Appendix B
Situation Semantics
Calculations

B. 1 A Conditional Donkey Sentence

There follows a calculation establishing the truth conditions for a donkey sentence containing a quantificational adverb and an if-clause. See section 2.3.1.
$\llbracket\left[\left[\right.\right.$ always $\left[\right.$ if $[$ a man $]\left[\lambda_{6}\left[[\right.\right.$ a donkey $]\left[\lambda_{2}\left[\mathrm{t}_{6}\right.\right.$ owns $\left.\left.\left.\left.\left.\left.\mathrm{t}_{2}\right]\right]\right]\right]\right]\right]$
$\left[[\text { he man] beats [it donkey]]] }]^{\emptyset}\right.$
$=\llbracket$ always $\rrbracket^{\emptyset}\left(\llbracket\left[\right.\right.$ if $[$ a man $]\left[\lambda_{6}\left[[\right.\right.$ a donkey $]\left[\lambda_{2}\left[\mathrm{t}_{6}\right.\right.$ owns $\left.\left.\left.\left.\left.\left.\mathrm{t}_{2}\right]\right]\right]\right]\right] \rrbracket^{\emptyset}\right)$
$\left([[[\text { he man] beats [it donkey }]]]^{\emptyset}\right)$
(by FA)
$=\llbracket$ always $\left.\rrbracket^{\emptyset}\left(\llbracket\left[\text { if }[\text { a man }]\left[\lambda_{6}\left[[\text { a donkey }]\left[\lambda_{2}\left[\mathrm{t}_{6} \text { owns } \mathrm{t}_{2}\right]\right]\right]\right]\right]\right]^{\emptyset}\right)$
$\left(\llbracket\right.$ beats $\rrbracket^{\emptyset}\left(\llbracket\right.$ it $\rrbracket^{\emptyset}\left(\llbracket\right.$ donkey $\left.\left.\rrbracket^{\emptyset}\right)\right)\left(\llbracket\right.$ he $\left.\left.\rrbracket^{\emptyset}\left(\llbracket \operatorname{man} \rrbracket^{\emptyset}\right)\right)\right)$
$=\llbracket$ always $\rrbracket^{\emptyset}\left(\llbracket\left[\right.\right.$ if $[$ a man $]\left[\lambda_{6}\left[[\right.\right.$ a donkey $]\left[\lambda_{2}\left[\mathrm{t}_{6}\right.\right.$ owns $\left.\left.\left.\left.\left.\left.\mathrm{t}_{2}\right]\right]\right]\right]\right] \rrbracket^{\emptyset}\right)$
($\left[\lambda u_{1} \cdot \lambda u_{2} \cdot \lambda s_{8} \cdot u_{2}\left(s_{8}\right)\right.$ beats in $\left.s_{8} u_{1}\left(s_{8}\right)\right]$
$\left(\left[\lambda f_{\langle\langle\mathrm{s}, \mathrm{e}\rangle,\langle\mathrm{s}, \mathrm{t}\rangle\rangle} \cdot \lambda s_{7}: \exists!x f\left(\lambda s_{9} \cdot x\right)\left(s_{7}\right)=1 . \iota x f\left(\lambda s_{9} . x\right)\left(s_{7}\right)=1\right]\right.$
$\left(\lambda u_{3} \cdot \lambda s_{6} \cdot u_{3}\left(s_{6}\right)\right.$ is a donkey in $\left.\left.s_{6}\right)\right)$
$\left(\left[\lambda f_{\langle\langle\mathrm{s}, \mathrm{e}\rangle,\langle\mathrm{s}, \mathrm{t}\rangle\rangle} \cdot \lambda s_{1}: \exists!x f\left(\lambda s_{9} \cdot x\right)\left(s_{1}\right)=1 . \iota x f\left(\lambda s_{9} \cdot x\right)\left(s_{1}\right)=1\right]\right.$
$\left(\lambda u_{4} \cdot \lambda s_{3} \cdot u_{4}\left(s_{3}\right)\right.$ is man in $\left.\left.\left.s_{3}\right)\right)\right)$
(by Lex)
$=\llbracket$ always $\left.\rrbracket^{\emptyset}\left(\llbracket\left[\text { if }[\text { a man }]\left[\lambda_{6}\left[[\text { a donkey }]\left[\lambda_{2}\left[\mathrm{t}_{6} \text { owns } \mathrm{t}_{2}\right]\right]\right]\right]\right]\right]^{\emptyset}\right)$
($\left[\lambda u_{1} \cdot \lambda u_{2} \cdot \lambda s_{8} \cdot u_{2}\left(s_{8}\right)\right.$ beats in $\left.s_{8} u_{1}\left(s_{8}\right)\right]$
$\left(\lambda s_{7}: \exists!\times x\right.$ is a donkey in $s_{7} . l x x$ is a donkey in $\left.s_{7}\right)$
$\left(\lambda s_{1}: \exists!x x\right.$ is a man in $s_{1} \cdot l x x$ is a man in $\left.\left.s_{1}\right)\right) \quad$ (by $\left.\lambda \mathrm{C}\right)$
$=\llbracket$ always $\rrbracket^{\emptyset}\left(\llbracket\left[\text { if }[\text { a man }]\left[\lambda_{6}\left[[\text { a donkey }]\left[\lambda_{2}\left[\mathrm{t}_{6} \text { owns } \mathrm{t}_{2}\right]\right]\right]\right]\right]^{\emptyset} \rrbracket^{\emptyset}\right)$
($\lambda s_{8} \cdot l x x$ is a man in s_{8} beats in $s_{8} l x x$ is a donkey in s_{8}) (by $\lambda \mathrm{C}$)
$=\llbracket$ always $\rrbracket^{\emptyset}\left(\llbracket \mathrm{if} \rrbracket^{\emptyset}\left(\llbracket \mathrm{a} \rrbracket^{\emptyset}\left(\llbracket\right.\right.\right.$ man $\left.\rrbracket^{\emptyset}\right)\left(\llbracket\left[\lambda_{6}\left[[\right.\right.\right.$ a donkey $]\left[\lambda_{2}\left[\mathrm{t}_{6}\right.\right.$ owns $\left.\left.\left.\left.\left.\left.\left.\mathrm{t}_{2}\right]\right]\right]\right] \rrbracket^{\emptyset}\right)\right)\right)$
