
1
Introduction

“Semiotic” or “semiotics” are terms not frequently found in the HCI literature.
Search results can be taken as a rough indication of the relative scarcity of semiotic
approaches to HCI. In December 2003 a search for semiotic in the HCI Bibliogra-
phy (see HCI Bibliography) returned 22 records, whereas a search for ethnographic
returned 104, one for ergonomic returned 344, and finally one for cognitive returned
1,729. Although these numbers cannot be taken as a precise measure, the difference
in scale speaks for itself. Semiotics is the study of signs, signification processes, and
how signs and signification take part in communication. It is neither a new disci-
pline, nor one whose object of investigation is foreign to HCI. In its modern guise,
it has been established for approximately one century. But the debate about its
central themes of investigation—meaning assignment, meaning codification, and the
forms, ways, and effects of meaning in communication—dates back to the Greek
classics.

Most of the relatively rare allusions to semiotic principles or theories in HCI con-
centrate on aspects of graphical user interfaces and visual languages. However, the
World Wide Web and the multicultural issues of Internet applications have raised
another wave of interest in semiotics. Since sign systems are produced and perpet-
uated by cultures, some contemporary semioticians define semiotics as a theory of
culture (Eco 1976; Danesi and Perron 1999). Their views are naturally an attrac-
tive foundation for those interested in understanding the nature and enhancing the
design of computer-mediated communication in various social contexts, such as
computer-supported collaborative work, online communities, computer-supported
learning, and distance education.



1.1 Semiotic Theories of HCI

To date only a few authors have taken a broader and more radically committed
semiotic perspective on the whole field of HCI (see, e.g., Nadin 1988; Andersen,
Holmqvist, and Jensen 1993; de Souza 1993; Andersen 1997). This is mainly
because, in spite of its being a resourceful discipline for HCI researchers, teachers,
and practitioners, semiotics covers a vast territory of concepts and uses a wide
variety of analytic methods that are neither familiar nor necessarily useful to them.
Semiotic engineering is one of the few attempts to bring together semiotics and HCI
in a concise and consistent way, so as to support new knowledge organization and
discovery, the establishment of useful research methods for analysis and synthesis,
and also the derivation of theoretically sound tools for professional training and
practice.

First presented as a semiotic approach to user interface design (de Souza 1993),
semiotic engineering has evolved into a theory of HCI. As its name implies, it draws
on semiotics and on engineering to build a comprehensive theoretical account of
HCI. Semiotics is important because HCI involves signification and meaning-related
processes that take place in both computer systems and human minds. And engi-
neering is important because the theory is expected to support the design and 
construction of artifacts. Moreover, semiotics and engineering become tightly
coupled when we think that HCI artifacts are intellectual constructs, namely, the
result of choices and decisions guided by reasoning, sense making, and technical
skills, rather than predictable natural laws. Like all other intellectual products, HCI
artifacts are communicated as signs, in a particular kind of discourse that we must
be able to interpret, learn, use, and adapt to various contexts of need and oppor-
tunity. Thus, the semiotic engineering of HCI artifacts is about the principles, the
materials, the processes, the effects, and the possibilities for producing meaningful
interactive computer system discourse.

The semiotic engineering account of HCI makes explicit references to the theory’s
object of investigation, the interests and values involved in establishing this object
as such, the epistemological conditions and methodological commitments that affect
the results of investigation, and the prospect of scientific knowledge advancement
in relation to its perceived conditions of use and validity. It also aims to provide the
basis for useful technical knowledge for HCI professions—that is, knowledge that
can be translated into professional tools (abstract or concrete), knowledge that can
improve the quality of professional products or services, knowledge that can be

4 Chapter 1



taught to young professionals and refined by practice, and knowledge that can be
consistently compared to other practical knowledge, and be complemented, sup-
plemented, or replaced by it.

The importance of dealing explicitly with epistemological issues in a theory of
HCI, namely, with issues related to how knowledge is gained, analyzed, tested, and
used or rejected lies in our need to discriminate the validity, the reach, and the appli-
cability of HCI knowledge coming from such widely different areas as computer
science, psychology, sociology, anthropology, linguistics, semiotics, design, and 
engineering, among others. We aim to help semiotic engineering adopters identify
the need and the opportunity to use the knowledge this theory proposes, as well 
as the limitations and gaps that call for further investigation and other types of 
theories.

One of the prime advantages of a semiotic perspective on HCI is to center a
researcher’s attention on signs. Signs have a concrete objective stance that is pro-
duced and interpreted by individuals and groups in a variety of psychological, social,
and cultural contexts. They are encoded in natural or artificial signification systems
of widely diverse kinds, and they are typically used to communicate attitudes,
intents, and contents in a multiplicity of media. Most semiotic approaches to HCI
view computer programs as (sources of) artificial signification systems, and com-
puter-based devices as media. For example, in figure 1.1 we see various signs in
SmartFTP© v.1.0.979’s interface: English words and technical terms on the main
menu bar; drawings and sketches of various objects on toolbars; pull-down menus,
text boxes, grids, and other widgets. Each one means something, to users and design-
ers. Other signs appear as a result of interaction, such as the ability to drag items
from a SmartFTP window into another application’s window or workspace, and
vice versa. These signs also mean things, such as the user’s convenience or a system’s
requirement. SmartFTP incorporates a complex signification system that users must
understand in order to take full advantage of the system’s features.

The attitudes, intents, and contents communicated through interactive systems in
computer media are those of the various stakeholders involved in the development
of HCI artifacts—clients, owners, users, developers, designers, technical support
professionals. Two of them have a distinguished status in HCI: designers and users.
Designers, because they must be able to embed in the artifact they are about to
produce the whole range of messages that are expected by and useful to all stake-
holders (including themselves). And users, because they are the ultimate judges of
whether the artifact is good or not.

Introduction 5



6 Chapter 1

Figure 1.1
SmartFTP© v.1.0.979’s interface. Screen shot reprinted by courtesy of SmartFTP©
(http://www.smartftp.com).



1.2 The Semiotic Engineering Framework

Semiotic engineering starts from this general semiotic perspective and assigns to both
designers and users the same role in HCI, namely, that of interlocutors in an overall
communicative process. Designers must tell users what they mean by the artifact
they have created, and users are expected to understand and respond to what they
are being told. This kind of communication is achieved through the artifact’s inter-
face, by means of numerous messages encoded in words, graphics, behavior, online
help, and explanations. Thus, by using this theory to study, analyze, and make deci-
sions about users and their expected reactions, designers are simultaneously study-
ing, analyzing, and making decisions about their own communicative behavior and
strategies. Semiotic engineering is therefore an eminently reflective theory, which
explicitly brings designers onto the stage of HCI processes and assigns them an onto-
logical position as important as that of the users’.

