
Introduction

1.1.1 Motivation

Historically , feedback has been used in control system engineering as a
means for satisfying design constraints requiring
(i) stabilization of insufficiently stable systems;
(ii ) reduction of system response to noise ;

(iii ) realization of specified transient -response and/or frequency -response
characteristics (e.g., prescribed poles and zeroes) ; and

(iv) improvement of a system's robustness against variations in open-
loop dynamics (e.g., parameter variations , unmodeled dynamics or nonlinearity

, singular perturbations , etc.) .

Classical feedback synthesis techniques (viz ., the graphical techniques
involving Nyquist loci , Bode plots , Nichols charts , etc.) include procedures
that ensure directly that each of these types of design constraints is satisfied

[16, 43]. Unfortunately , the direct methods of classical feedback theory
become overwhelmingly complicated for all but the simplest feedback

configurations ; in particular , the classical theory cannot cope simply and
effectively with multiloop feedback .

Modern feedback design techniques - these include , for example ,
pole-placement [18] , linear -quadratic -Gaussian optimal feedback [9, 10],
etc.- have made relatively simple the solution of many multiloop control
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synthesis problems . The modern techniques can be readily applied in a
computer -aided-design environment to provide an effective method for
solving feedback design problems having constraints of the first three of the
aforementioned types. However , the modern methods do not lend themselves 

naturally to problems in which there are design constraints of the
fourth type , i .e., specifications calling for a robust tolerance of bounded

uncertainty , nonlinearity , or variations in open-loop dynamics .
The inability of modern feedback synthesis techniques to handle such

robustness specifications as easily and naturally as classical techniques
stems from a fundamental difference between the classical and modern

approach es to feedback design. In classical feedback synthesis techniques ,
the design model of the plant (typically a Nyquist locus) serves to specify
directly the set of stabilizing scalar feedback gains for the plant model :

a scalar feedback gain k is stabilizing for the plant model if and only if
Ilk lies (on the real axis) in the complement of the region of the complex
plane . enclosed by the Nyquist locus of the plant . If the plant model is
known to be accurate only to within certain bounds , then one can model

this bounded uncertainty with a " fuzzy " Nyquist locus , for which the set

of stabilizing feedback gains is still given by the complement of the region
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Figure 1.1 The feedback gain k stabilizes every plant whose Nyquist locus lies
inside the shaded " fuzzy" band about the plant model.
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1 Recall that a model -reference estimator is an estimator incorporating an
internal model of the process dynamics . In such estimators " residual error "

(which is the difference between the model output and the observed process
output ) is fed back to the internal model so as to control the estimate error

[ 104, p . 403]. Virtually all practical recursive estimator designs (including for
example the Kalman filter , the extended Kalman filter , and the Luenberger
observer ) are model -reference estimators .

enclosed by the Nyquist locus (figure 1.1). The property of classical feed..
back techniques that enables engineers to deal easily with robustness
specifications- a property not possessed by modern multivariable feed..
back synthesis techniques- is this natural characterization of sets of ro..

bustly stable feedback laws directly in terms of sets of possible plant dy...
nam I Cs.

In the jargon of classical feedback theory, the maximal variation in
plant open-loop dynamics- e .g., the maximum " fuzzlness" of the plant
Nyquist locus- that can be tolerated before a particular feedback design
becomes unstable defines that design's stability margins.. gain margin and
phase margin are quantitative measures of stability margin. Engineering
experience has shown that the stability margins of a feedback design
provide a useful measure of its robustness against the effects of bounded
variation in open-loop dynamics; consequently it is common for feedback
controller design specifications to include requirements for prescribed
minimal gain margin and phase margin. .