($\lambda s_{8} . l x x$ is a man in s_{8} beats in $s_{8} l_{x} x$ is a donkey in s_{8}) (by FA)
$=\llbracket$ always $\rrbracket^{\emptyset}\left(\llbracket \mathrm{if} \rrbracket^{\emptyset}\left(\llbracket \mathrm{a} \rrbracket^{\emptyset}\left(\llbracket \mathrm{man} \rrbracket^{\emptyset}\right)\left(\lambda u_{6} \cdot \llbracket\left[[\right.\right.\right.\right.$ a donkey $]\left[\lambda_{2}\left[\mathrm{t}_{6}\right.\right.$ owns
$\left.\left.\left.\left.\left.\left.\left.\mathrm{t}_{2}\right]\right]\right]\right]^{\left[6 \rightarrow u_{6}\right]}\right)\right)\right)\left(\lambda s_{8} \cdot l x x\right.$ is a man in s_{8} beats in $s_{8} l x x$ is a donkey in $\left.s_{8}\right)$
(by PA)
$=\llbracket$ always $\rrbracket^{\emptyset}\left(\llbracket \mathrm{if} \rrbracket^{\emptyset}\left(\llbracket \mathrm{a} \rrbracket^{\emptyset}\left(\llbracket \operatorname{man} \rrbracket^{\emptyset}\right)\right.\right.$
$\left(\lambda u_{6} \cdot \llbracket \mathrm{a} \rrbracket^{\left[6 \rightarrow u_{6}\right]}\left(\llbracket\right.\right.$ donkey $\left.\rrbracket^{\left[6 \rightarrow u_{6}\right]}\right)\left(\llbracket\left[\lambda_{2}\left[\mathrm{t}_{6}\right.\right.\right.$ owns $\left.\left.\left.\left.\left.\left.\mathrm{t}_{2}\right]\right] \rrbracket^{\left[6 \rightarrow u_{6}\right]}\right)\right)\right)\right)$
($\lambda s_{8} . l x x$ is a man in s_{8} beats in $s_{8} l x x$ is a donkey in s_{8})
(by FA)
$=\llbracket$ always $\rrbracket^{\emptyset}\left(\llbracket \mathrm{if} \rrbracket^{\emptyset}\left(\llbracket \mathrm{a} \rrbracket^{\emptyset}\left(\llbracket \operatorname{man} \rrbracket^{\emptyset}\right)\right.\right.$
$\left(\lambda u_{6} \cdot \llbracket \mathrm{a} \rrbracket^{\left[6 \rightarrow u_{6}\right]}\left(\llbracket\right.\right.$ donkey $\left.\rrbracket^{\left[6 \rightarrow u_{6}\right]}\right)\left(\lambda u_{2} \cdot \llbracket\left[\mathrm{t}_{6}\right.\right.$ owns $\left.\mathrm{t}_{2}\right] \rrbracket^{\left.\left.\left.\left.\left[\begin{array}{l}6 \rightarrow u_{6} \\ 2 \rightarrow u_{2}\end{array}\right]\right)\right)\right)\right)}$
($\lambda s_{8} . l x x$ is a man in s_{8} beats in $s_{8} l x x$ is a donkey in s_{8})
(by PA)
$=\llbracket$ always $\rrbracket^{\emptyset}\left(\llbracket \mathrm{if} \rrbracket^{\emptyset}\left(\llbracket \mathrm{a} \rrbracket^{\emptyset}\left(\llbracket \operatorname{man} \rrbracket^{\emptyset}\right)\right.\right.$
$\left(\lambda u_{6} \cdot \llbracket \mathrm{a} \rrbracket^{\left[6 \rightarrow u_{6}\right]}\left(\llbracket\right.\right.$ donkey $\left.\rrbracket^{\left[6 \rightarrow u_{6}\right]}\right)$
$\left(\lambda u_{2} \cdot \llbracket\right.$ owns $\left.\left.\left.\left.\rrbracket^{\left[\begin{array}{l}6 \rightarrow u_{6} \\ 2 \rightarrow u_{2}\end{array}\right]}\left(\llbracket \mathrm{t}_{2} \rrbracket^{\left[\begin{array}{l}6 \rightarrow u_{6} \\ 2 \rightarrow u_{2}\end{array}\right]}\right)\left(\llbracket \mathrm{t}_{6} \rrbracket^{\left[\begin{array}{c}6 \rightarrow u_{6} \\ 2 \rightarrow u_{2}\end{array}\right]}\right)\right)\right)\right)\right)$
($\lambda s_{8} . l x x$ is a man in s_{8} beats in $s_{8} l x x$ is a donkey in s_{8})
(by FA)
$=\llbracket$ always $\rrbracket^{\emptyset}\left(\llbracket \mathrm{if} \rrbracket^{\emptyset}\left(\llbracket \mathrm{a} \rrbracket^{\emptyset}\left(\llbracket \mathrm{man} \rrbracket^{\emptyset}\right)\right.\right.$
$\left(\lambda u_{6} \cdot \llbracket \mathrm{a} \rrbracket^{\left[6 \rightarrow u_{6}\right]}\left(\llbracket\right.\right.$ donkey $\left.\rrbracket^{\left[6 \rightarrow u_{6}\right]}\right)\left(\lambda u_{2} . \llbracket\right.$ owns $\left.\left.\left.\left.\rrbracket^{\left[\begin{array}{c}6 \rightarrow u_{6} \\ 2 \rightarrow u_{2}\end{array}\right]}\left(u_{2}\right)\left(u_{6}\right)\right)\right)\right)\right)$
($\lambda s_{8} . l x x$ is a man in s_{8} beats in $s_{8} l x x$ is a donkey in $\left.s_{8}\right)$
(by TR)
$=\llbracket$ always $\rrbracket^{\emptyset}\left(\llbracket \mathrm{if} \rrbracket^{\emptyset}\left(\llbracket \mathrm{a} \rrbracket^{\emptyset}\left(\llbracket \mathrm{man} \rrbracket^{\emptyset}\right)\left(\lambda u_{6} \cdot \llbracket \mathrm{a} \rrbracket^{\left[6 \rightarrow u_{6}\right]}\left(\llbracket\right.\right.\right.\right.$ donkey $\left.\rrbracket^{\left[6 \rightarrow u_{6}\right]}\right)$