This perspective is considerably different from and complementary to the user-
centered perspective that has shaped our field in the last two decades following
Norman and Draper’s seminal publication (1986). In user-centered design (UCD),
designers try to identify as precisely as possible what the users want and need. User
studies and task analysis allow designers to form a design model that matches such
wants and needs. The design model is projected by the system image, which users
must understand and interact with to achieve their goals. Thus the system image is
the ultimate key to success. If the design model is conveyed through the appropri-
ate system image, which rests on familiar concepts and intuitive relations, users can
easily grasp and remember how the system works. In semiotic engineering, however,
although designers also start by trying to understand users and what they need or
want to do, they are not just trying to build the system image. They are trying to
communicate their design vision to users. Their design vision amounts to how users
may or must interact with a particular computer system in order to achieve their
goal through many communicative codes integrated in the system’s interface. In
figure 1.2 we see a schematic comparison of UCD and semiotic engineering. On the
UCD side, the system image is the only trace of all the intellectual work that has
taken place during design, and it is what the user is required to learn. On the semi-
otic engineering side, the designer herself is present at interaction time, telling the
user about her design vision, to which the user will respond in various ways (includ-
ing unexpected and creative ways). The ideal of UCD is that the user model cap-
tures the essence of the design model, projected in the system image. The ideal of

Introduction 7



semiotic engineering is that designer and user understand each other, and that users
find the designer’s vision useful and enjoyable.

The gist of user-centeredness is a radical commitment to understanding the users
and asking them what they want and need. Their answers set the goals that pro-
fessional HCI design practices must meet for interactive computer-based artifacts to
be usable, useful, and widely adopted. Most of the technical knowledge required
for successful UCD has resulted from empirical studies that attempted to associate
certain features of interactive software to certain kinds of user behavior and reac-
tion. Design features and patterns that have demonstrably met user-centeredness
targets in a statistically significant quantity of situations have been compiled into
legitimate technical knowledge in the form of principles, heuristic rules, and guide-
lines. The greatest difficulty with this kind of research practice in our field, however,
has been the cost of sound predictive theories, especially in view of the speed of
technological progress. The statistic validity of empirical studies requires that

8 Chapter 1

Figure 1.2
User-centered design compared to semiotic engineering.



numerous experiments be run with hundreds, if not thousands, of subjects before
any piece of knowledge is legitimately added to an existing theory.

But two familiar obstacles have been always in the way of such extensive studies—
the pressure exercised by industrial stakeholders, who can’t afford the time and
money involved in extensive latitudinal and/or longitudinal user studies, and the
pace of technological change, which often precipitates the obsolescence of systems
and techniques employed in long-term research projects. As a result, sound predic-
tive theories of HCI have typically concentrated on specific phenomena that cut
across technologies (e.g., Fitt’s Law [Fitt 1954]), but are of little use when it comes
to making other types design decisions (e.g., choosing between adaptive or cus-
tomizable interfaces). Moreover, we have witnessed a certain glorification of guide-
lines and heuristic rules. In some cases, practitioners have focused on conforming
to guidelines and heuristic rules instead of using them appropriately as decision-
support tools. Others have overemphasized the value of checklists and forgone much
of their own intellectual ability to analyze and critique the artifact they are about
to build. Those who exercise this power have often been misled into thinking that
because guidelines don’t take them all the way to a final and unique design solu-
tion, research work from which guidelines are derived is really of little use (Bellotti
et al. 1995; Rogers, Bannon, and Button 1994).

Adding other types of theories to HCI, such as explanatory theories and inter-
vention-oriented theories (Braa and Vidgen 1997), helps us gain sound knowledge
that supports decision making in design, although not on the basis of empirical data.
Conceptual schemas and interpretive models can enrich our analysis of problem sit-
uations and candidate solutions. They can also help us frame problems in different
ways and find opportunities for exploring design paths that would possibly not
emerge in causal reasoning processes that are typical of predictive theories.

1.3 Theorizing about Software as an Intellectual Artifact

In order to illustrate the need and opportunity for such other types of theories 
and research practices (i.e., nonpredictive), let us explore the intellectual nature 
of software artifacts. What is an intellectual artifact? What is not an intellectual
artifact?

All artifacts are by definition nonnatural objects created by human beings. Some
of them are concrete, like forks and knives—material artifacts that were made to
facilitate certain eating practices in our culture. Others are more abstract, like safety

Introduction 9



measures—procedural artifacts that are meant to prevent accidents. Some are meant
for physical purposes, like chairs. Others are meant for mental purposes, like logic
truth tables. Thus, strictly speaking, all artifacts result from human ingenuity and
intellectual exercise. But what we call an intellectual artifact is one that has the 
following features:

� it encodes a particular understanding or interpretation of a problem situation;
� it also encodes a particular set of solutions for the perceived problem situation;
� the encoding of both the problem situation and the corresponding solutions is
fundamentally linguistic (i.e., based on a system of symbols—verbal, visual, aural,
or other—that can be interpreted by consistent semantic rules); and
� the artifact’s ultimate purpose can only be completely achieved by its users if they
can formulate it within the linguistic system in which the artifact is encoded (i.e.,
users must be able to understand and use a particular linguistic encoding system in
order to explore and effect the solutions enabled through the artifact).

According to this definition, knives and forks are not intellectual artifacts, nor
are safety measures and chairs. But logic truth tables are intellectual artifacts, and
so are books (if we think of their content), although books can also be viewed as
physical artifacts (if we think of the physical media where ideas and information
are stored). All intellectual artifacts require that producer and consumer use the
same language. And language is not a metaphor in this case; it is a genuine system
of symbols with a defined vocabulary, grammar, and set of semantic rules. Natural
language descriptions have an additional set of pragmatic rules, which refine the
way in which semantic rules are applied in communicative contexts. But artificial
languages usually don’t include such pragmatic rules in their description.

