
To the Instructor

Thank you for considering this textbook. This section is intended to help you

use it e¤ectively for students at the following levels:

m juniors and seniors in Computer Science taking a one-term cram course in

Internet application design (the MIT way)

m juniors and seniors in Computer Science taking a one-year ‘‘capstone’’ course

in software engineering

m seniors in Computer Science doing a capstone independent study project or

bachelor’s thesis

m sophomores in Computer Science or non-majors spending a semester learn-

ing about building modern information systems

With respect to these goals, we will treat the following issues: (1) what to do

during lectures, (2) how to find clients for your students, (3) what to put on

exams, (4) how to find and use alumni mentors, and (5) evaluation and grading.

Before plunging into these issues, let’s take a step back and reflect on the

rationale for teaching this material at all.

A Step Back

Why is software engineering part of the undergraduate computer science cur-

riculum? There are enough mathematical and theoretical aspects of computer

science to occupy students through a bachelor’s degree. Yet most schools have

always included at least some hands-on programming. Why? Perhaps there is

a belief that someone with an engineering degree ought to be able to engineer

the sorts of systems that society demands. In the 1980s, users wanted desktop

applications. Universities adapted by teaching students how to build a com-

puter program that interacted with a single user at a time, processing input

from the mouse and keyboard and displaying results graphically. Starting in

the early 1990s, however, demand shifted toward server-based Internet applica-

tions. With 1,000 users potentially attempting the same action at the same in-

stant, the technical challenge shifts to managing concurrency and transactions.

Given stateless protocols such as HTTP, software engineers must learn to de-

velop stateful user experiences. Given the ubiquitous network and evolving

standards for remote procedure calls, students can learn practical ways of im-

plementing distributed computing.

Once we’ve taught students how to build Internet applications, it is gratifying

to observe their enormous potential. A computer science graduate in 1980 was,

by his or her e¤orts alone, able to reach only a handful of users. Thanks to the

ubiquitous Internet, a computer science student today is able to write a pro-

gram that hundreds of thousands of people will use before that student ever

graduates. One of our student teams, for example, built a photo-sharing service

launched to the users of photo.net. Through November 2005, the software built

by the students is holding more than one million photographs on behalf of

roughly 87,000 users.

What Deep Principles Do They Need to Learn?

To contribute to the information systems of the next twenty years, in addition

to teaching the material in the core computer science curriculum, we have to

teach students:

m object-oriented design where each object is a Web service (distributed com-

puting, demonstrating the old adage that ‘‘The exciting thing in computer

science is always whatever we tried twenty years ago that didn’t work.’’)

m about concurrency and transactions

m how to build a stateful user experience on top of stateless protocols

m about the relational database management system

m that they’re only as good as their last user test

Universities have long taught theoretical methods for dealing with concurrency

and transactions. The Internet raises new challenges in these areas. A dozen

users may simultaneously ask for the same airline seat. Twenty responses to

376 To the Instructor

a discussion forum question may come in simultaneously. The radio or hard-

wired connection to a user may be interrupted halfway through an attempt to

register at a site. Starting in 1994 there has been a convergence of solutions to

these problems, with the fundamental element of the solution being the rela-

tional database management system (RDBMS). At a school like MIT, where

the RDBMS has not been taught, this textbook gives an opportunity to intro-

duce SQL and data modeling with tables. At a school with an existing data-

base course, this textbook can be used to get students excited about using the

RDBMS as a black box before they embark on a more formal course where

the underpinnings are explained.

Scientists measure their results against nature. Engineers measure their results

against human needs. Programmers . . . don’t measure their results. As a final

overarching deep principle, we need to teach students to measure their results

against the end-user experience. Anyone can build an Internet application. The

applications that are successful and have impact are those whose data model

and page flow permit the users to accomplish their tasks with a minimum of

time and confusion.

What Skills Do They Need to Learn?

In a world where it seems that every villager in India has learned Java, we want

our graduates to be more than mere coders. A graduate who can do nothing

more than sit in a corner and code Java classes from specs is doing a job that

is certain to be sent to a low-wage country eventually.