The fundamental objective of the research reported here has been to
develop a means for incorporating robustness specifications- i.e., design
specifications calling for prescribed stability margins- into modern multivariable 

feedback design procedures, including procedures employed in

multivariable stochastic model-reference estimator design.! One may ap..
propriately view this fundamental objective as being the development of
a theory of approximations applicable to multivariable dynamical systems,
a theory that quantifies the trade-offs between modeling approximations
and feedback-law choice by associating with each feedback law stability
margins establishing limits to the tolerable imprecision in the system
model. Such modeling approximations arise routinely in every engineering
problem, not only as a consequence of the unavoidable uncertainly
associated with physical process es, but also as a consequence of intentional
model simplification. The latter includes such common practices as
linearization, neglect of weak coupling between subsystems in decentralized
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designs, and time-scale decomposition into low-, medium-, and high-
frequency system models; the latter is a standard engineering strategy
employed in developing simplified hierarchical designs.

III theone

is taken be of this regIon, then theto

space on which the system's dynamical relations are defined, the relation
for the forward loop lying part of the separated space and

the other part the complement

1.1.2 Description of Results
The central result described in this book- a fundamental theoretical re~ult
which forms the foundation of the entire work - is an abstract and extremely 

powerful new stability theorem ( theorem 2 . 1 ) . In essence , the

theorem shows that a multiloop feedback system is closed - loop stable if

there exists a topological separation ( into two disjoint sets ) of the function

back designs having a nondynamical scalar feedback gain k . The input -
output relations may be specified by , for example , transfer function
matrices or, possibly, nonlinear state equations: in the former case the
topological separation condition can be verified in the frequency domain.
leading directly to powerful multiloop generalizations of the circle and

Popov stability criteria (see section 2.5) ; in the latter case one finds that the

classical Lyapunov stability theory emerges as a special case in which a

positive -definite Lyapunov function is used to establish the topological
separation (corollaries 2.1 a, b) . Inasmuch as the new stability theorem
includes as special cases some of the most powerful existing stability theo -

relation for the feedback loop lying in the other . This theorem has a direct

bearing on the robustly stable feedback synthesis problem : if one part of
the separation is taken to be a bounded region about the plant model and

theorem provides a direct characterization of the set of robustly stable

feedback laws as the complement of the set of possible plant input -output
relations , just as the Nyquist theorem does for sin.Q;le-loop classical feed-

Accomplishing this fundamental objective has entailed the development
of

(i ) a means for specifying stability margins for multiloop feedback sys~

terns (since classical single ~loop characterizations of stability margins ,

such as gain and phase margin , are in general inadequate for characterizing

multiloop stability margins ) ; and

(ii ) a new stability theory that provides a direct characterization of sets

of robustly stable multiloop feedback laws in terms of " fuzzy " sets of

possible multiloop plant dynamics .



rems (e.g., Lyapunov , Popov , or circle stability criteria ) and inasmuch as

it provides a fundamentally new perspective for stability theory (viz .,
topological separation of function spaces) , it constitutes a new theory of
stability - the theorem has been designated the main stability theorem.

A methodology based on this main stability theorem has been devised

for multiloop feedback system robustness and stability margin analysis
(section 2.6) . The methodology , which is in much the same spirit as the

classical approach to single-loop robustness problems , uses frequency -
dependent " sector conditions " to characterize the frequency -dependent
" fuzzlness" in a multivariable design model . A special case of the main

stability theorem called the sector stability theorem (theorem 2.2) together
with various frequency -domain tests (section 2.5) of the conditions of the

sector stability theorem provide a practicable means for specifying multivariable 
feedback system stability margins and a theoretical basis for the

design of robust multiloop feedback laws to meet such specifications ; a
conceptual computer -aided design procedure is outlined in section 2.6.

Potential applications of the results include simplified hierarchical control

for large systems and gain scheduling for adjustable set-point nonlinear
regulator systems.

The implications of the new theory with regard to the stability margins of
modern multivariable linear -quadratic -Gaussian (LQG ) optimal estima-
tors and controllers are examined in detail . The continuous -time case is

considered in chapter 3, and the discrete-timejsampled -data case in
chapter 4.