The advent of graphical user interfaces (GUIs) popularized the idea that software
was some kind of tool. Almost every interface began to include tools, toolboxes,
and toolbars, with explicit reference to concrete physical artifacts. Gibson’s theo-
rizing on affordances (Gibson 1979) inspired HCI researchers (Norman 1988), and
the idea of direct manipulation (Shneiderman 1983) turned the tool metaphor into
one of the pillars of HCI design. But soon the metaphor started to show some of
its limitations. For example, the Gibsonian notion of affordance could not be
directly applied to the HCI. Designers intuitively began to speak of “putting affor-
dances” in the interfaces (Norman 1999); evaluation methods spoke of users
“missing and declining affordances” (de Souza, Prates, and Carey 2000), a sign that
affordances were themselves being used as a metaphor and not as a technical
concept. The invariant feature of all metaphorical uses of the term was the presence

10 Chapter 1



of an intended meaning, of what designers meant to do, or what they meant to say
with specific interface elements. And discussions turned around the occasional mis-
matches between what was meant by designers and users when they referred to
certain signs in the interface. Relevant issues having to do with how the designers’
intent was encoded in the interface, how users decoded (interpreted) them, and how
they used them to express their own intent during interaction could not fit into the
category of typical concrete artifacts. They referred essentially to linguistic processes
(though not necessarily involving only natural language signs). And the kinds of
tools needed to support these processes are not material (like hammers, screw-
drivers, paintbrushes, which all apply to concrete artifacts that we can manipulate),
but rather immaterial (like illustrations, demonstrations, explanatory conversations,
clarification dialogs, which all refer to intellectual artifacts that we can learn). They
are epistemic tools, or tools that can leverage our use of intellectual artifacts.

Epistemic tools can benefit both designers and users, since they are both involved
in communication with or about the same intellectual artifacts. It may be difficult
to see why we need epistemic tools to use a basic text editor like WinVi©, shown
in figure 1.3. The concrete tools in this GUI must all be familiar to computer-
literate users, except perhaps for the last three that mean, respectively, ANSI char-
acter set, DOS® character set, and hexadecimal mode. So one might expect any
computer-literate user to be able to write the text seen in figure 1.3, to edit it with
the familiar cut, copy, and paste tools, and to open and save files, just as easily as
he or she would use pencils, pens, paper, classifiers, and folders. However, unless
the user is introduced to the idea behind WinVi, there is a chance that the power
of this intellectual artifact will never be understood. Unless the user knows the Vi

Introduction 11

Figure 1.3
WinVi©, a graphical user interface for VI®. Screen shot reprinted by courtesy of Raphael
Molle.



Editor and its command language, the string operations that can be performed with
WinVi, and the situations in which such operations are desirable and needed, he or
she may end up complaining about the barrenness of this piece of software (e.g.,
compared to user-friendly ones that may not have half the string processing power
of WinVi). Epistemic tools, like a useful online help system, with clever examples,
explanations, and suggestions for how to use WinVi, should be provided with the
artifact in order to enable users to take full advantage of this product.

Treemap© 3.2 (a visualization tool for hierarchical structures in which color and
size may be used to highlight the attributes of leaf nodes) is another example of why
epistemic tools are needed, just as theories that can help us build them. Visualiza-
tions allow for comparisons among substructures and facilitate the discovery of pat-
terns. All interactions are based on direct manipulation of interface elements, either
pertaining to the visualization itself or to specific controls applicable to it. In figure
1.4 we see data referring to the 2000 presidential elections in the United States.
Lighter-colored rectangles correspond to states with population ranging from over
10 million to nearly 30 million people. The size of rectangles is proportionate to
Gore’s votes, whereas the brightness of the color is proportionate to Bush’s votes.
The pop-up rectangle provides details about the number of electoral votes and each
of the candidates’ votes in each state (or rectangle). In the “slice and dice” visuali-
zation mode shown in figure 1.4, the layout represents the states grouped in a
fashion that mimics the geographical layout. The user may choose which label to
see on the rectangles. On the upper right part of the screen is more information
about Florida, the selected state on the left side. On the lower part, in the Filters
tab, are various sliders that can help the user narrow in on specific ranges of values
for the various attributes of the data.

As was the case with WinVi, Treemap may go underestimated and underutilized
if users are not introduced to the power of this data visualization tool. Although
the interactive patterns are not difficult to learn and support manipulations that can
help the user find aspects of information that might be lost in tabular presentations,
they are not obvious for average users. The intellectual value added to the tool by
its designers is not clear from the signs in the interface. There is no reference to pat-
terns of data, and no hint of when or why one kind of visualization is better than
the other. But of course the designers included alternative visualizations because
some are better than others in certain situations. However, unless the users are told
about the relative advantages of each or get at least some sort of cue, they may miss
the whole idea of the tool.

12 Chapter 1



Intellectual tools deserve an appropriate presentation or introduction. Not only
in operational terms (which is the most popular kind of online help users get from
software manufacturers), but also (and perhaps more interestingly) about the
problem-solving strategies that the designers had in mind when they produced the
software. A detailed example of how users would benefit from a more careful 
introduction to knowledge associated with the product will help us draw some 
conclusions about the intellectual aspects of software production and use that 
nonpredictive theories such as semiotic engineering can bring to light and help
explore. To this end I will employ a use scenario from Adobe® Acrobat® 5.0.5.

Introduction 13

Figure 1.4
Direct manipulation and data visualization possibilities in Treemap© 3.2. Screen shot
reprinted by courtesy of HCIL, University of Maryland, College Park (http://www
.cs.umd.edu/hcil/Treemap/).



Acrobat offers to users a set of powerful tools for reviewing documents. Among
the most useful are “commenting tools” and “markup tools.” In figure 1.5 we see
a screen shot of Acrobat showing its own help documentation as a PDF file that
can be commented and marked up. On the top of the screen is the usual menu bar
and tool bars. On the left-hand side are the bookmarks, which in this case contain
a detailed summary of the document. And on the right-hand side is a document
page linked to the highlighted entry of the summary (“marking up documents with
text markup tools”). The “note tool” is an example of a commenting tool, and the
“highlight tool” is an example of a markup tool. The analogy with concrete arti-
facts such as notes and highlight markers is emphasized by the visual signs appear-

14 Chapter 1

Figure 1.5
Acrobat® 5.0.5 standard interface. Adobe® product screen shot reprinted with permission
from Adobe Systems Incorporated.



ing on the toolbars on top of the screen. Thus, users can write notes and highlight
portions of text while they are reviewing documents.