$\left(\lambda u_{2} \cdot\left[\lambda u_{3} \cdot \lambda u_{4} \cdot \lambda s_{9} \cdot u_{4}\left(s_{9}\right)\right.\right.$ owns $u_{3}\left(s_{9}\right)$ in $\left.\left.\left.\left.\left.s_{9}\right]\left(u_{2}\right)\left(u_{6}\right)\right)\right)\right)\right)$
($\lambda s_{8} . l x x$ is a man in s_{8} beats in $s_{8} l x x$ is a donkey in s_{8})
(by Lex)
$=\llbracket$ always $\rrbracket^{\emptyset}\left(\llbracket \mathrm{if} \rrbracket^{\emptyset}\left(\llbracket \mathrm{a} \rrbracket^{\emptyset}\left(\llbracket \mathrm{man} \rrbracket^{\emptyset}\right)\left(\lambda u_{6} \cdot \llbracket \mathrm{a} \rrbracket^{\left[6 \rightarrow u_{6}\right]}\left(\llbracket\right.\right.\right.\right.$ donkey $\left.\rrbracket^{\left[6 \rightarrow u_{6}\right]}\right)$
$\left(\lambda u_{2} \cdot \lambda s_{9} \cdot u_{6}\left(s_{9}\right)\right.$ owns $u_{2}\left(s_{9}\right)$ in $\left.\left.\left.\left.s_{9}\right)\right)\right)\right)$
($\lambda s_{8} . l \times x$ is a man in s_{8} beats in $s_{8} l x x$ is a donkey in s_{8})
(by $\lambda \mathrm{C}$)
$=\llbracket$ always $\rrbracket^{\emptyset}\left(\llbracket \mathrm{if} \rrbracket^{\emptyset}\left(\llbracket \mathrm{a} \rrbracket^{\emptyset}\left(\llbracket \mathrm{man} \rrbracket^{\emptyset}\right)\right.\right.$
$\left(\lambda u_{6} \cdot\left[\lambda f_{\langle\langle\mathrm{s}, \mathrm{e}\rangle,\langle\mathrm{s}, \mathrm{t}\rangle\rangle} \cdot \lambda g_{\langle\langle\mathrm{s}, \mathrm{e}\rangle,\langle\mathrm{s}, \mathrm{t}\rangle\rangle} \cdot \lambda s_{1}\right.\right.$. there is an individual x and a situation s_{2} such that s_{2} is a minimal situation such that $s_{2} \leq s_{1}$ and $f\left(\lambda s_{5} \cdot x\right)\left(s_{2}\right)=1$, such that there is a situation s_{3} such that $s_{3} \leq s_{1}$ and s_{3} is a minimal situation such that $s_{2} \leq s_{3}$ and $g\left(\lambda s_{5} \cdot x\right)\left(s_{3}\right)=1$] $\left(\lambda u_{3} \cdot \lambda s_{6} \cdot u_{3}\left(s_{6}\right)\right.$ is a donkey in $\left.s_{6}\right)\left(\lambda u_{2} \cdot \lambda s_{9} . u_{6}\left(s_{9}\right)\right.$ owns $u_{2}\left(s_{9}\right)$ in $\left.\left.\left.\left.s_{9}\right)\right)\right)\right)$
($\lambda s_{8} \cdot l_{x} x$ is a man in s_{8} beats in $s_{8} l_{x} x$ is a donkey in s_{8}) (by Lex)
$=\llbracket$ always $\rrbracket^{\emptyset}\left(\llbracket \mathrm{if} \rrbracket^{\emptyset}\left(\llbracket \mathrm{a} \rrbracket^{\emptyset}\left(\llbracket \mathrm{man} \rrbracket^{\emptyset}\right)\left(\lambda u_{6} \cdot \lambda s_{1}\right.\right.\right.$. there is an individual x and a situation s_{2} such that s_{2} is a minimal situation such that $s_{2} \leq s_{1}$ and [$\lambda u_{3} \cdot \lambda s_{6} \cdot u_{3}\left(s_{6}\right)$ is a donkey in $\left.s_{6}\right]\left(\lambda s_{5} \cdot x\right)\left(s_{2}\right)=1$, such that there is a situation s_{3} such that $s_{3} \leq s_{1}$ and s_{3} is a minimal situation such that $s_{2} \leq s_{3}$ and $\left[\lambda u_{2} \cdot \lambda s_{9} \cdot u_{6}\left(s_{9}\right)\right.$ owns $u_{2}\left(s_{9}\right)$ in $\left.\left.\left.s_{9}\right]\left(\lambda s_{5} \cdot x\right)\left(s_{3}\right)=1\right)\right)$)
($\lambda s_{8} . l x x$ is a man in s_{8} beats in $s_{8} l x x$ is a donkey in s_{8})
$=\llbracket$ always $\rrbracket^{\emptyset}\left(\llbracket \mathrm{if} \rrbracket^{\emptyset}\left(\llbracket \mathrm{a} \rrbracket^{\emptyset}\left(\llbracket \mathrm{man} \rrbracket^{\emptyset}\right)\left(\lambda u_{6} \cdot \lambda s_{1}\right.\right.\right.$. there is an individual x and a situation s_{2} such that s_{2} is a minimal situation such that $s_{2} \leq s_{1}$ and x is a donkey in s_{2}, such that there is a situation s_{3} such that
$s_{3} \leq s_{1}$ and s_{3} is a minimal situation such that $s_{2} \leq s_{3}$ and $u_{6}\left(s_{3}\right)$
owns x in $\left.s_{3}\right)$))
($\lambda s_{8} . l x x$ is a man in s_{8} beats in $s_{8} l x x$ is a donkey in $\left.s_{8}\right)$
(by $\lambda \mathrm{C}$)