The design-specific stability margins of optimal linear -quadratic state-

feedback (LQSF ) designs are characterized in terms of the system matrices ,
quadratic -performance -index weighting matrices , and the optimal solution 

of the Riccati equation : these margins are characterized as a convex

set of nonlinear dynamical deviations between the design model and the

actual plant that can be tolerated without inducing instability . Additionally
, it is shown that the continuous -time LQSF optimal design procedure

is inherently robust in that it automatically ensures certain minimal

stability margins including an infinite gain margin , at least a :!: 600 phase
margin , and at least a 50 % gain reduction tolerance at each control input
channel ; discrete-timejsampled -data designs are found to approximate

this inherent robustness , but the robustness is degraded as the sampling
interval increases.

Viewing the Kalman filter as a feedback system in which residual error
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is fed back to control the estimation error , the duality between Kalman
filters and LQSF contro Jlers is expoloited to provide a characterization of
the nonlinearity tolerance of a constant -gain extended Kalman filter

(CGEKF ) ; the CGEKF is a nonlinear extended Kalman filter employing a
precomputed constant residual -gain matrix and having drastically reduced
on-line computational requirements relative to extended Kalman filters

employing a time -varying residual -gain matrix that is adaptively updated
on-line . The results include analytically verifiable conditions that can be

used to confirm the (global !) stability of CGEKF designs and , provided
that the CGEKF incorporates an accurate internal model of the nonlinear

process dynamics , ensure the nondivergence of CGEKF estimates. The
CGEKF design procedure is found to have an inherent robustness which

can be interpreted as including an infinite gain margin , at least :f: 60 %
phase margin , and at least 50 % gain reduction tolerance at each sensor
output channel ; though it should be noted that , because an accurate internal 

system model is required for CGEKF nondivergence , the CGEKF

robustness results do not have the same interpretation as the dual LQSF
robustness results .

The CGEKF and LQSF robustness results are shown to combine in a

fashion reminiscent of the separation theorem of estimation and control to

suggest a powerful technique , based on linear -quadratic -Gaussian optimal
feedback theory , for the synthesis of simplified dynamical output -feedback
compensators for nonlinear regulator systems. The technique leads to a
feedback compensator design consisting of a cascade of a CGEKF and an

optimal constant LQSF gain matrix . It is proved that the inherent robustness 
of optimal linear -quadratic state feedback against unmodeled nonlinearity 

combines with the intrinsic robustness of the CGEKF to assure

that such feedback designs will be closed-loop stable even in systems with

substantial nonlinearity , assuming that the CGEKF incorporates an
accurate internal model of the nonlinear plant dynamics .

The aforementioned LQSF regulator stability results and CGEKF
stability and nondivergence results are derived in the general context of the

class of constant -gain controllers and nonlinear estimators whose design
is not necessarily based on statistical considerations ; for example , non .

linear estimator designs intended to optimize structural simplicity or
error -transient response, i .e., nonlinear observers [107]. This general class

of constant -gain controllers and nonlinear estimators includes as special
cases LQSF and CGEKF designs. In the context of this broader class of

Introduction 6
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suboptimal nonlinear controllers and estimators , the results provide
analytically verifiable conditions which can be used to test for nondiver -

of Monograph

Stability and Robustness: A Geometric Perspective and Frequency-

Figure 1.2 Logical relationship of chapters.

1.1 .3 Structure

This monograph consists of five chapters :
1 Introduction

2

gence and stability and to evaluate robustness against the effects of design

approximations ; though one cannot in general expect such designs to be as

robust as LQSF and CGEKF designs . The output -feedback separation -

type property applies to this bro ~der class of controllers and estimators ,

showing that nondivergent estimates can , unconditionally , be substituted

for true values in otherwise -stable feedback systems without ever causing
instability .

It is demonstrated that all the CGEKF {LQSF nondivergence and stability 
results extend to state -augmented designs (section 3 .8 and 4 .8) . Such

state -augmented designs include , for example , proportional -integral

controller designs which track with zero steady -state error and compensated 
CGEKF nonlinear estimator designs that have zero steady -state

bias error .

1 2 3 Section 3. 2
Introduction Stability and lQG Robustness Nota,tion andRobustness and Stability- Term Inology

The Cantinuous- ,Time Case 4
LQG Robustness

. and Stability-The Discrete-
Time,/Sampled-Data Case

5 Conclusion
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Domain Criteria

3, 4 LQG Robustness and Stability
5 Conclusion .