Following the UCD cannons, the system image directly projects the idea that users
can call a document’s reader’s attention to portions of the text and write comments
about them. So, for instance, a reasonable reviewing strategy that most users are
likely to adopt is to highlight parts of the text that need to be reviewed and then
write a note with suggestions and justifications or questions. The steps to achieve
this goal are as follows:

1. to select the highlight tool

2. to press down the mouse button at the beginning of the text portion to be 
highlighted

3. to drag the mouse to the end of the text portion to be highlighted

4. to release the mouse button

5. to select the note tool

6. to click on the document page close to the highlighted portion

7. to double-click on the note icon

8. to type in comments and suggestions

9. to close the note (optional)

The visual effect of these steps can be seen in figure 1.6. The first two lines of 
the top paragraph on the page are highlighted, and next to them is a note where
the user comments that she never knew highlights were comments. This user has
been using Acrobat for over a year now, and her reviewing strategy has always been
what she calls the “highlight-and-add-note” strategy. But she learned a few things
about this strategy. For example, the spatial contiguity of the note and the high-
lighted text is of course critical. Otherwise, sentences like “This is new to me”
cannot be correctly interpreted. This must always refer to an object that is spatially
contiguous to it. Another important lesson is about producing a summary of her
comments, which she often does using the “summarize tool” (see figure 1.7). This
tool generates a listing of comments made by the user. The comments can be fil-
tered and sorted in various ways, but the default situation is to list comments and
markups in sequential order of creation. Therefore, when this user generates a
summary of her document, the content of a note she wrote following steps 6 to 8
comes right next to the text she has highlighted in steps 2 to 4. As a result, she can
still interpret this in the listing as referring to the contents of the two highlighted
sentences. The referent of this is shown in the previous entry of the summary.

Introduction 15



At times, when checking all of her comments, she has tried to extend the high-
lighted portion of text to which comments refer. For instance, suppose that after
doing a lot of reviewing on Acrobat’s help document, the user highlights the other
two lines of the first paragraph. Assuming that no other comments and markups
have been made on this page, this becomes the third summary entry, and is listed
after the note contents. As a result, although visually the note contents correctly
refer to the four lines in the first paragraph on the page seen in figures 1.6 and 1.7,
textually the reference is lost in the summary (see figure 1.8). The note comment is
inserted between the first and the second two lines of the paragraph, and this seems
to refer only to the part of the text, although it really refers to all of it.

16 Chapter 1

Figure 1.6
Notes and highlights in Acrobat® documents. Adobe® product screen shot reprinted with 
permission from Adobe Systems Incorporated.



The trick in Acrobat’s interface is that, given how the system image is projected,
the highlight-and-add-note strategy is the most obvious to users. And this may lead
to problems in generating summaries. However, as the Acrobat’s help documenta-
tion is saying, the highlight-and-add-note strategy is not exactly the design vision
for efficient commenting and reviewing. As can be read in figure 1.5, designers do
believe that users “may want to highlight or strike through a section of text, and
. . . add a note . . . to explain [the] reason for the markup.” However, the way to do
this, in their view, is not to use the note tool but to “double-click [on the highlight
or strike-through] to add a note window.” But the system image does not suggest
that this is a possibility, or that “highlights” and “notes” are both “comments”

Introduction 17

Figure 1.7
Menu choices for Comments in Acrobat®. Adobe® product screen shot reprinted with per-
mission from Adobe Systems Incorporated.



(which is precisely what the user is surprised to learn in the documentation). In the
physical world, these are different things.

If Acrobat’s default configurations are changed, however, the system image gives
the user a hint that maybe notes and highlights have indeed something in common.
The user can change her preferences and choose to see the sequence number of every
comment. The visual effect of this change can be seen in figure 1.9. Note that both
notes and highlights have “comment sequence numbers” (this is how this configu-
ration parameter is named in the preference dialog). So, they are both comments.
And, since we can double-click on note icons to open small windows and type in

18 Chapter 1

Figure 1.8
Textual discontinuity of visually continuous highlighted text in comment summary. Adobe®
product screen shot reprinted with permission from Adobe Systems Incorporated.



comments, we can also expect to double-click on highlighted texts in order to open
the same kind of windows and type in comments.

The effect of this discovery on our user is much deeper than we may at first
suspect. In fact, when she realizes that every highlight is a comment, just like a note,
it dawns on her that she does not need to create a note to comment every highlight
in the document. She can write her suggestion, justification, or question directly in
the comment window associated with the highlight. And as she begins to do this,
she realizes that the note window referred to in Acrobat’s documentation indeed
contains the whole extent of marked-up text. If she chooses the following interac-
tive steps:

Introduction 19

Figure 1.9
Visual similarities between comments and markups as a result of changing preferences.
Adobe® product screen shot reprinted with permission from Adobe Systems Incorporated.



1. to select the highlight tool

2. to press down the mouse button at the beginning of the text portion to be 
highlighted

3. to drag the mouse to the end of the text portion to be highlighted

4. to release the mouse button

5. to double-click on the highlighted text

6. to type in comments and suggestions

7. to close the note (optional)

the summary of comments will look smaller and more readable like this:

“Sequence number: 1

Author: clarisse

Date: 12/27/2003 6:57:22 PM

Type: Highlight

The text markup tools provide several methods for visually

annotating text in a document. You can use these comments

by themselves or in conjunction with other comment types.

For example, you may want to highlight or strike through a

section of text, and then double-click to add a note window

to explain your reason for the markup.

This is new to me. Are markups comments?”

and not like what is shown in figure 1.8. The design vision, according to what can
be read in Acrobat’s online documentation, aligns with the “comment-on-highlight”
strategy, although the system image projects the highlight-and-add-note strategy
with greater salience. Moreover, spatial contiguity problems disappear in the textual
summary.

Without getting into a “bug or feature” discussion with respect to this example
(i.e., assuming that similarities in visualizations of notes and highlights is a feature
and not an unanticipated side effect of parameter-setting implementation), the truth
is that operating with comment sequence numbers on and off communicates dif-
ferent meanings in Acrobat. And not all of these values have a logical connection
with numbering comments. In particular, if the user knows that highlights (and other
markup tools) automatically generate a comment, this can make reviewing more
agile and consistent. If she doesn’t, not only does this introduce unnecessary redun-

20 Chapter 1



dancies in the reviewing process, but this may also cause loss of information (as
when the reader must interpret a word like this, referring to something other than
what is spatially contiguous to it). Users are simply not likely to guess the best strat-
egy from just looking at Acrobat’s interface and focusing on the system image.

It is useful now to contrast two design objectives—producing and introducing an
application that meets certain requirements. If Acrobat’s designers had been given
the goal to produce an application that allows users to operate in different ways
and customize it to meet their needs, the problem with this interface would be that
the system image does not portray equally well all of the product’s features. In other
words, the flexibility to tailor the application to different users’ profiles is there, but
it is poorly communicated. However, if designers had been given the goal to intro-
duce such application, they wouldn’t have even partially met their goal. Acrobat’s
more sophisticated uses are far from self-evident and do not speak for themselves.
They may not go without an explicit introduction. In particular, tactical and strate-
gic choices that users may or should make to increase their productivity and/or sat-
isfaction cannot be derived from the strict meaning of the tools that they see in the
application’s interface. Tools tell them a number of things about Acrobat’s opera-
tional features, but nothing about how this technology may bring about desirable
changes in work strategies or tactics.