$=\llbracket$ always $\rrbracket^{\emptyset}\left(\llbracket \mathrm{if} \rrbracket^{\emptyset}\left(\left[\lambda f_{\langle\langle\mathrm{s}, \mathrm{e}\rangle,\langle\mathrm{s}, \mathrm{t}\rangle\rangle} \cdot \lambda g_{\langle\langle\mathrm{s}, \mathrm{e}\rangle,\langle\mathrm{s}, \mathrm{t}\rangle\rangle} . \lambda s_{6}\right.\right.\right.$. there is an individual y and a situation s_{7} such that s_{7} is a minimal situation such that $s_{7} \leq s_{6}$ and $f\left(\lambda s_{5} . y\right)\left(s_{7}\right)=1$, such that there is a situation s_{9} such that $s_{9} \leq s_{6}$ and s_{9} is a minimal situation such that $s_{7} \leq s_{9}$ and $\left.g\left(\lambda s_{5} \cdot y\right)\left(s_{9}\right)=1\right]$ $\left(\lambda u_{3} . \lambda s_{4} \cdot u_{3}\left(s_{4}\right)\right.$ is man in $\left.s_{4}\right)\left(\lambda u_{6} . \lambda s_{1}\right.$. there is an individual x and a situation s_{2} such that s_{2} is a minimal situation such that $s_{2} \leq s_{1}$ and x is a donkey in s_{2}, such that there is a situation s_{3} such that $s_{3} \leq s_{1}$ and s_{3} is a minimal situation such that $s_{2} \leq s_{3}$ and $u_{6}\left(s_{3}\right)$ owns x in $\left.s_{3}\right)$)) ($\lambda s_{8} \cdot l x x$ is a man in s_{8} beats in $s_{8} l x x$ is a donkey in s_{8}) (by Lex)
$=\llbracket$ always $\rrbracket^{\emptyset}\left(\llbracket \mathrm{if} \rrbracket^{\emptyset}\left(\lambda s_{6}\right.\right.$. there is an individual y and a situation s_{7} such that s_{7} is a minimal situation such that $s_{7} \leq s_{6}$ and $\left[\lambda u_{3} \cdot \lambda s_{4} \cdot u_{3}\left(s_{4}\right)\right.$ is man in $\left.s_{4}\right]\left(\lambda s_{5} \cdot y\right)\left(s_{7}\right)=1$, such that there is a situation s_{9} such that $s_{9} \leq s_{6}$ and s_{9} is a minimal situation such that $s_{7} \leq s_{9}$ and $\left[\lambda u_{6}\right.$. λs_{1}. there is an individual x and a situation s_{2} such that s_{2} is a minimal situation such that $s_{2} \leq s_{1}$ and x is a donkey in s_{2}, such that there is a situation s_{3} such that $s_{3} \leq s_{1}$ and s_{3} is a minimal situation such that $s_{2} \leq s_{3}$ and $u_{6}\left(s_{3}\right)$ owns x in $\left.\left.s_{3}\right]\left(\lambda s_{5} \cdot y\right)\left(s_{9}\right)=1\right)$)
($\lambda s_{8} . l x x$ is a man in s_{8} beats in $s_{8} l x x$ is a donkey in s_{8})
(by $\lambda \mathrm{C}$)
$=\llbracket$ always $\rrbracket^{\emptyset}\left(\llbracket \mathrm{if} \rrbracket^{\emptyset}\left(\lambda s_{6}\right.\right.$. there is an individual y and a situation s_{7} such that s_{7} is a minimal situation such that $s_{7} \leq s_{6}$ and y is man in s_{7}, such that there is a situation s_{9} such that $s_{9} \leq s_{6}$ and s_{9} is a minimal situation such that $s_{7} \leq s_{9}$ and there is an individual x and a situation s_{2} such that s_{2} is a minimal situation such that $s_{2} \leq s_{9}$ and x is a donkey in s_{2}, such that there is a situation s_{3} such that $s_{3} \leq s_{9}$ and s_{3} is a minimal situation such that $s_{2} \leq s_{3}$ and y owns x in s_{3})) ($\lambda s_{8} . l x x$ is a man in s_{8} beats in $s_{8} l x x$ is a donkey in s_{8}) (by $\lambda \mathrm{C}$)
$=\llbracket$ always $\rrbracket^{\dagger}\left(\left[\lambda p_{\langle\mathrm{s}, \mathrm{t}\rangle} \cdot p\right]\left(\lambda s_{6}\right.\right.$. there is an individual y and a situation s_{7} such that s_{7} is a minimal situation such that $s_{7} \leq s_{6}$ and y is man in s_{7}, such that there is a situation s_{9} such that $s_{9} \leq s_{6}$ and s_{9} is a minimal situation such that $s_{7} \leq s_{9}$ and there is an individual x and a situation s_{2} such that s_{2} is a minimal situation such that $s_{2} \leq s_{9}$ and x is a donkey in s_{2}, such that there is a situation s_{3} such that $s_{3} \leq s_{9}$ and s_{3} is a minimal situation such that $s_{2} \leq s_{3}$ and y owns x in $\left.s_{3}\right)$)
($\lambda s_{8} . l x x$ is a man in s_{8} beats in $s_{8} l x x$ is a donkey in s_{8}) (by Lex)
$=\llbracket$ always $\rrbracket^{6}\left(\lambda s_{6}\right.$. there is an individual y and a situation s_{7} such that s_{7} is a minimal situation such that $s_{7} \leq s_{6}$ and y is man in s_{7}, such that there is a situation s_{9} such that $s_{9} \leq s_{6}$ and s_{9} is a minimal situation such that $s_{7} \leq s_{9}$ and there is an individual x and a situation s_{2} such that s_{2} is a minimal situation such that $s_{2} \leq s_{9}$ and x is a donkey in s_{2},
such that there is a situation s_{3} such that $s_{3} \leq s_{9}$ and s_{3} is a minimal situation such that $s_{2} \leq s_{3}$ and y owns x in s_{3})
($\lambda s_{8} \cdot l x x$ is a man in s_{8} beats in $s_{8} l x x$ is a donkey in s_{8}) (by $\left.\lambda \mathrm{C}\right)$