The logical interdependence of the various chapters is illustrated in figure
1.2. The monograph has been arranged so that the first four chapters are
logically independent and may be read in any order , though it is recom ~
mended that the sections within each chapter be read in sequence. The
proofs of the results in chapters 3 and 4, all of which are based on the re~

su Its developed in chapter 2, are contained in the appendix , a few exceptions 
being made for proofs that are especially simple or illuminating . The

developments in chapters 3 and 4, which concern respectively the con~
tinuous ~ and discrete-time LQG problem , are completely parallel , even to

the numbering of sections and theorems ; readers wishing to compare the
results developed for the two cases will find this parallelism helpful .

1.2 Previous Work and Related Literature

1.2.1 Robustness and Sensitivity of General Feedback Systems

The fundamental work on the robustness of feedback systems is due to
Bode [16, pp . 451- 488] . Bode's work concerned both the robustness of

feedback systems and the closely related issue of differential sensitivity ,
although Bode did not use these terms . The term robustness refers to tolerance 

of large disturbances (lying within specified bounds) whereas the

term differential sensitivity concerns the effects of vanishingly small
disturbances .

Bode showed that the effects of vanishingly small perturbations in the
gains of a single-loop linear feedback system are directly related to the
return ratio (or loop gain) and return difference (one minus the return

ratio ) of a feedback system. Bode's results on differential sensitivity have
since been extensively studied [43] and extended [24, 53] to multiloop ,
nonlinear , time -varying feedback systems. A discrete-time notion of differential 

sensitivity has also been formulated by Kwakernaak and Sivan

[55, p. 427] . It appears that the analysis of differential sensitivity is now well
understood ; though the development of methods for synthesizing feedback
systems with reduced differential sensitivity continues to be an area of

active research [37]. Reference [26] is an anthology of many of the key
journal articles which have appeared on the subject of differential sensitivity

. Reference [25] also contains several relevant articles .
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In the area of robustness , Bode's principal contribution was the observation 
that the amount of tolerable uncertainty in the open-loop dynamics of

a single-loop linear feedback system can be expressed in terms of a region
in a space whose " points " are open-loop system transfer functions , each
such " point " being described by the Nyquist locus of its associated transfer

function . Specifically , Bode showed how the notions of gain and phase
margin can be exploited to arrive at a simple and useful means for char-

acterizing these regions of tolerable uncertainty . The engineering implications 
are developed in detail by , e.g., Horowitz [43] . It is shown in [44] that

classical Nyquist -Bode theory can be iteratively applied in order to design
robustly stable multiloop feedback having the special structure of " cascaded 

multiloop feedback ." Rosenbrock [88; 89, pp . 198- 208; 90] ,

McMorran [66], and Belletrutti and MacFarlane [15, 64, 65] have developed
and examined the design implications of a multiloop generalization of the

Nyquist stability criterion . However , except for the narrow class of " diagonally 
dominant " (i .e., " weakly -coupled " ) systems [20, 90, 92] , the quantitative 

robustness implications of the multiloop Nyquist results remain
unclear .

Results having a close relation to the issue of feedback system robustness

have been developed by Zames [118, 119]. Viewing feedback systems in
terms of the dynamical input -output relations of their components , Zames

showed that " conic sectors" in an appropriate space of input -output
relations can be used to aggregately characterize complex nonlinear dynamical 

input -output relations in a simple , useful fashion . While the primary 
emphasis in Zames's work was the use of conic sectors to provide a

simple characterization of complex nonlinear relations , he made the
following brief observation in his conclusions [118] :

One of the broader implications of the theory here concerns the use of functional

analysis for the study of poorly defined systems. It seems possible , from only
coarse information about a system, and perhaps even without knowing details of
internal structure , to make useful assessments of qualitative behavior .