1.4 New Nonpredictive Theories for HCI

Nonpredictive theories of HCI, such as the semiotic theories that have guided the
analyses of the examples above, can help us gain access to some relevant issues. The
first is to add a new perspective on usability and focus on some factors influencing
usability that are not totally obvious from design guidelines. For example, if we take
Shneiderman’s eight golden rules (Shneiderman 1998):

1. strive for consistency

2. enable frequent users to use shortcuts

3. offer informative feedback

4. design dialogs to yield closure

5. offer error prevention and simple error handling

6. permit easy reversal of actions

7. support internal locus of control

8. reduce short-term memory load

Introduction 21



we see that they concur to helping users understand the application, of course, but
they may not be sufficient to help designers communicate efficiently the intellectual
value added in software tools. Acrobat’s interface (with respect to our example) can
be said to follow the eight golden rules, but yet it fails to tell the users about some
relevant features of this technology regarding the various reviewing strategies 
that users can adopt. So, what do we mean by “telling users about the design
vision”?

By shifting the design goal statement from producing to introducing technology,
we can approach the answer. Introducing technology aims at making adopters
understand valuable strategic aspects of it, and not only learning how to operate
the system. Users must be told how technology can add value to their work and
activities. Note that the eight golden rules refer to operational aspects: to what kinds
of actions the user must perform, and the resources he needs in order to interact
smoothly with the system. They do not refer to the strategic aspects of the tech-
nology, as for example to the relative advantages of choosing one interactive path
over other possible ones. In the Acrobat example we see that users can easily achieve
their reviewing goals using the highlight-and-add-note strategy (which can be said
to comply with Shneiderman’s golden rules). But they would very probably be much
more efficient (and would prefer to be so) if they were aware of the comment-on-
highlight strategy that can be adopted by changing preference parameters.

One could argue that changing the label of the “show comment sequence
number” parameter to something like “show comment icons and numbers” might
improve the interface and evoke the strategic value of this alternative mode of oper-
ation. But this line of solution is not good enough, for two reasons. One is that it
is episodic and ad hoc, a kind of solution that depends on the designer’s capacity
to foresee when and why it should be extended to other portions of the interface.
In other words, by keeping with the goal of producing usable interfaces, and using
operational usability metrics to assess the quality of the interface, a designer is not
prompted to think systematically about the strategic decisions of the users. The other
reason is that only by replacing the overall HCI design goal with one of introduc-
ing technology, strategic aspects naturally come first. If one cannot see why one
should learn a new technology, one can easily choose not to learn it at all. Or, as
seems to be the case with Acrobat, if one doesn’t see that certain operations open
the avenue for alternative strategies that can be considerably more efficient than
others, the value of the technology is not fully understood.

22 Chapter 1



So, by shifting focus in stating design goals, we are simultaneously shifting com-
munication priorities in the interface. Strategies come first, then operations. This
does not necessarily mean that we must have a two-stage communication structure
in the interface, first telling users everything about the strategies and then, depend-
ing on their choice, telling them all about operations. Neither does it mean that
interfaces must be verbose and loaded with text and explanations. Semiotics can be
used to explore how we can convey both using one and the same sign structure.
Just as an example of how strategies can be communicated along with operations,
consider the proposed redesign of Acrobat’s Tools menu structure, shown in figure
1.10.

Communicating strategies of use is an important factor in making users under-
stand the design vision. The kind of communication suggested in figure 1.10 would
benefit other system’s interfaces such as Treemap’s and WinVi’s, illustrated earlier
in this chapter.

1.5 The Contribution of Semiotic Engineering

What effects does a semiotic perspective bring about for HCI research and practice,
and what is the value of semiotic theories in this discipline? To answer these ques-
tions we must analyze how semiotic engineering relates to the other theories—is it
detrimental to others? is it prone to being complemented or supplemented by others?
In the following subsections we will discuss

Introduction 23

Figure 1.10
Communicating strategies to a user—a redesign of Acrobat®’s original menu structure.



� the semiotic engineering homogeneous model for users’ and designers’ activities
in HCI;
� its ontological, epistemological, and methodological constraints and commit-
ments; and
� the consequences of having homogeneous models.

1.5.1 A Homogeneous Model for Users’ and Designers’ Activities in HCI
Semiotic engineering views HCI as a particular case of computer-mediated human
interaction. This perspective is invariant across most semiotic approaches to HCI
(e.g., Kammersgaard 1988; Nadin 1988; Andersen 1997), but the specificity of semi-
otic engineering is to characterize interactive computer applications as metacom-
munication artifacts (de Souza 1993; Leite 1998). Metacommunication artifacts
communicate a message about communication itself. The message is elaborated and
composed by designers and intended for the users. This is the first stance in which
HCI designers and users are brought together under the same communicative
process. In order to decode and interpret the designers’ message, users proceed to
communicate with the message, which gradually unfolds to them all the meanings
encoded in it by the designers.1 The message actually speaks for the designers in the
sense that it contains all the meanings and supports all meaning manipulations that
the designers have rationally chosen to incorporate in the application in order to
have it do what it has been designed to do. In semiotic engineering terms, the
message serves as the designer’s deputy, presenting not only an artifact that can
perform a certain range of functions and be used within a certain range of contexts,
but also the rationale and design principles that have been followed while synthe-
sizing this product. Rational decisions and choices relative to meaning and meaning
manipulation are the best evidence that interactive computer applications are intel-
lectual in nature. And as is the case of any other intellectual object its meaning can
only be fully grasped and understood when conveyed in an appropriate semiotic
discourse—one in which basic metalinguistic functions are available for mutual
communication.

The four-stage evolutionary schema of metacommunication involving designers
and users in HCI involves the following steps:

� The designer studies users, their activities, and their environment;
� The designer expresses, in the form of computer technology, his views about how
the users, their activities and environment may or must change (because users so
wish);

24 Chapter 1



� Users unfold the designer’s message through interacting with the system; and
� Users finally make full sense of the designer’s message and respond to it 
accordingly.

