficient in the expansion . In many applications this expansion

simply is done conceptually in the course of an analysis . There are

several problems , however , where one is interested in the actual expansion

, especially the eigenvalues . In these situations obtaining specific

solutions reduces to solving this homogeneous integral equation .

A problem often encountered is the detection of a known signal in

the presence of a colored noise . t Typically , on one hypothesis only a

noise process n ( t ) with a covariance Kn ( t , -r) is present , while on the other

hypothesis there is a known signals ( t ) present in addition to the noise .

The optimal receiver and its performance are specified by an inhomogeneous 

integral equation

IT ! Kn ( t , -r ) g ( -r ) d -r = s ( t ) , To ~ t ~ Tf ' ( 1 . 2 )
To

The receiver correlates the observed signal with the solution g ( t ) of this

integral equation , and the detector performance can be related to the

integrated product of g ( t ) and s ( t ) . Several problems in communications

essentially reduce to solving this integral equation ; therefore , obtaining

a solution can often be of significant practical interest .

The Wiener - Hopf equation has a fundam .ental importance in much of

communication theory . ; In its general form , it specifies the optimum ,

linear , minimum mean square error estimator of a random signal in

noise . This estimator appears frequently in both detection and estimation 

theory problems . For example , it is the estimator in the estimator -

correlator for the detection of Gaussian random signals in noise , or it is

used to compute the likelihood function for estimating the parameters of

a random process imbedded in noise . This equation has the form



where Kr(u, T) is the covariance of an observed signal , Kdr(t, T ) is the
cross covariance of the desired signal and the observed signal , and
ho(tu ) is the impulse response of the optimum estimator at time t .
Usually we are interested in the estimate rather than this impulse response

; consequently , in a state variable approach we derive adifferential 
equation structure specifying the estimate and from which the

impulse response can be obtained if desired.
When T J is fixed , this estimator corresponds to the optimum unrealizable 

filter , often referred to as the optimal smoother . In contrast ,

in the problem solved by Kalman and Bucy , T J increases in time and t
equals or exceeds T J . Although their work has an important place in
much of our discussion , we are principally concerned with the cases of

fixed T J and when t is less than an increasing T J by a fixed amount
corresponding to the optimal smoother and filter with delay, respectively .

The commonly used impulse description of systems specifies a linear
integral operator , and often one is led naturally to an integral equation
in the analysis of many problems . Consequently , either in the abovementioned 

problems or in the context of some other , these three integral
equations frequently appear in communication theory . By demonstrating
how state variable concepts can be used to solve them , we can provide a
useful approach to many problems that appear in communication
theory .
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1.2 Organization

We essentially divide the monograph into two sections. In the first ,
we develop from first principles the state variable solution techniques
for homogeneous and inhomogeneous Fredholm integral equations .
We make three essential assumptions . First , the kernel of the integral
equation is a covariance function of a random process. This is the
common situation in many communication theory problems . Second, a
random process with this covariance function can be generated by
exciting a linear system with white noise. This is analogous to generating
a process with a specified spectrum by driving a system having an
appropriate transfer function with white noise. Finally , we assume that
the system for generating this process with the specified covariance has
a known , finite dimensional state variable description of its input -
output relationship . This assumption relates the description of the
random process es by their covariances to their description as being
generated via state variable methods .

Under these assumptions we can analyze problems involving a large
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class of kernels . Many kernels corresponding to covariances of the output 
of time -varying systems can be considered in addition to the

important special case of stationary kernels , or covariances , with
rational Fourier transforms corresponding to the outputs of time -
invariant , or constant -parameter , systems.

To solve these integral equations , we first need to discuss how random
process es propagate through linear systems described by state variables .
In particular we need to develop the properties of the covariance functions 

of these process es. This is done in Chapter 2.

With this preliminary discussion , we study the homogeneous and
inhomogeneous integral equations in Chapters 3 and 4, respectively .
Both of these equations are reduced to two linear differential equations
and an associated set of boundary conditions . The coefficients of these
differential equations and the boundary conditions are specified
directly by the matrices describing the system that generates the random
process with the specified kernel .

The eigenvalues of the homogeneous equation are found to be
solutions of a transcendental equation involving the transition matrix
of the differential equations mentioned above. The eigenfunctions also
follow directly . By using this same transcendental equation we can
derive an effective method for calculating the Fredholm determinant
function .

We then derive the differential equations and boundary conditions
for the inhomogeneous integral equations . Since the resulting differential
equations are identical with those that specify the structure of optimal
smoother , we can exploit the solution techniques that have been
developed in the literature for this problem . Throughout our analysis ,
we place our discussion in the context of the problem of detecting a
known signal in the presence of colored noise.

I n the second section of this monograph , we discuss two specific applications 
of our integral equation theory . We can observe the utility of

both the actual results of the theory and the approach es used in deriving
it in this context . In Chapter 5 we consider the design of optimal signals
for detection in the presence of colored noise using modern optimal
control theory . We focus our attention on additive signal -independent
noise channels. When energy and mean square bandwidth constraints
are imposed , we are able to solve the signal design problem completely .
We present some specific examples, indicating both the optimal signals
and performance gain over more conventional signals. While we
focus on this problem , however , our approach is not limited to this
class of channels . We can consider different constraints and some signal -
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dependent channels, including some reverberation models . To date,
however , the nonlinear equations resulting from the application of the
optimal control theory have not proved at all easy to solve.

In Chapter 6, we consider the estimation problems of optimum linear
minimum mean square error smoothing and filtering with delay of
random process es that are observed corrupted by additive noise. One
of the central issues is the solution of the Wiener -Hopf equation . In the
filtering problem as studied by Kalman and Bucy, tIle cstimate is made
at the end point of an observation interval using all the available past
data . Since the estimate is optimum only at a single point for any
particular observation interval , the filter generates what is often
termed a point estimate . This observation interval increases in time as
more data are received, and the filter generates a sequence of estimates,
each of which is an optimum realizable , or causal, estimate of the signal
process at the end point of the observation interval defined at that
specific instant of time . In contrast , the smoother is a noncausal
interval estimator , roughly analogous to the unrealizable filter . For a
fixed observation interval , it generates an optimum estimate of the
process over the entire interval . Like the Kalman -Bucy filter , the filter
with delay is a point estimator with an evolving end point . However ,
we make an estimate at an interior point within the observation interval
rather than at the end point . By allowing the delay, we can improve our
estimator performance over that of the Kalman filter , and still use a
realizable filter whose output evolves in time as more data are received.
In both of these problems we derive the estimator structure and its
associated performance . The results of our integral equation theory are
the starting point for our approach .

In Chapter 7 we briefly consider some aspects of nonlinear estimation
theory which can be approached using our methods . To do this we need
to change our estimation criterion to one of maximum a posterior i
probability and restrict ourselves to Gaussian process es that have been
observed by means of a nonlinear modulation . Here the solution

methods become rather difficult , and we are quickly led to approximate
techniques .

Throughout the monograph we present many examples. We do this
for two reasons. We work a number of analytic examples to illustrate
the use of methods we derive . We also present a number of examples
analyzed by numerical methods . In the course of the monograph we
emphasize the numerical aspects of our methods . We feel this is where
the major application of much of the material lies. Finding effective



We also indicate our notational conventions . Generall Yt scalars are
symbols in italic typet vectors are lower case symbols in boldface typet
and matrices are upper case symbols in boldface type .

1.3 Notation

NOTATION 7

numerical procedures is a very relevant problem , since most problems
are two complex to be analyzed analytically .