We’d like our students to be able to take vague and ambitious specifications

and turn them into a system design that can be built and launched within a few

months, with the features most important to users and easy to develop built

first, and the di‰cult bells and whistles deferred to a second version. We’d like

our students to know how to test prototypes with end-users and refine their ap-

plication design once or twice within even a three-month project. We’d like our

students to be able to think on their feet and speak up with constructive criti-

cism at design reviews.

These desires translate into some aspects of how we use this textbook at MIT:

real clients so that students are exposed to the vagueness and confusion of real-

world problems; user testing built into the homework problems; ‘‘lecture’’ time

primarily devoted to student-student interaction, with the instructors moderat-

ing the discussion.

377 To the Instructor

Survey Courses Considered Helpful?

Suppose that one were convinced that the foregoing are the correct topics to

teach a computer science undergraduate. Should we teach them one at a time,

in-depth? Or should we start with a survey course that teaches all the concepts

simultaneously in the context of building actual applications (this book)?

Students in a traditional computer science curriculum will

m spend a term learning the syntax of a language

m spend a term learning how to implement lists, stacks, hash tables

m spend a term learning that sorting is Oðn log nÞ
m spend a term learning how to interpret a high-level language

m spend a term learning how to build a time-sharing operating system

m spend a term learning about the underpinnings of several di¤erent kinds of

database management systems

m spend a term learning about AI algorithms

Students in MIT course 6.001 (Structure and Interpretation of Computer Pro-

grams, based on the Abelson/Sussman textbook of the same name) learn all of

the above in one semester, albeit not very thoroughly. By the end of the se-

mester, they’re either really excited about the challenges in computer science

or . . . they’ve wised up and switched to biology.

Survey courses have been similarly successful on the electrical engineering

side of our department. In the good old days, MIT o¤ered 6.01, a linear net-

works course. Students learned RLC networks in detail. But they forgot why

they’d wanted to major in electrical engineering. Today the first hardware

course is 6.002, where students play with op-amps before learning about the

transistor!

One of the most celebrated courses at MIT is the Aeronautics and Astronau-

tics department’s Unified Engineering. Here is the first semester’s description

from the course catalog:

Presents the principles and methods of engineering, as well as their interrelationships

and applications, through lectures, recitations, design problems, and labs. Disciplines

introduced include: statics, materials and structures, dynamics, fluid dynamics, thermody-

namics, materials, propulsion, signal and system analysis, and circuits. Topics: mechanics

of solids and fluids; statics and dynamics for bodies systems and networks; conservation of

mass and momentum; properties of solids and fluids; temperature, conservation of energy;

378 To the Instructor

stability and response of static and dynamic systems. Applications include particle and

rigid body dynamics; stress and deformations in truss members; airfoils and nozzles in

high-speed flow; passive and active circuits. Laboratory exposure to empirical methods in

engineering; illustration of principles and practice. Design of typical aircraft or spacecraft

elements.

Note that this is all presented in one semester, albeit with double the standard

credit hours. For almost every topic in the course description, MIT has one or

more full-semester courses exclusively devoted to that topic.

Experiences like these led us to develop Software Engineering for Internet

Applications and the corresponding survey course in building computer systems

for collaboration.

Using This Book for a Thesis Project

Most computer science programs require bachelor’s candidates to engage in an

open-ended development project, either as a ‘‘capstone’’ project or a thesis. Of-

tentimes the freedom inherent in this requirement serves as a quantity of rope

su‰cient for a student to hang him or herself. The student might choose to

build anything from a graphics system to a compiler. A faculty member super-

vising the project might have to do a fair amount of work merely to determine

what standards are appropriate in the student’s chosen area. For example, if it

is a compiler project, is it reasonable to expect the student to develop a com-

plete Ada compiler in Lisp in one year? The core of an ML type-inferencer? A

simple optimizing modification to gcc?