The whole process thus starts with the designer studying the users, their activity,
and their environment. He takes into account ergonomic, cognitive, social, and cul-
tural factors that can affect usability and adoption of the technology being built.
He consolidates all this knowledge into his interpretation of who the users are, what
they need, what they like and prefer, and so on. The second stage in the process is
an articulation of the knowledge gained in the first stage with the technical knowl-
edge and creativity of the designer, who then produces an artifact that tells his mind
in the form of an interactive message. The third stage corresponds to the user’s
unfolding of the designer’s message, gradually making sense of the various mean-
ings encoded in the artifact. The fourth and last stage in this particular type of 
computer-mediated human communication corresponds to the user’s final elabora-
tion of the meanings unfolded during interaction, a stage when the user finally makes
full sense of the message. At this stage the user’s response to the technology is mature
and complete. The user knows the technology, no matter if he is fully satisfied with
it or not. Semiotic engineering focuses on optimal communication, not on other
crucial aspects of design such as aesthetics, productivity, and user satisfaction, to
name but a few.

The metacommunication artifact is thus a designer-to-user message, whose
meaning can be roughly paraphrased in the following textual schema:

Here is my understanding of who you are, what I’ve learned you want or need to do, in
which preferred ways, and why. This is the system that I have therefore designed for you,
and this is the way you can or should use it in order to fulfill a range of purposes that fall
within this vision.

Notice that this overall content of the designers’ message to users holds true in
single-user and multi-user applications, stationary and mobile applications, fixed
and extensible applications, Web-based or non-Web-based applications, basically
visual or basically textual applications, virtual reality, work and fun applications,
and so on. It is a robust characterization of HCI across media, domains, and tech-
nology, which is a promising feature for a prospect foundational theory.

Introduction 25



1.5.2 Ontological, Epistemological, and Methodological Constraints and
Commitments
By underwriting a semiotic approach, the semiotic engineering of human–computer
interaction is bound to live with certain ontological, epistemological and method-
ological constraints and commitments that may or may not exist in other alterna-
tive theories. We should start this discussion by committing to a definition of
semiotics itself. Our choice is to adopt Eco’s definition (Eco 1976, 1984), accord-
ing to which semiotics is the discipline devoted to investigating signification and
communication. Signification is the process through which certain systems of signs
are established by virtue of social and cultural conventions adopted by the users,
who are the interpreters and producers of such signs. Communication is the process
through which, for a variety of purposes, sign producers (i.e., signification system
users in this specific role) choose to express intended meanings by exploring the 
possibilities of existing signification systems or, occasionally, by resorting to non-
systematized signs, which they invent or use in unpredicted ways.

Eco’s definition of semiotics can easily justify why HCI is legitimately an object
for semiotic investigation. It also supports the prevalent view in semiotic approaches
to HCI, namely, that HCI is a particular case of computer-mediated human com-
munication. All interactive computer-based artifacts are meant to express a design
vision according to an engineered signification system. And it finally reveals the
nuances of the semiotic engineering notion of metacommunication artifacts by
helping us see that the signification system used by designers to communicate their
vision to users must become instrumental for the users to express their particular
intent and content back to the application (lest interaction becomes impossible).

But Eco, as many other leading semioticians, fully embraces the fundamental
notion of unlimited semiosis, proposed by the American nineteenth-century philoso-
pher and co-founder of contemporary semiotics, Charles Sanders Peirce. This notion
rests on the idea that a sign is not just a relational structure—binding together a
representation, an object that warrants it the status of being a representation, and
a mental interpretation triggered by it. It is a recursive function which can be applied
to itself any number of times, yielding interpretations that become the argument 
of the next function application. The recursive process of its application is called
unlimited semiosis.

In spite of its apparently convoluted formulation, the meaning of unlimited semi-
osis is relatively easy to grasp. In practice, it amounts to a number of interesting
formulations of intuitive facts involved in human communication. It says that the

26 Chapter 1



meaning of a representation cannot be defined as a fixed object or class of objects,
although, for there being a representation at all, there must be an object or class of
objects that requires a representation. For example, for the word HCI to be a rep-
resentation (at all) there must be an object or class of objects that directly deter-
mine its codification into a signification system. In the absence of these, nothing 
can be a representation “of” anything. The existence of a mental stance directly
determined by the presence of a representation, but only indirectly determined by
the presence of an object or class of objects, opens the possibility of subjective 
(internal) ingredients to interplay with objective (external) ones, generating arbi-
trary interpretations for any given representation. So, there are three components
to a sign: representation, object, and interpretation (often called meaning). For
mutual understanding to be possible, there must be (a) regulatory mechanisms that
can determine if and when shared meanings have been achieved, and (b) generative
mechanisms that can produce other mental stances of meaning when the first triadic
configuration of semiosis proves to be insufficient for achieving shared meanings.
The principle of unlimited semiosis states that in communication, for instance, semi-
osis will continue for as long as communicating parties are actively engaged in
mutual understanding. Because there is no way to predict the length of this process,
and because in theory it can last for as long as one cares to carry it on, semiosis is
unlimited (although it is finite on an individual scale, given the finitude of our exis-
tence). The same can occur in noncommunicational semiosis, when the human mind
ponders reflectively over the meaning of things. This is the very nature of philo-
sophical activity, and by definition it can extend to any length of time, even beyond
the limits of an individual’s life span, if we consider schools of thought to behave
as a collective mind. Culture, ideology, archetypal myths are yet other instances of
unlimited semiosis in action.

So, a semiotic theory of HCI, such as the one proposed by semiotic engineering,
has to incorporate signification, communication, and unlimited semiosis in its ontol-
ogy, no matter how uncomfortable the consequences of this move in epistemologi-
cal and methodological terms.

At the ontological level, semiotic engineering splits meaning into two very diverse
categories. Human meanings (that of designers and users) are produced and inter-
preted in accordance with the unlimited semiosis principle. Computer meanings
(human meanings encoded in programs), however, cannot be so produced and inter-
preted. For a computer program, the meaning of a “symbol” (a kind of degraded
sign, in this context) is no more than an object, or class of objects, encoded into

Introduction 27



another symbol system (or directly into a physical state of a physical device). The-
oretical constraints on algorithmic computation cannot support the notion of unlim-
ited semiosis (Nake and Grabowski 2001) and thus set the borderline between
human and computer semiotics (see section 7.1 for an extensive discussion of this
issue). Moreover, computer interpretation is itself a sign of human interpretations
about meaning and meaning-related processes. The way programs assign meanings
to symbols is a reflection, or representation, of how programmers believe meanings
are logically assigned to symbols.