$=\left[\lambda p_{\langle\mathrm{s}, \mathrm{t}\rangle} \cdot \lambda q_{\langle\mathrm{s}, \mathrm{t}\rangle} . \lambda s_{1}\right.$. for every minimal situation s_{4} such that $s_{4} \leq s_{1}$ and $p\left(s_{4}\right)=1$, there is a situation s_{5} such that $s_{5} \leq s_{1}$ and s_{5} is a minimal situation such that $s_{4} \leq s_{5}$ and $\left.q\left(s_{5}\right)=1\right]\left(\lambda s_{6}\right.$. there is an individual y and a situation s_{7} such that s_{7} is a minimal situation such that $s_{7} \leq s_{6}$ and y is man in s_{7}, such that there is a situation s_{9} such that $s_{9} \leq s_{6}$ and s_{9} is a minimal situation such that $s_{7} \leq s_{9}$ and there is an individual x and a situation s_{2} such that s_{2} is a minimal situation such that $s_{2} \leq s_{9}$ and x is a donkey in s_{2}, such that there is a situation s_{3} such that $s_{3} \leq s_{9}$ and s_{3} is a minimal situation such that $s_{2} \leq s_{3}$ and y owns x in s_{3})
($\lambda s_{8} . l x x$ is a man in s_{8} beats in $s_{8} l_{x} x$ is a donkey in s_{8}) (by Lex) $=\lambda s_{1}$. for every minimal situation s_{4} such that
$s_{4} \leq s_{1}$ and there is an individual y and a situation s_{7} such that s_{7} is a minimal situation such that $s_{7} \leq s_{4}$ and y is man in s_{7}, such that there is a situation s_{9} such that $s_{9} \leq s_{4}$ and s_{9} is a minimal situation such that $s_{7} \leq s_{9}$ and there is an individual x and a situation s_{2} such that s_{2} is a minimal situation such that $s_{2} \leq s_{9}$ and x is a donkey in s_{2}, such that there is a situation s_{3} such that $s_{3} \leq s_{9}$ and s_{3} is a minimal situation such that $s_{2} \leq s_{3}$ and y owns x in s_{3}, there is a situation s_{5} such that $s_{5} \leq s_{1}$ and s_{5} is a minimal situation such that $s_{4} \leq s_{5}$ and $l_{x} x$ is a man in s_{5} beats in $s_{5} l x x$ is a donkey in $s_{5} \quad$ (by $\lambda \mathrm{C}$)

B. 2 A Relative-Clause Donkey Sentence

There follows a calculation establishing the truth conditions for a donkey sentence containing a QP and relative clause. See section 2.3.2.

$$
\begin{align*}
& \llbracket\left[\left[\text { every }\left[\operatorname{man}\left[\text { who }\left[\lambda_{6}\left[[\text { a donkey }]\left[\lambda_{2}\left[\mathrm{t}_{6} \text { owns } \mathrm{t}_{2}\right]\right]\right]\right]\right]\right]\right]\right][\text { beats }[\text { it } \\
& \text { donkey }]]] \rrbracket^{\emptyset} \\
= & \llbracket \text { every } \rrbracket^{\emptyset}\left(\llbracket\left[\text { man }\left[\text { who }\left[\lambda_{6}\left[[\text { a donkey }]\left[\lambda_{2}\left[\mathrm{t}_{6} \text { owns } \mathrm{t}_{2}\right]\right]\right]\right]\right]\right] \rrbracket^{\emptyset}\right) \\
& \left(\llbracket \text { beats } \rrbracket^{\emptyset}\left(\llbracket \mathrm{it} \rrbracket^{\emptyset}\left(\llbracket \text { donkey } \rrbracket^{\emptyset}\right)\right)\right) \tag{byFA}\\
= & \llbracket \text { every } \rrbracket^{\emptyset}\left(\llbracket\left[\operatorname{man}\left[\text { who }\left[\lambda_{6}\left[[\text { a donkey }]\left[\lambda_{2}\left[\mathrm{t}_{6} \text { owns } \mathrm{t}_{2}\right]\right]\right]\right]\right]\right] \rrbracket^{\emptyset}\right) \\
& \left(\left[\lambda u_{1} \cdot \lambda u_{2} \cdot \lambda s_{8} \cdot u_{2}\left(s_{8}\right) \text { beats in } s_{8} u_{1}\left(s_{8}\right)\right]\right. \\
& \left(\left[\lambda f\langle\langle\mathrm{~s}, \mathrm{e}\rangle,\langle\mathrm{s}, \mathrm{t}\rangle\rangle \cdot \lambda s_{7}: \exists!x f\left(\lambda s_{9} \cdot x\right)\left(s_{7}\right)=1 . l x f\left(\lambda s_{9} \cdot x\right)\left(s_{7}\right)=1\right]\right. \\
& \left.\left.\left(\lambda u_{3} \cdot \lambda s_{6} \cdot u_{3}\left(s_{6}\right) \text { is a donkey in } s_{6}\right)\right)\right) \tag{byLex}
\end{align*}
$$

$=\llbracket$ every $\rrbracket^{\emptyset}\left(\llbracket\left[\operatorname{man}\left[\right.\right.\right.$ who $\left[\lambda_{6}\left[[\right.\right.$ a donkey $]\left[\lambda_{2}\left[\mathrm{t}_{6}\right.\right.$ owns $\left.\left.\left.\left.\left.\left.\left.\mathrm{t}_{2}\right]\right]\right]\right]\right]\right] \rrbracket^{\emptyset}\right)$ ($\left[\lambda u_{1} \cdot \lambda u_{2} \cdot \lambda s_{8} \cdot u_{2}\left(s_{8}\right)\right.$ beats in $\left.s_{8} u_{1}\left(s_{8}\right)\right]$ $\left(\lambda s_{7}: \exists!x x\right.$ is a donkey in $s_{7} . l x x$ is a donkey in $\left.\left.s_{7}\right)\right) \quad$ (by $\lambda \mathrm{C}$)
$=\llbracket$ every $]^{\emptyset}\left(\llbracket\left[\operatorname{man}\left[\right.\right.\right.$ who $\left[\lambda_{6}\left[[\right.\right.$ a donkey $]\left[\lambda_{2}\left[\mathrm{t}_{6}\right.\right.$ owns $\left.\left.\left.\left.\left.\left.\left.\mathrm{t}_{2}\right]\right]\right]\right]\right]\right] \rrbracket^{\emptyset}\right)$