If you agree with the student to work within the framework of Software

Engineering for Internet Applications, the project has enough structure that risk

is minimized, yet enough flexibility that the student’s creativity can flower. For

example, using this book means that the student will be using a relational data-

base management system. All of the code that you have to review will be in

SQL. Yet the student is free to experiment with the operating system and

HTML glue environment of his or her choice. The student will be building an

Internet application that has user registration, content management, a discus-

sion forum, and full-text search, and a combination of the book and the public

Internet provide a good context for evaluating the student’s achievement in

these areas. Yet almost any client will put before the student idiosyncratic chal-

lenges that should give the student an opportunity to build something unusual.

379 To the Instructor

We consider Mozart to have been creative although he did not develop new

musical forms, relying instead on the structure laid down by Haydn. A student

will accomplish more if he or she can spend the first months of a project work-

ing rather than figuring out what field in which to work, roughly what the scope

of the project should be, what tools to choose from an unlimited palette, and so

forth.

The One-Term Cram Course

When teaching this material in one semester, it is important that students set up

their environments before the first class meeting. A student might have to rein-

stall operating systems and relational database management systems, contact

technical support, or abandon an initial choice of tools.

The One-Year Thorough Course

There are several possible reasons for spreading this material over a full year:

m students who don’t appreciate or can’t handle a gung-ho pace

m students working individually rather than in teams (more coding per student)

m opportunity to go deeper into some of the underlying concepts and systems

m opportunity to launch services to real users mid-way through the course

If we had an extra semester, we would devote more attention to the inner

workings of the relational database management system, demystifying the SQL

parser and the various methods for handling concurrency. We would have the

students look more carefully at the HTTP standard, possibly building their own

simple Web server. We would cover some of the more exotic Web Consortium

work, such as semantic Web and RDF and multi-modal interfaces. We would

devote more time to performance measurement and engineering. We would

push the teams and clients to launch their sites to real users as quickly as possi-

ble so that the students could learn from user activity and user feedback.

It would be nice to include a section on high-level formal specification of

page flow and data model. Unfortunately, as of 2005, there are no tools avail-

able for this that compile into standard executable languages such as SQL and

380 To the Instructor

Java. A quick glance at Unified Modeling Language (UML) might make one

think that this is a useful nod in the direction of formal specification of Internet

applications. However, UML cannot be compiled into a working system nor

can it be verified against a system built in executable languages such as SQL

and Java. Even if students mastered the 150 primitives of UML, the only thing

that they would learn is that people in the IT industry can get paid high sal-

aries, despite never having learned to write clear English prose. Object Role

Modeling (ORM), however, is a high-level formal specification language that

looks promising for automatic code generation in the coming years.

A Course for Sophomores

Less mature engineers are going to have more di‰culty choosing an appropri-

ate set of tools, more di‰culty with tool installation and administration, and

are going to be less resourceful in seeking assistance when appropriate. Thus

if you are using this textbook with sophomores, it is probably a good idea to

reduce flexibility and increase the physical rootedness of the students and the

amount of hands-on assistance available.

Juniors and seniors might have had summer jobs working with Oracle and

PHP on Debian Linux or with Microsoft .NET and SQL Server. They will

probably be most productive if they can continue using their familiar tools.

Furthermore, having a variety of tools in use during the semester provides all

the students with an opportunity to learn a little bit about other development

styles. The main risk to having students choose their tools is that some get

sucked in by software vendor hype and elect to use, for example, three-tiered

architectures and application servers. At MIT the students have three weeks be-

fore the start of the semester in which to install their chosen tools. All of the

MIT students who decided to go the application server route were unable to

get their systems up and running in time to do the ‘‘Basics’’ problem set and

hence were forced to drop the class.

For sophomores, it is less likely that students will have extensive develop-

ment experience with a particular set of tools and the risk of a student choosing

an inappropriate set of tools is increased. It may be best to standardize on one

set of tools so that everyone in the class is using the same systems.

Universities spend hundreds of millions of dollars on dormitories so that stu-

dents can drink beer together, but are seemingly reluctant to spend a dime on

381 To the Instructor

shared workspaces for students. This is a shame because for learning most tech-

nical material it is much more e¤ective for students to work together and live

separately. A student working in a common laboratory with teaching assistants

and fellow students nearby won’t get stuck on something simple, such as ‘‘how

do I launch SQL*Plus?’’ If you can possibly arrange a room with a bunch of

desks and PCs and make that the center of your class, this will be an enormous

help to less experienced students.