Despite the appearance of myriads2 of publications expanding upon and
refining the results in Zames's paper [118], the idea of using functional
analysis for poorly defined systems has not previously been fully developed .
Nevertheless , this idea is implicit in the classical frequency -domain ap-

2 Among these myriads are, to name a few , [6] , [22], [23] , [27], [32] , [42], [56] ,
[67] , [86] , [106] , [110], and [ 119] ; a complete listing would probably include at
least several hundreds of references .



proaches to robust feedback design3 and this idea forms the thesis upon
which the multiloop feedback and stability margin results of this book are
built . In particular , it is Zames's work [118, 119] which laid the foundation

and provided much of the inspiration for the theory of stability developed
in chapter 2.

It should be noted that some authors (e.g., Davison [29]) have used the
term " robustness" in connection with linear feedback systems that track

with zero steady-state error in the presence of additive disturbance inputs
satisfying specified dynamical equations . It is demonstrated in [29] and
[30] that if an appropriate servo-compensator is employed then such zero

steady-state error tracking occurs and is robust against plant modeling

errors , provided that t~e overall system remains closed-loop stable . In the
present monograph , we dwell principally on a different , but related , aspect
of robustness : we are concerned primarily with the amount of plant modeling 

error that can be tolerated before a feedback system becomes unstable .

1.2.2 Linear -Quadratic -Gaussian (LQG ) Estimators and Feedback Controllers
- General

One of the more powerful approach es to multivariable feedback system
design, an approach whose robustness implications are examined in detail

in this monograph , is the linear -quadratic -Gaussian (LQG ) procedure .
The technical and philosophical issues relating to the application of the
LQG procedure are discussed by , for example , Athans [9, 10] ; the textbooks 

by Anderson and Moore [5] and Kwakernaak and Sivan [55] are

excellent sources of detailed information about the LQG procedure .

Briefly , the LQG method is an algorithm for synthesizing output -
feedback compensators which minimizes a designer-selected quadratic
performance index for a linear plant subjected to Gaussian white noise

of known mean and covariance . Based on the separation theorem ofestima .

tion and control , an LQG compensator can be split into two parts : a
Kalman filter , which estimates the state of the plant , and a memoryless
state-feedback gain , which acts on the state estimate generated by the
Kalman filter to generate compensating inputs to the plant . In the special
case in which the plant output includes noise-free measurements of the

Introduction 10

3 Frequency -domain methods and transfer function methods are in fact function

space methods . For example , a transfer function may be viewed naturally as a
functional operator mapping complex input functions (defined over the complex
plane ) into complex output functions Oikewise defined over the complex plane ) .
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4 While this nonlinear extension of LQG feedback theory is well known, its
rigorous justification rests on the nonlinear separation theorems developed in
chapters 3 and 4 of this monograph, viz., theorems 3.3 and 4.3.

plant state, the Kalman filter is eliminated and the compensator is called
a linear -quadratic state- feedback (LQSF ) regulator .

The LQG technique provides a straightforward means for synthesizing
stable multiloop linear feedback systems which are insensitive to Gaussian

white noise. Variations of the LQG technique have i?een devised for the
synthesis of feedback systems' with specified poles and eigenvectors [5,
pp . 77- 78; 45 ; 72; 115; 126] and for systems with constraints on controller

structure [19, 59, 60, 101] . By state-augmentation methods the LQG technique 
can be applied to the design of feedback compensators for systems

subject to persistent disturbance inputs and to other types of nonwhite

noise [17, 47- 49, 57, 101, 102, 117] . It is well known [8, 9] that by substituting 
a nonlinear extended Kalman filter for the optimal linear estimator 

(i .e., the Kalman filter ) in the LQG controller , one may adapt the LQG

procedure to suboptimal nonlinear control problems .4 Thus , LQG theory
has come to playa central role in much of modern multiloop feedback
theory .