$\left(\lambda u_{2} . \lambda s_{8} . u_{2}\left(s_{8}\right)\right.$ beats in $s_{8} l x x$ is a donkey in $\left.s_{8}\right)$
(by $\lambda \mathrm{C}$)
$=\llbracket$ every $\rrbracket^{\emptyset}\left(\lambda u_{1} \cdot \lambda s_{7} \cdot \llbracket \operatorname{man} \rrbracket^{\emptyset}\left(u_{1}\right)\left(s_{7}\right)=1\right.$ and $\llbracket\left[\right.$ who $\left[\lambda_{6}\left[[\right.\right.$ a donkey $]\left[\lambda_{2}\left[\mathrm{t}_{6}\right.\right.$ owns $\left.\left.\left.\left.\left.\left.\left.\mathrm{t}_{2}\right]\right]\right]\right]\right]\right]^{\emptyset}\left(u_{1}\right)\left(s_{7}\right)=1\right)$ $\left(\lambda u_{2} \cdot \lambda s_{8} \cdot u_{2}\left(s_{8}\right)\right.$ beats in $s_{8} l x x$ is a donkey in $\left.s_{8}\right)$ (by PM)
$=\llbracket$ every $\rrbracket^{\emptyset}\left(\lambda u_{1} \cdot \lambda s_{7} \cdot\left[\lambda u_{3} \cdot \lambda s_{3} \cdot u_{3}\left(s_{3}\right)\right.\right.$ is man in $\left.s_{3}\right]\left(u_{1}\right)\left(s_{7}\right)=1$ and
$\llbracket\left[\right.$ who $\left[\lambda_{6}\left[[\right.\right.$ a donkey $]\left[\lambda_{2}\left[\mathrm{t}_{6}\right.\right.$ owns $\left.\left.\left.\left.\left.\left.\mathrm{t}_{2}\right]\right]\right]\right]\right] \rrbracket^{\emptyset}\left(u_{1}\right)\left(s_{7}\right)=1\right)$
$\left(\lambda u_{2} \cdot \lambda s_{8} \cdot u_{2}\left(s_{8}\right)\right.$ beats in $s_{8} l x x$ is a donkey in $\left.s_{8}\right)$
(by Lex)
$=\llbracket$ every $\rrbracket^{0}\left(\lambda u_{1} \cdot \lambda s_{7} \cdot u_{1}\left(s_{7}\right)\right.$ is a man in s_{7} and
$\llbracket\left[\right.$ who $\left[\lambda_{6}\left[[\right.\right.$ a donkey $]\left[\lambda_{2}\left[\mathrm{t}_{6}\right.\right.$ owns $\left.\left.\left.\left.\left.\left.\left.\mathrm{t}_{2}\right]\right]\right]\right]\right]\right]^{\emptyset}\left(u_{1}\right)\left(s_{7}\right)=1\right)$
$\left(\lambda u_{2} \cdot \lambda s_{8} . u_{2}\left(s_{8}\right)\right.$ beats in $s_{8} x x x$ is a donkey in $\left.s_{8}\right)$
(by $\lambda \mathrm{C}$)
$=\llbracket$ every $\rrbracket^{\emptyset}\left(\lambda u_{1} \cdot \lambda s_{7} \cdot u_{1}\left(s_{7}\right)\right.$ is a man in s_{7} and
$\llbracket\left[\lambda_{6}\left[[\right.\right.$ a donkey $]\left[\lambda_{2}\left[\mathrm{t}_{6}\right.\right.$ owns $\left.\left.\left.\left.\left.\left.\mathrm{t}_{2}\right]\right]\right]\right]\right]^{\emptyset}\left(u_{1}\right)\left(s_{7}\right)=1\right)$
$\left(\lambda u_{2} \cdot \lambda s_{8} \cdot u_{2}\left(s_{8}\right)\right.$ beats in $s_{8} l x x$ is a donkey in $\left.s_{8}\right)$
(by Lex)
$=\llbracket$ every $\rrbracket^{\emptyset}\left(\lambda u_{1} \cdot \lambda s_{7} \cdot u_{1}\left(s_{7}\right)\right.$ is a man in s_{7} and
$\lambda u_{6} . \llbracket\left[[\right.$ a donkey $]\left[\lambda_{2}\left[\mathrm{t}_{6}\right.\right.$ owns $\left.\left.\left.\left.\mathrm{t}_{2}\right]\right]\right] \rrbracket^{\left[6 \rightarrow u_{6}\right]}\left(u_{1}\right)\left(s_{7}\right)=1\right)$
$\left(\lambda u_{2} \cdot \lambda s_{8} \cdot u_{2}\left(s_{8}\right)\right.$ beats in $s_{8} l x x$ is a donkey in $\left.s_{8}\right)$
(by PA)
$=\llbracket$ every $\rrbracket^{0}\left(\lambda u_{1} \cdot \lambda s_{7} \cdot u_{1}\left(s_{7}\right)\right.$ is a man in s_{7} and
$\llbracket\left[[\right.$ a donkey $]\left[\lambda_{2}\left[\mathrm{t}_{6}\right.\right.$ owns $\left.\left.\left.\left.\mathrm{t}_{2}\right]\right]\right] \rrbracket^{\left[6 \rightarrow u_{1}\right]}\left(s_{7}\right)=1\right)$
$\left(\lambda u_{2} \cdot \lambda s_{8} \cdot u_{2}\left(s_{8}\right)\right.$ beats in $s_{8} l x x$ is a donkey in $\left.s_{8}\right)$
$=\llbracket$ every $\rrbracket^{\emptyset}\left(\lambda u_{1} \cdot \lambda s_{7} \cdot u_{1}\left(s_{7}\right)\right.$ is a man in s_{7} and
$\left[\llbracket \mathrm{a} \rrbracket^{\left[6 \rightarrow u_{1}\right]}\left(\llbracket\right.\right.$ donkey $\left.\rrbracket^{\left[6 \rightarrow u_{1}\right]}\right)\left(\llbracket \lambda_{2}\left[\mathrm{t}_{6}\right.\right.$ owns $\left.\left.\left.\left.\mathrm{t}_{2}\right] \rrbracket^{\left[6 \rightarrow u_{1}\right]}\right)\right]\left(s_{7}\right)=1\right)$
$\left(\lambda u_{2} \cdot \lambda s_{8} \cdot u_{2}\left(s_{8}\right)\right.$ beats in $s_{8} l_{x} x$ is a donkey in $\left.s_{8}\right)$