What to Do during Lectures

We try to keep our mouths shut during class meeting times (two 80-minute ses-

sions per week). Students in 6.171 are learning to present their work to other

engineers and to o¤er on-the-fly constructive criticism in response to an engi-

neering presentation by others. If we’re talking, they’re not learning these skills.

At various times in the semester, notably at the beginning of the course, the

students won’t have anything to present. We might fill a meeting time with a

25-minute lecture on RDBMS fundamentals, followed by a collaborative proj-

ect in which students break up into teams to solve a data modeling problem.

At a minimum, the meeting room must have one Web browser connected to

a video projector. Ideally the room will also have extra Web browsers and key-

boards distributed around the room, one for every 3–6 students, and black-

boards or whiteboards for collaborative work by small teams.

Here is a sample schedule, the goal of which is to drive the student projects

to public launch as quickly as possible:

m Three weeks before the first meeting Students informed that they are ac-

cepted into the class, thus giving them time to prepare their computing envi-

ronments. Inform students that they ought to make sure their environment

works by building at least one Web page that returns data queried from the

RDBMS. They may simply wish to do ‘‘Basics’’ problems 1 through 6.

m Week 1, Meeting 1 Schedule, grading standards, and other bureaucracy rel-

egated to handouts and a URL reference; we establish a precedent that class

time is devoted to engineering. After a 5-minute ‘‘welcome to the course’’ in

which we explain what we want them to learn, we give a 15-minute lecture on

why online learning communities are important and what are the required

elements for a sustainable online community. To get the students accustomed

382 To the Instructor

to the idea that they are going to be speaking up in class, we pick a few

examples of online communities from the public Internet and ask students

to criticize the features and user interface. We follow this with a 20-minute

introduction of the RDBMS. Remind students that they must turn in the

‘‘Basics’’ problems in one week or be dropped from the class.

m Week 1, Meeting 2 In grappling with the ‘‘Basics’’ problem set, the students

have now had a chance to work with SQL. We give a 20-minute lecture on

serialization and concurrency control in the RDBMS, pointing out the prac-

tical di¤erences between optimistic and pessimistic locking. The rest of the

class time is devoted to pitches by prospective clients. The clients introduce

themselves and explain what they want to accomplish with their Internet ap-

plication. Each client should get about 5 minutes. For those projects where

the client is unable to present in person, an instructor gives the pitch on be-

half of the client.

m Week 2, Meeting 1 Students turn in the ‘‘Basics’’ problems. Today is the

day that you assign teams to clients, and hence today is the day that you de-

cide who is staying in the class. Drop anyone who did not turn in the prob-

lem set. They are not capable of building database-backed Web pages and

hence are very unlikely to catch up. Most of the class time is devoted to code

review on the ‘‘Basics’’ problems. You have secretly been surfing around be-

fore class looking at source code from various students. You’re looking to get

a discussion going on at least the following issues: (a) lack of commenting or

identified authorship, (b) error handling in the comparative shopping prob-

lem, (c) di¤erent approaches to generating unique keys in the face of con-

currency, (d) escaping single-quote characters in the search pages, (e) user

interface design for the quote personalization system (tables versus bulleted

lists, ‘‘kill’’ buttons versus checkboxes and a submit button), (f) di¤erent

ways of parsing XML. Spend the last 5–10 minutes of class with some hints

on working with the client. Students often have the most trouble contacting

their client. They’ll say ‘‘I sent him email a week ago, but he hasn’t res-

ponded.’’ Remind them to pick up the phone twice per day until they get a

phone or in-person meeting with their client.

(Giving students one week to do the ‘‘Basics’’ problem set seemed harsh to

us, and hence we decided one term to give them two weeks to do it. Rather

than spreading the work out, the result was that most students did nothing

until two or three days before the due date and ended up staying up all

night.)