At the epistemological level, some important constraints must be spelled out. First,
in a semiotic perspective, there is no room for a purely objective and stable account
of meaning, whether the designers’ or the users’. Meaning carries inherent subjec-
tive and evolutionary ingredients determined by unlimited semiosis that cast a
shadow of doubt upon the idea that the users’ context, requirements, and capaci-
ties can be fully captured by any human interpreter at any given time. Even 
when we let go of the idea of capturing all meanings, the choice of which are the
relevant ones is equally prone to misjudgment and incompleteness. Consequently,
in this sort of epistemological context, a researcher cannot possibly assume a 
positivist attitude, commonly adopted by many who aim to build predictive theo-
ries. From a semiotic perspective one cannot observe and interpret empirical phe-
nomena without being affected by his or her own subjectivity, and the sociocultural
context around him or her. Therefore, the value of observation and interpretation
cannot be dissociated from the purposes the empirical study is designed to serve in
the first place.

In order to preserve the theory from being declared anarchic and ultimately
useless, for scientific purposes in general and for HCI design in particular, this epis-
temological challenge must be counterbalanced by sound methodological choices.
They must enable researchers to identify the limits of subjectivity, the power of cul-
tural determination, the conditions of social contracts in communicative phenom-
ena, and, in the particular domain of HCI, the effects of computer technology upon
human signification and communication processes. Sound choices will protect
researchers and professional practitioners against adopting a naïve idealized view
in which interactive computer-based artifacts can be built according to laws that
are similar to the ones that allow civil engineers to build bridges. And they will also
keep them from adopting a nihilist view in that, because users can never be fully
understood and systems must always be built, any approximation of the actual use
situation is as good as any other. One of the peculiar aspects of this theory is that

28 Chapter 1



it carries in itself a certain ethics of design, which other theories don’t explicitly
discuss or assume to exist.

In sum, semiotic engineering operates on a homogeneous continuum of analysis,
where designers, users, and computer artifacts have a role in an overarching com-
municative process. The unit of analysis is a metacommunication artifact—an inter-
active computer-based system engineered to communicate to its users the rationale
behind it and the interactive principles through which the artifact can itself be used
to help users achieve a certain range of goals. However, the adoption of a semiotic
ontology of HCI calls for strict epistemological and methodological vigilance. We
believe that this situation pays off for two main reasons. One is that the range of
phenomena encompassed by a semiotic perspective is considerably wider than that
covered by the main theoretical alternatives backing up HCI today. It suffices to
mention, as a justification, that none of them brings together designers, computer
artifacts and users under the same observable unit of investigation. The other is that
we cannot be sure, given the lack of explicit statements about epistemological and
methodological commitments in research work produced by alternative theories,
that similar challenges would not be faced by cognitive, ethnographic, psychosocial,
ergonomic, or purely computational traditions in HCI research. Therefore, it may
well be the case that a stricter vigilance of this sort may yield novel and important
knowledge about the nature of HCI, with positive impacts for both research and
professional practice.

1.5.3 The Consequences of Having Homogeneous Models
A homogeneous continuum of analysis in HCI brings about a certain number of
consequences. First, as we have already mentioned, because users and designers are
involved in the same communicative phenomenon, semiotic engineering becomes a
reflective theory. In other words, if designers use semiotic engineering to build inter-
active applications, they must think about their own role and intent in HCI, and
about how their role and intent affect and are affected by those of the users. The
theory is well-suited for problem situations in which introducing interactive tech-
nology seems more important or more precisely the case than producing it.

Second, this homogeneity brings about different possibilities not only for inter-
preting design problems, but also for structuring the solution space and exploring
the comparative value of alternative solutions. These possibilities stem from our
knowledge about signification and communication phenomena, and their rela-
tionship with culture and computer technology. As a consequence, a number of 

Introduction 29



constraints and concerns stand out in the design process. For example, when HCI
design is cast as signification system engineering, we realize that this system must
be used in three different situations. To begin, in order to communicate with users
via the designer’s deputy, designers themselves must use it. This is the context of the
one-shot unidirectional communication voiced by the interactive discourse possi-
bilities programmed into the application. It must also be used by the designer’s
deputy (or “system”), which will concretely interact with the user, systematically
generating and interpreting signs according to the semiotic rules embedded in the
program. And finally it must be learned and used by the users, who can only come
to understand, apply, and enjoy a computer application if its signification system
can effectively support communication.

Third, design intent is brought forth as a first-class citizen in this scenario. Because
designers are actually communicating to users, the purpose of communication must
be achieved. Two consequences follow from this. One is that designers must have
a clear idea of what they want to do and why. The other is that they must be able
to tell this to users in ways that are computable, easy to learn and remember, effi-
cient and effective. Note that they are not talking about telling the users which
button to press to activate this and that function, or what is the meaning of this
and that visual form on the screen. They are telling them why the application makes
sense to them, and why they expect that it will make sense to users, too. One of
the leading reasons why designers expect that users will be pleased with the appli-
cation, and make an effort to learn the specifics of it, is that they know who users
are and have designed the application especially for them. If designers can’t tell
this—that is, if they don’t know who the users are and have designed an applica-
tion that has some inherent qualities that they expect will be intuitively perceived
and naturally approved—they must still acknowledge that these qualities are there
and help the users appropriate such qualities.

Fourth, a homogeneous communicative framework for HCI where designers,
users, and computer artifacts are brought together can be used to inspect the nature
and the quality of design processes and products. The latter can be further analyzed
both per se and in situ—that is, outside and inside the contexts of use. Since com-
munication is such a pervasive activity in this semiotic perspective, we have the tools
to answer a number of questions. For instance, we can analyze the following:

� What signs are being used to compose the signification system that will carry the
one-shot message to users, and also support ongoing communication between the
user and the designer’s deputy?

30 Chapter 1



� How does the signification system encode design intent? Is this encoding likely to
be understood by the users? Why?
� Once the users understand design intent, how can they put this intent into oper-
ation for their own benefit?
� What kinds of semiosic processes triggered by the signs that compose the 
engineered signification system does the designer anticipate? Which ones can the
designer’s deputy process? Which ones can it not?
� If the users’ semiosic processes evolve in directions that have not been anticipated
by the designer, which signs will express this communicative breakdown? What
remedial resources can be used to reestablish productive communication? Can users
extend the signification system? How?

Finally, by including designers in the unit of investigation of HCI-related phe-
nomena, semiotic engineering opens the door to an examination of its own limita-
tions. In the process of analyzing this specific kind of computer-mediated human
communication, designers may realize that they need tools, knowledge, or other
resources that this theory is not able to provide. And as soon as they realize it, they
can look for other theories that will complement semiotic engineering (i.e., provide
the additions that will lead to a complete fulfillment of needs), supplement it (i.e.,
provide additions that will lead to an increased fulfillment of needs), or simply
replace it (because others can yield better results altogether).