(by FA)
$=\llbracket$ every $\rrbracket^{0}\left(\lambda u_{1} \cdot \lambda s_{7} \cdot u_{1}\left(s_{7}\right)\right.$ is a man in s_{7} and
$\left[\llbracket \mathrm{a} \rrbracket^{\left[6 \rightarrow u_{1}\right]}\left(\llbracket\right.\right.$ donkey $\left.\rrbracket^{\left[6 \rightarrow u_{1}\right]}\right)\left(\lambda u_{4} \cdot \llbracket \mathrm{t}_{6}\right.$ owns $\left.\left.\left.\mathrm{t}_{2} \rrbracket^{\left[\begin{array}{l}6 \rightarrow u_{1} \\ 2 \rightarrow u_{4}\end{array}\right]}\right)\right]\left(s_{7}\right)=1\right)$
$\left(\lambda u_{2} \cdot \lambda s_{8} \cdot u_{2}\left(s_{8}\right)\right.$ beats in $s_{8} l x x$ is a donkey in $\left.s_{8}\right)$
(by PA)
$=\llbracket$ every $\rrbracket^{\emptyset}\left(\lambda u_{1} \cdot \lambda s_{7} \cdot u_{1}\left(s_{7}\right)\right.$ is a man in s_{7} and
$\left[\llbracket \mathrm{a} \rrbracket^{\left[6 \rightarrow u_{1}\right]}\left(\llbracket\right.\right.$ donkey $\left.\rrbracket^{\left[6 \rightarrow u_{1}\right]}\right)$
$\left(\lambda u_{4} \cdot \llbracket\right.$ owns $\left.\left.\left.\rrbracket^{\left[\begin{array}{l}6 \rightarrow u_{1} \\ 2 \rightarrow u_{4}\end{array}\right]}\left(\llbracket \mathrm{t}_{2} \rrbracket^{\left[\begin{array}{l}6 \rightarrow u_{1} \\ 2 \rightarrow u_{4}\end{array}\right]}\right)\left(\llbracket \mathrm{t}_{6} \rrbracket^{\left[\begin{array}{l}6 \rightarrow u_{1} \\ 2 \rightarrow u_{4}\end{array}\right]}\right)\right)\right]\left(s_{7}\right)=1\right)$
$\left(\lambda u_{2} \cdot \lambda s_{8} \cdot u_{2}\left(s_{8}\right)\right.$ beats in $s_{8} l x x$ is a donkey in $\left.s_{8}\right)$
(by FA)
$=\llbracket$ every $\rrbracket^{\emptyset}\left(\lambda u_{1} \cdot \lambda s_{7} \cdot u_{1}\left(s_{7}\right)\right.$ is a man in s_{7} and
$[\llbracket \mathrm{a}]^{\left[6 \rightarrow u_{1}\right]}\left(\llbracket\right.$ donkey $\left.\rrbracket^{\left[6 \rightarrow u_{1}\right]}\right)$
$\left(\lambda u_{4} \cdot \llbracket\right.$ owns $\left.\left.\left.\rrbracket^{\left[\begin{array}{l}6 \rightarrow u_{1} \\ 2 \rightarrow u_{4}\end{array}\right]}\left(u_{4}\right)\left(u_{1}\right)\right)\right]\left(s_{7}\right)=1\right)$
$\left(\lambda u_{2} \cdot \lambda s_{8} \cdot u_{2}\left(s_{8}\right)\right.$ beats in $s_{8} l x x$ is a donkey in $\left.s_{8}\right)$
$=\llbracket$ every $\rrbracket^{\emptyset}\left(\lambda u_{1} \cdot \lambda s_{7} \cdot u_{1}\left(s_{7}\right)\right.$ is a man in s_{7} and $\left[\llbracket \mathrm{a} \rrbracket^{\left[6 \rightarrow u_{1}\right]}\left(\llbracket\right.\right.$ donkey $\left.\rrbracket^{\left[6 \rightarrow u_{1}\right]}\right)$
$\left(\lambda u_{4} \cdot\left[\lambda u_{5} \cdot \lambda u_{6} \cdot \lambda s_{9} \cdot u_{6}\left(s_{9}\right)\right.\right.$ owns $u_{5}\left(s_{9}\right)$ in $\left.\left.\left.\left.s_{9}\right]\left(u_{4}\right)\left(u_{1}\right)\right)\right]\left(s_{7}\right)=1\right)$
$\left(\lambda u_{2} \cdot \lambda s_{8} \cdot u_{2}\left(s_{8}\right)\right.$ beats in $s_{8} l x x$ is a donkey in $\left.s_{8}\right)$
(by Lex)
$=\llbracket$ every $\rrbracket^{\emptyset}\left(\lambda u_{1} \cdot \lambda s_{7} \cdot u_{1}\left(s_{7}\right)\right.$ is a man in s_{7} and
$\left[\llbracket \mathrm{a} \rrbracket^{\left[6 \rightarrow u_{1}\right]}\left(\llbracket\right.\right.$ donkey $\left.\rrbracket^{\left[6 \rightarrow u_{1}\right]}\right)$
($\lambda u_{4} \cdot \lambda s_{9} \cdot u_{1}\left(s_{9}\right)$ owns $u_{4}\left(s_{9}\right)$ in $\left.\left.\left.s_{9}\right)\right]\left(s_{7}\right)=1\right)$
$\left(\lambda u_{2} \cdot \lambda s_{8} \cdot u_{2}\left(s_{8}\right)\right.$ beats in $s_{8} l x x$ is a donkey in $\left.s_{8}\right)$
(by $\lambda \mathrm{C}$)
$=\llbracket$ every $\rrbracket^{\emptyset}\left(\lambda u_{1} \cdot \lambda s_{7} \cdot u_{1}\left(s_{7}\right)\right.$ is a man in s_{7} and
$\left[\left[\lambda f_{\langle\langle\mathrm{s}, \mathrm{e}\rangle,\langle\mathrm{s}, \mathrm{t}\rangle\rangle} \cdot \lambda g_{\langle\langle\mathrm{s}, \mathrm{e}\rangle,\langle\mathrm{s}, \mathrm{t}\rangle\rangle} \cdot \lambda s_{1}\right.\right.$. there is an individual x and a
situation s_{2} such that s_{2} is a minimal situation such that $s_{2} \leq s_{1}$ and $f\left(\lambda s_{5} \cdot x\right)\left(s_{2}\right)=1$, such that there is a situation s_{3} such that $s_{3} \leq s_{1}$ and s_{3} is a minimal situation such that $s_{2} \leq s_{3}$ and $g\left(\lambda s_{5} . x\right)\left(s_{3}\right)=1$] $\left(\lambda u_{3} \cdot \lambda s_{6} \cdot u_{3}\left(s_{6}\right)\right.$ is a donkey in $\left.s_{6}\right)\left(\lambda u_{4} \cdot \lambda s_{9} \cdot u_{1}\left(s_{9}\right)\right.$ owns $u_{4}\left(s_{9}\right)$ in $\left.\left.s_{9}\right)\right]$ $\left.\left(s_{7}\right)=1\right)$