383 To the Instructor

m Week 2, Meeting 2 Students break up into groups and work on a data

modeling problem, e.g., ‘‘design an airline reservation system.’’ The specifica-

tion is open-ended, but you supply English-language queries that they’ll have

to translate into SQL against their tables and columns. A group can be one

project team or two project teams working together. Ideally the classroom

will have many separate blackboards. The instructors walk around answering

questions and coaching the groups. After 30–40 minutes, you ask two or

three of the best groups to present their work. After each presentation you

moderate a discussion of the merits of the data model and how much work

the RDBMS will have to do in answering the queries. You close the meeting

time by introducing the B-tree index and explaining how to add indices to a

data model to improve query performance.

m Week 3, Meeting 1 Students turn in their work on ‘‘User Registration and

Management’’ exercises. Class time is devoted to presentation and discussion

of di¤erent teams’ approaches to the ‘‘User Registration’’ chapter problems.

At least a couple of teams will have been successful in meeting with their cli-

ents and drafting solutions to the ‘‘Planning’’ chapter. Devote 5–10 minutes

of class time to discussing the work of the farthest-along teams in this area as

a way of inspiring the rest of the class.

m Week 3, Meeting 2 Students turn in their work on ‘‘Planning’’ and Exer-

cises 1 through 3 in ‘‘Content Management’’ (up to but not including the

skeletal implementation). Class time is devoted to presentation and discus-

sion of teams’ approaches to content management data models. Consider

breaking up into teams to take a single-table data model and put it into

Third Normal Form.

m Week 4, Meeting 1 Devoted to look-and-feel criticism of public Internet

applications and the more advanced teams’ projects.

m Week 4, Meeting 2 Students complete all exercises in ‘‘Content Manage-

ment,’’ including client sign-o¤. Class time devoted to team presentations of

work so far and plans for immediate future.

m Week 5, Meeting 1 Students complete all exercises in ‘‘Software Modular-

ity.’’ Class time devoted to team presentations of their design decisions and

documentation.

m Week 5, Meeting 2 Students complete exercises in the ‘‘Discussion’’ chapter

up to, but not including the usability test.

384 To the Instructor

m Week 6, Meeting 1 Students complete all exercises in the ‘‘Discussion’’

chapter except execution of the refinement plan. Class time devoted to discus-

sion of usability test results and whether the numbers could have been pre-

dicted from the page flow and HTML designs.

m Week 6, Meeting 2 Students present their refined discussion forum systems.

Class time devoted to presentation of the refined systems. Close with an

exhortation that students spend the weekend starting the ‘‘Mobile’’ and

‘‘VoiceXML’’ problems in parallel so that if they are stuck with the tools

they’ll have an early warning.

m Week 7, Meeting 1 Students complete all exercises in the ‘‘Mobile’’ chapter.

Class time devoted to presentations and discussion of the wireless interfaces

to the applications.

m Week 7, Meeting 2 Students complete all exercises in the ‘‘VoiceXML’’

chapter. Class devoted to presentations and discussion. It would be very help-

ful to have an amplified telephone system so that the entire class can hear

interactions between a team’s system and a user.

m Week 8, Meeting 1 Students complete all exercises in the ‘‘Scaling Grace-

fully’’ chapter. Take-home mid-term exam handed out (an individual rather

than a team project). Class discussion of scaling exercises, ideally starting

with each answer being presented by a separate team.

m Week 8, Meeting 2 Exercises 1 and 2 from ‘‘Search’’ due. Discussion of

team designs for full-text search.

m Week 9, Meeting 1 Mid-term exam due. All exercises from the ‘‘Search’’

chapter due. Class time devoted to discussion of exam questions, answers,

and implications.

m Week 9, Meeting 2 ‘‘Planning Redux’’ exercises due. Note that the instruc-

tors must interview the clients as part of this chapter. Team presentations of

their work and plans for public launch.