1.6 Expected Contributions for Professional Practice

Novel theoretical approaches to HCI have been repeatedly called for to advance
research and contribute to improve the quality of information technology artifacts
(see, e.g., opinions expressed in Barnard et al. 2000; Hollan, Hutchins, and 
Kirsh 2000; Shneiderman et al. 2002; Sutcliffe 2000). As we have already men-
tioned, however, the latter has been the object of some debate, since studies have
reported that practitioners disagree with the view that theoretical research can have
positive and timely impacts on the quality of HCI product design (e.g., Gugerty
[1993]).

Donald Schön (1983) reviewed and critiqued alternative views on the relation-
ship between scientific and practical knowledge, and proposed that there are two
paradigmatic positions in this field. One is the technical rationality perspective,
according to which practical knowledge is applied science. In this view, technical

Introduction 31



professionals should be trained in basic sciences that provide them with generally
applicable problem-solving methods, and then develop the necessary skills to select
and apply the best-fit method to the problems they are likely to encounter (Simon
1981). The other is a reflection-in-action perspective, according to which practical
knowledge involves the capacity to name the elements present in problematic situ-
ations and frame them as problems. These problems are often unique and usually
unstable, unlike the general kinds of problems assumed to exist in the other para-
digm. In the reflection-in-action view, technical professionals must be equipped with
epistemological tools that can help them raise useful hypotheses, experiment with
different candidate solutions and evaluate results. As a consequence, Schön suggests
that the education of professional designers can benefit from more epistemic
approaches to practice. Schön’s message to HCI designers in particular (Schön and
Bennett 1996), is that they should ask themselves what is the artifact they are about
to design, and not only how they can make the artifact usable. The answer to the
first question, as in the case of engineering models, for example, can be found by
“interacting with [a] model, getting surprising results, trying to make sense of the
results, and then inventing new strategies of action on the basis of the new inter-
pretation” (181).

If we look at HCI research over the last decade or so, we see that a very large
portion of the results it has produced falls in the category of predictive methods or
explanatory models of users’ behavior (Shneiderman et al. 2002). The products of
research have typically taken the form of design guidelines and heuristic rules.
Tacitly assuming that designers are faced with recurring problem types, many
researchers struggle to articulate guidelines and rules into generalizable principles.
Principles, in their turn, can be used to support the methods with which design prob-
lems can be skillfully resolved. Perhaps the most enduring instance of how theories
can be used in this direction is Card, Moran, and Newell’s model (1983) of the
human information processor. For nearly two decades, this theory has influenced a
considerable portion of HCI designers who view interaction as a cognitive problem
whose solution can be found with the application of appropriate task and user 
modeling techniques derived from the original theory or some of its derivatives.

There are, however, some problems with the technical rationality perspective.
Experimental validation of the methods derived from the various theoretical stances
is difficult if not impossible to carry out. Keeping rigorous control over statistically
relevant corpora of design situations in current HCI professional practice would not
only involve enormous costs (having different design teams developing the same

32 Chapter 1



“real world” application by using different comparable methods; tracing every step
of their progress; and performing statistically significant product evaluation tests 
in the end), but involve methodologically dubious procedures (deciding whether 
an implemented program strictly follows a design specification; deciding whether 
a particular design specification represents all dimensions of design intent and
content).

Another kind of difficulty with technical rationality is that the purposes and
requirements that justify and trigger the design of various interactive software arti-
facts are constantly changing. Many HCI practitioners believe that users don’t know
what they want. But this isn’t necessarily the case. Users may know very well what
they want and yet change their minds every time they are asked about requirements
and purposes. As everybody else, the more they think about the problem, the more
they understand about it. So, new insights are constantly arising from their reflec-
tion. This situation makes it again very difficult to practice HCI design as applied
science, because the problem to apply it to is intrinsically unstable (and not
amenable to the kinds of generalizations targeted by technical rationality).

In spite of these difficulties, and the resonance of Schön’s ideas in a number of
HCI research centers, researchers have not turned to epistemic theories of HCI, or
to producing epistemic tools. An epistemic tool is one that is not used to yield
directly the answer to the problem, but to increase the problem-solver’s under-
standing of the problem itself and the implications it brings about. In the same spirit
as Kirsh and Maglio’s account of epistemic actions performed by Tetris® players
(1995), epistemic design tools are those that will not necessarily address the problem
solution, but the problem’s space and nature, and the constraints on candidate solu-
tions for it. Suchman’s ideas (1987) and Winograd and Flores’s account (1986) both
called attention to the fact that intelligent human behavior uses freely exploratory
interpretation of signs belonging to the context of activity in order to take 
goal-related action. And good computer tools should help people do this more and
better.

Given the objectives that we set out to achieve with semiotic engineering, we 
can say that the main theoretic contribution we intend to make is to address the
epistemic needs of both designers and users when communicating through or with
computer-based technologies. With a semiotic perspective on HCI, we intend to
open the road for eventually producing epistemic design tools that will help design-
ers deal with ‘knowledge’ itself. The reflective nature of semiotic engineering is 
particularly suited for the task. It can be easily articulated with Schön’s 

Introduction 33



reflection-in-action perspective on design, and can strive to compensate the diffi-
culties brought about by the technical rationality perspective by raising the design-
ers’ epistemological awareness on what they are doing and on how this affects what
users are doing.

This book is organized in three parts. Part I offers an introductory overview of
our goals and assumptions, followed by a concise presentation of some theoretical
concepts used in semiotics that are necessary for understanding semiotic engineer-
ing. It ends with a detailed presentation of our theory of HCI. Part II shows how
the theory can be applied to inform the evaluation and design of HCI products in
three specific contexts. I start with communicability evaluation and the construc-
tion of online help systems. Then I explore customization and extension of appli-
cations in the context of end-user programming. And I conclude the second part of
the book with a discussion of the semiotic engineering of multi-user applications.
Part III contains a single chapter, in which I share with readers my questions, beliefs
and expectations about the potential and the immediate opportunities for research
in semiotic engineering. Because the theory is itself a sign that readers may add to
their ongoing semiosis, there is no ultimate conclusion or prediction about what
semiotic engineering means. This book is only my current discourse about what it
means to me, hoping that it will be a useful and stimulating reading for those who
like to think about HCI.

34 Chapter 1