$\left(\lambda u_{2} \cdot \lambda s_{8} \cdot u_{2}\left(s_{8}\right)\right.$ beats in $s_{8} l x x$ is a donkey in $\left.s_{8}\right)$
(by Lex)
$=\llbracket$ every $\rrbracket^{\emptyset}\left(\lambda u_{1} \cdot \lambda s_{7} \cdot u_{1}\left(s_{7}\right)\right.$ is a man in s_{7} and $\left[\lambda s_{1}\right.$. there is an individual x and a situation s_{2} such that s_{2} is a minimal situation such that $s_{2} \leq s_{1}$ and x is a donkey in s_{2}, such that there is a situation s_{3} such that $s_{3} \leq s_{1}$ and s_{3} is a minimal situation such that $s_{2} \leq s_{3}$ and $u_{1}\left(s_{3}\right)$ owns x in $\left.s_{3}\right]\left(s_{7}\right)=1$)
$\left(\lambda u_{2} \cdot \lambda s_{8} \cdot u_{2}\left(s_{8}\right)\right.$ beats in $s_{8} l x x$ is a donkey in $\left.s_{8}\right)$
(by $\lambda \mathrm{C}$)
$=\llbracket$ every $\rrbracket^{\emptyset}\left(\lambda u_{1} \cdot \lambda s_{7} \cdot u_{1}\left(s_{7}\right)\right.$ is a man in s_{7} and there is an individual x and a situation s_{2} such that s_{2} is a minimal situation such that $s_{2} \leq s_{7}$ and x is a donkey in s_{2}, such that there is a situation s_{3} such that $s_{3} \leq s_{7}$ and s_{3} is a minimal situation such that $s_{2} \leq s_{3}$ and $u_{1}\left(s_{3}\right)$ owns x in $\left.s_{3}\right)\left(\lambda u_{2} \cdot \lambda s_{8} . u_{2}\left(s_{8}\right)\right.$ beats in $s_{8} x x x$ is a donkey in $\left.s_{8}\right) \quad($ by $\lambda \mathrm{C})$
$=\left[\lambda f_{\langle\langle\mathrm{s}, \mathrm{e}\rangle,\langle\mathrm{s}, \mathrm{t}\rangle\rangle} \cdot \lambda g_{\langle\langle\mathrm{s}, \mathrm{e}\rangle,\langle\mathrm{s}, \mathrm{t}\rangle\rangle} \cdot \lambda s_{4}\right.$. for every individual y : for every minimal situation s_{5} such that $s_{5} \leq s_{4}$ and $f\left(\lambda s_{1} \cdot y\right)\left(s_{5}\right)=1$, there is a situation s_{6} such that $s_{6} \leq s_{4}$ and s_{6} is a minimal situation such that $s_{5} \leq s_{6}$ and $\left.g\left(\lambda s_{1} \cdot y\right)\left(s_{6}\right)=1\right]\left(\lambda u_{1} \cdot \lambda s_{7} \cdot u_{1}\left(s_{7}\right)\right.$ is a man in s_{7} and there is an individual x and a situation s_{2} such that s_{2} is a minimal situation such that $s_{2} \leq s_{7}$ and x is a donkey in s_{2}, such that there is a situation s_{3} such that $s_{3} \leq s_{7}$ and s_{3} is a minimal situation such that $s_{2} \leq s_{3}$ and $u_{1}\left(s_{3}\right)$ owns x in $\left.s_{3}\right)$
$\left(\lambda u_{2} . \lambda s_{8} . u_{2}\left(s_{8}\right)\right.$ beats in $s_{8} \mathrm{lz} z$ is a donkey in $\left.s_{8}\right)$
(by Lex)
$=\lambda s_{4}$. for every individual y : for every minimal situation s_{5} such that $s_{5} \leq s_{4}$ and $\left[\lambda u_{1} \cdot \lambda s_{7} . u_{1}\left(s_{7}\right)\right.$ is a man in s_{7} and there is an individual x and a situation s_{2} such that s_{2} is a minimal situation such that $s_{2} \leq s_{7}$ and x is a donkey in s_{2}, such that there is a situation s_{3} such that
$s_{3} \leq s_{7}$ and s_{3} is a minimal situation such that $s_{2} \leq s_{3}$ and $u_{1}\left(s_{3}\right)$ owns x in $\left.s_{3}\right]\left(\lambda s_{1} \cdot y\right)\left(s_{5}\right)=1$, there is a situation s_{6} such that $s_{6} \leq s_{4}$ and s_{6} is a minimal situation such that $s_{5} \leq s_{6}$ and $\left[\lambda u_{2} . \lambda s_{8} . u_{2}\left(s_{8}\right)\right.$ beats in $s_{8} \mathrm{lz} z$ is a donkey in $\left.s_{8}\right]\left(\lambda s_{1} \cdot y\right)\left(s_{6}\right)=1$
(by $\lambda \mathrm{C}$)
$=\lambda s_{4}$. for every individual y :
for every minimal situation s_{5} such that
$s_{5} \leq s_{4}$ and y is a man in s_{5} and there is an individual x and a situation s_{2} such that s_{2} is a minimal situation such that $s_{2} \leq s_{5}$ and x is a donkey in s_{2}, such that there is a situation s_{3} such that $s_{3} \leq s_{5}$ and s_{3} is a minimal situation such that $s_{2} \leq s_{3}$ and y owns x in s_{3},
there is a situation s_{6} such that
$s_{6} \leq s_{4}$ and s_{6} is a minimal situation such that $s_{5} \leq s_{6}$ and y beats in $s_{6} \mathrm{lz} z$ is a donkey in s_{6}
(by $\lambda \mathrm{C}$)