What to Put on Exams

You might think that exams are unnecessary in a project-oriented course such

as this one. We give exams for the following reasons:

m we want to make sure that a student isn’t being carried by his or her teammates

385 To the Instructor

m we want to make sure that students are reading and re-reading the principles

outlined in this textbook

m we want to make sure that students understand data modeling and

concurrency

m we want to see if a student is capable of writing good analyses of Internet

applications and compelling justifications of his or her design work

m by giving take-home exams rather than in-class quizzes we are able to create

an experience that will add to the students’ skills

A good style of question involves asking the students to try out a particular

public Internet service and then build a data model that would support what

they’ve just seen. The students should then load their data model and try to

solve some SQL puzzles against them.

Another good question asks the students to visit a public Internet applica-

tion, try it out, and write a critique of the user experience. In our exam we in-

clude the following admonition: ‘‘Your critique should be clear concerning what

is wrong with the current system. Your critique should be explicit about what

to change, such that a junior programmer could implement your improvements

without depending on his or her own taste and judgment.’’

You might also want to ask the students to propose and justify a hardware

and software architecture to handle a specific service and user load.

Note that all of these questions are su‰ciently open-ended to lead to interest-

ing classroom discussion. Note further that these exams must be graded by

someone experienced with software engineering and data modeling.

Finding Clients

A real-world client has much to o¤er your students. A real-world client will

phrase problems in vague and general terms. A real-world client will bring con-

tent and users to flesh out what would otherwise be a purely academic exercise.

A real-world client can provide students with performance feedback. A real-

world client forces students to confront the challenge of demonstrating their

achievement to a non-technical audience.

What can your students o¤er real-world clients? In some cases, a student

team will build a launchable, documented, maintainable, high-performance sys-

tem that the client can run for years. This happy result, however, is not neces-

386 To the Instructor

sary in order for a client to get value from participating in a course based on

this textbook. Oftentimes working with a student team will enable a client to

make decisions and formulate precise specifications. Most people are unable

to make good decisions about information systems without seeing a prototype.

We don’t promise clients that their student team will solve their problem, but

we do promise clients that the experience will clarify their goals and, whatever

else, will be over in 3.5 months.

Working groups within your own university can be a good source of clients.

Groups that need to work with o¤-campus people, such as alumni, parents, or

colleagues at other institutions, are especially logical candidates for online com-

munity support. Non-profit organizations can also be good sources of projects

because they are usually much more patient than for-profit corporations and

can a¤ord to (a) wait for your semester to start, and (b) start over if necessary

at the end of your semester in the event that the student team does not produce

a launchable system. For-profit organizations can provide well-organized and

highly motivated clients. Both cash-starved startups and small neglected de-

partments within larger companies may be attracted to working with a student

team. With any potential client, however, try to make sure that they have

enough resources to gather content and users.

A bit of diversity among the client projects is nice, but at their cores all of the

client projects should be online communities. At the very least, a project needs

to have a discussion forum where User A can ask a question that User B will

answer. Much of the value in this course comes from student teams comparing

their di¤ering approaches to the similar challenges of user registration, content

management, and discussion support. If a client wants a 100-percent voice in-

terface, their team won’t be able to learn from other teams very e¤ectively nor

will other teams building primarily Web browser sites be able to learn from the

voice-browser-only team. If a client says ‘‘I want an online store,’’ just respond

‘‘no.’’ If a client says ‘‘I want an online store where the customers talk to each

other,’’ respond with ‘‘Okay, but the students aren’t going to build the checkout

pages until the end of the term, and you’ll have to o¤er them summer jobs if

you want e-commerce admin pages.’’

Here are some criteria for selecting among clients:

m spirit of the project; does it look like an online learning community in which

the users share a common purpose and the more experienced will teach the

less experienced?

387 To the Instructor

m availability of magnet content and users; is the client dreaming or does he or

she have compelling unique content that will draw users or some other way

of bringing users to the application?

m availability of the client; the university calendar is unforgiving and the client

needs to be able to respond within 24 hours to a request for a critique

m long-term resources; it is great if students can go into a job interview and say

‘‘point your Web browser at http://www.foobar.org to see what I built,’’ but

this won’t happen unless the client has the long-term wherewithal to host and

maintain an Internet application

Alumni Mentors

In 1950 tuition at Ivy League schools was about $500 and the average new car

cost nearly $2,000 (4 times tuition). In 2003 tuition is approaching $30,000 per

year and a beautiful Honda Accord can be had for $15,000 (1/2 of tuition).