1.2.3 Stability Margins , Sensitivity , and Robustness of LQG Estimators
and Controllers

The fundamental work on the differential sensitivity properties associated

with LQG systems is due to Kalman [52] . Kalman showed that (under
mild assumptions ) a linear single-input state-feedback system is optimal
with respect to some quadratic performance index if , and only if , the
system is stable and has a return difference of magnitude greater than

unity at all frequences. Kalman noted that classical control theory requires
this condition on the return difference for reduced sensitivity to component

variations . Kalman 's sensitivity results have since been more precisely
interpreted by Perkins and Cruz [82] and generalized to multiinput
LQSF regulators by Anderson [1] and MacFarlane [63]. Perkins and Cruz
[83] summarize these results , and Wonham [120, ch. 13] contains a brief

critical discussion . The differential sensitivity of the optimal cost to parameter 
variations is addressed by Barnett [11, 13, 14] . The effects on the optimal 

quadratic cost of variations in sampling interval is addressed by Levis

et al . [61] . Techniques for synthesizing LQSF designs with reduced sensi-
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tivity are proposed in [ 51 , 103 ] .

Relatively little has been produced regarding the differential sensitivity

properties associated with Kalman filters and with general LQG regulators

incorporating Kalman filters in their feedback loops . With only limited

success , Anderson [ 2 ] attempted to determine under what circumstances a

general LQG regulator is equivalent to an LQSF regulator . Kwakernaak

[ 54 ] showed ( under the assumption that the control  led plant is minimum

phase ) that in the limit as the control cost - weighting matrix goes to zero

( i . e . , as the loop gain increases so that the poles of the Kalman filter domi .

nate the system response ) , general LQG regulators do exhibit reduced

differential sensitivity ; however , it is not clear that an LQG design domi .

nated by the poles of its filter would be satisfactory in other respects .

Regarding the robustness properties of LQSF systems , perhaps the most

significant result is due to Anderson and Moore [ 5 , pp . 70 - 76 ] . Employing

the Nyquist and the circle stability theorems , Anderson and Moore showed

that Kalman ' s result [ 52 ] concerning the return difference of LQSF systems

can be used to conclude that single . input LQSF regulators have : 1 : 600

phase margin , infinite gain margin , and 50 % gain reduction tolerance .

Moreover , they showed that the gain properties apply to nonlinear time .

varying gains . Related results by Moylan [ 74 , 75 ] generalize results of

Barnett and Storey [ 12 ] and of Moore [ 73 ] to parameterize classes of memo .

ryless , nondynamical feedback perturbations which will not destabilize a

multiinput optimal state . feedback regulator with quadratic performance

index . Less general multiloop results have been derived independently by

Wong [ 113 , 114 ] . Gilman and Rhodes [ 36 ] have developed an upper bound

on the quadratic performance index of suboptimal nonlinear LQSF de .

signs ; provided the system is cost . observable and provided the bound does

not " blow up , " their results can be used to evaluate the gain margins and

nonlinearity tolerances of LQSF designs . Recent papers dealing with

LQSF robustness include [ 80 ] , [ 81 ] , and [ 108 ] , which are in part based on

some of the ideas that have been developed in the course of the research

reported here . The papers [ 95 ] - [ 97 ] contain preliminary reports of the re .

suIt ( section 3 . 4 ) that all continuous . time LQSF designs have infinite gain

margin , at least : ! : 600 phase margin , and at least 50 % gain reduction

tolerance at each control input channel ; though it should be noted that the

methods of proof employed in [ 95 ] - [ 97 ] are different .

As an indication of at least one of the limitations of the robustness

properties universal to LQSF regulators , Rosenbrock and McMorran



[91] show by means of an example that LQSF regulator designs may be

conditionally stable. That is, the failure of a single loop in a multiloop
LQSF regulator may destabilize a system which is open-loop stable . Wong
[113] examines this problem in greater depth .

The literature on the subject of robustness and computational considerations 
in nonlinear estimation is sparse and largely inconclusive .

The discussion of nonlinear estimation in Schweppe [104, ch. 13] provides
a good intuitive understanding of the trade -offs between computational
requirements and residual -gain choice ; though the possibility of a constant 

residual gain is not explicitly considered . The idea of using a constant 
residual gain for linear filtering is well known [34, pp . 238- 242], but

the connectio D- with nonlinear filtering has not been established . Of the

existing literature on nonlinear estimation , [35] and [107] appear to be the
most closely related to the present work .