Thanks to improvements in design and manufacturing engineering, the relative

price of an automobile has fallen by a factor of 8 while its quality has improved

dramatically. Why has the cost of a university education soared relative to au-

tomobiles and other manufactured goods? Consider the classroom circa 1950:

25 students, 1 teacher, 1 blackboard, 25 chairs. Compare to the classroom ex-

perience circa 2005: 25 students, 1 teacher, 1 blackboard, 25 chairs. Even if uni-

versities were to exercise restraint in the hiring of administrative sta¤, the cost

of tuition is doomed to outstrip inflation because education is the only industry

in America where there are no productivity improvements.

This problem is not too severe for teaching Physics 101. The school pays one

instructor and fills a room with 300 tuition-paying students. But teaching soft-

ware engineering e¤ectively requires that students be given an apprenticeship.

No school will want to pay the army of instructors that would represent an

optimum-sized teaching sta¤ for a software engineering project course like this

one. Even if a school had an infinite amount of money, professors and graduate

students are probably the wrong people for the job. How much experience

does the average academic computer scientist have in comparing a collection

of software source code to a statement of user requirements and suggesting

improvements?

We can solve the sta‰ng and expertise problems in one stroke by bringing

in alumni volunteers. A typical school has 10 or 20 times as many alumni as

388 To the Instructor

current students. If students are broken up into teams of 3 and each volunteer

can assist two teams, we only need to convince approximately 1 percent of our

alumni to volunteer each semester. As working software engineers, our gradu-

ates will likely do a much better job of assisting students than a fresh graduate

student would and perhaps even a better job in some areas than a seasoned

professor.

A course based on Software Engineering for Internet Applications is uniquely

amenable to alumni mentoring because all of the students’ work is accessible

from any Web browser anywhere on the Internet. Between the plans and the

/doc directory and the mandated ‘‘View Source’’ links at the bottom of every

student-authored page, an alumnus 3,000 miles away ought to be able to con-

tribute almost as e¤ectively as someone who is willing to come down to campus

two nights per week.

Evaluation and Grading

The daily cost of attending a top university these days is about the same as the

daily rate to stay at the Four Seasons hotel in Boston, living on room-service

lobster and champagne. It is no wonder, then, that the student feels entitled to

have a pleasant experience. Suppose that you tell a student that his work is

substandard. He may be angry with you for adversely a¤ecting his self-esteem.

He may complain to a dean, who will send you email and invite you to a meet-

ing. You’ve upheld the standards of the institution, but what favor have you

done yourself ? Remember that the A students will probably go on to gradu-

ate school, get Ph.Ds., and settle into $35,000/year post-docs. The mediocre

students are the ones who are likely to rise to high positions in Corporate

America, and these are the ones from whom you’ll be asking for funding,

donations of computer systems, and so on. Why alienate paying customers

and future executives merely because they aren’t willing to put e¤ort into soft-

ware engineering?

In teaching with Software Engineering for Internet Applications, you have a

natural opportunity to separate evaluation from teaching. The quality of the

user experience and the solution engineered by a team is best evaluated by their

client and the end-users. If the client responds to the questionnaire in Exercise 3

of the ‘‘Planning Redux’’ chapter by saying ‘‘Our team has solved all of our

problems and we love working with them,’’ what does your opinion matter?

389 To the Instructor

Similarly if a usability study shows that test users are able to accomplish tasks

quickly and reliably, what does your opinion of the page flow matter? During

most of this course we try to act as coaches to help our students achieve high

performance as perceived by their clients and end-users. We use every opportu-

nity to arrange for students to get real-world feedback rather than letter grades

from us.

The principal area where we must retain the role of evaluator is in looking at

a team’s documentation. The main question here is ‘‘How easy would it be for

a new team of programmers, with access only to what is in the /doc directory

on a team’s server, to take over the project?’’

390 To the Instructor