Gilman and Rhodes [35] suggest a procedure for synthesising nonlinear
estimators with a precomputable but time -varying residual gain . Their

estimator , like the extended Kalman filter , has the intuitively appealing
structure of a model-reference estimator [105, p . 403] ; i .e., it consists of an

internal model of the system dynamics with observations entering via a

gain acting on the residual error between the system and model outputs .
The distinguishing feature of the estimator suggested in [35] is that the
residual gain is chosen so as to minimize a certain upper bound on the

mean-square error . This procedure tends to ensure a robust design since,

assuming the minimal value of the error bound does not " blow up ," the
estimator cannot diverge . A limitation of this design procedure is that the

error bound may be very loose for systems with substantial nonlinearity ;
so there is no assurance that the bound -minimizing residual gain is a good
choice . Also , there is no a priori guarantee that the resultant estimator will

even be stable since the minimal error bound may become arbitrarily
large as time elapses. Similar results are developed for discrete-time systems
by Gusak and Simkin [38].

Tarn and Rasis [107] have proposed a constant -gain model -reference
nonlinear estimator which is a natural extension of Luenberger 's observer

for linear systems, having a design based solely on stability considerations
. The results of [107] show that , given such a nonlinear observer design

, if certain Lyapunov functions can be found , then one can conclude
that

(i) The estimator is nondivergent ; and

1.2 Previous Work and Related Literature 13
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(ii ) The estimator can be used for state reconstruction in a full -state-

feedback system without causing instability .
However , from an engineering standpoint the results of [107] are deficient

in that they are nonconstructive : no design synthesis procedure is suggested
; no method is proposed for construction the Lyapunov functions

required to test the stability of a design ; no procedure is suggested for
minimizing the estimator 's error . The CGEKF results presented in this

monograph (sections 3.5- 3.7 and 4.5- 4.7) address all these deficiencies by
providing a constructive procedure for synthesizing stable constant -gain
model -reference estimator designs which are to a first approximation
optimally accurate . Moreover , these results prove that , provided the
estimator is nondivergent , it can be used for state reconstruction without

ever causing instability , irrespective of the availability of Lyapunov
functions .

The papers of Patel and Toda [121, 122] , in contrast to the aforementioned 
papers on nonlinear estimation and in contrast to the present work ,

do not require an exact internal model of the process dynamics in their
results regarding the robustness of optimal estimators . These authors have

developed an upper bound on the mean-square error of mismatched optimal 
linear estimators , i .e., mismatched Kalman filters . However , their

results have the important limitation that they apply only when the control
input to the process is identically zero.

Results concerning the robustness of general LQG feedback controllers
have been reported by Gilman and Rhodes [35]. These authors have

developed an upper bound on the expected value of the quadratic performance 
index for white -noise-driven , continuous -time , output -feedback

systems employing a state-feedback gain matrix acting on a state estimate
generated by a nonlinear model -reference estimator which , like the extended 

Kalman filter , incorporates a nonlinear internal model of the

plant dynamics . Provided the system is " cost-observable ," provided the
upper bound on the cost does not grow unboundedly as time elapses, and

provided the nonlinear model incorporated in the estimator exactly models
the plant dynamics , then this result can be used to assure the closed-loop
stability of the overall system. Since in practical applications the actual

value assumed by the performance index is often not of particular engineering 
interest and since the upper bound on the cost in [35] may be quite

loose for systems with substantial nonlinearity , the principal engineering
interest in these results appears to be with regard to their stability implica -
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tion . On the other hand , the separation theorem for nonlinear systems

developed in this monograph (theorem 3.3) allows one to ascertain the
stability of such systems much more simply and directly .

Underlying the various conclusions about the minimal inherent robust ~
ness5 and inherent insensitivity of LQG estimator and contro I Ier designs

are certain more basic properties associated with optimality . The problem
of characterizing the various properties associated with optimality is in ~

timately related with the so~called " inverse problem " of optimal control ,
which concerns the characterization of the set of performance indices for
which a given control law is optimal . Related papers are [1] , [52] , [71] , [75] ,
and [116] .

5 For example , the inherent infinite gain margin and ::1::600 phase margin
robustness properties of single -input LQSF systems proved by Anderson and
Moore [5, pp . 70- 76] .


