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I. Introduction

1. Let @ be a group of finite order g. We prove first that if ¢ > 2 is even,
then there exists a proper subgroup of order v > +/g. The proof is quite ele-
mentary but the method cannot be applied if ¢ is odd, though it seems probable
that a similar statement holds in that case too. Indeed, if & is soluble of an
order ¢ > 1, g not a prime, it is very easy to see that & has a proper subgroup
of order v = +/g. It is a well known unproved conjecture that all groups of
odd order are soluble.

We shall use the term #nvolution for a group element of order 2. If m is the
total number of involutions of @ and if we set n = g/m, the same method
shows that & contains a normal subgroup € distinct from ® such that the index
of Qis either 2 or is less than [n(n + 2)/2]! (where [x] denotes the largest integer
not exceeding the real number z). If J is an involution in & and if »n(J) is the
order of its normalizer N(J) in ®, then n < n(J). It then follows that there
exist only a finite number of simple groups in which the normalizer of an in-
volution is isomorphie to a given group.

2. The following terminology will be useful. An element G of a group ® will
be said to be real in @ if G and G! are conjugate in ®.! Real elements different
from the identity 1 occur only in groups of even order. With @, every conjugate
element is real. We may therefore speak of real and non-real classes of conjugate
elements in ©.

Let &* denote the set of elements different from 1 in . We introduce a
“distance” d(G, H) for any two elements G, H of ®*. If ¢ = H, set d(G, H) = 0.
If G s« H and if there exists a chain Gy, G1, --- , G; of elements of & with
Gy = G, G; = H such that G;_; and G; commute, let d(G, H) denote the length
I of the shortest such chain connecting G and H. In particular, d(G, H) = 1if
and only if G and H commute and G < H. If there does not exist a chain con-
necting G and H, set d(G, H) = . It is clear that this distance has all the
usual properties except that it can be infinite.

If M is a subset of ®* and G ¢ @*, we define the distance d(G, M) of G from
IR to be the minimum of the distances d(G, H) for H ¢ M.

3. In Section III, it is shown that if the group & contains more than one
class of involutions, then any two involutions have distance at most 3. This
implies that if the two elements G and H both have normalizers of even order

1 An element G is real in @ if and only if every character of @ has a real value for G.
Note that if G is not real in @, it may be real in groups containing ® as a subgroup.
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566 RICHARD BRAUER AND K. A. FOWLER

in a group of this kind, then d(@, H) < 5. The values 3 and 5 given here cannot
be replaced by smaller values.

4. Section IV deals with properties of real elements G different from 1. If G
has distance at least 4 from the set I of involutions, this distance is infinite.
Actually, the normalizer § = RN(G) of G in @ is an abelian group which is the
normalizer of each of its elements H 5= 1. This implies that d(H, L) = « if H
is an element of ©, H % 1, and L is an element of & not in . Subgroups $
of this type occur fairly frequently in groups of even order. They have a number
of interesting properties. In particular, the order k of § is relatively prime to
its index. There exist involutions J which transform every element of $ into its
inverse. If n(J) is the order of the normalizer R(J) of J in @, thenk =< n(J) + 1,
unless § is a normal subgroup of ®; in the latter case, ® “splits” into  and a
subgroup B of N(J). There exist infinitely many simple groups @ each of
which contains a subgroup $ of the type here discussed with A = n(J) + 1.

Our results concerning real elements G # 1 of distance at most 3 from the
set M of involutions are rather fragmentary. It can happen that the distance
from @ to M is actually equal to 3. In this connection, we show that, under
certain conditions, some of the Sylow subgroups of ® are abelian. It is, of course,
very easy to construct groups in which no Sylow subgroup is abelian. However,
a large number of “interesting’ groups seem to possess some abelian Sylow sub-
groups. Perhaps, in view of this, our result deserves consideration.

. The last section deals with properties of the characters of groups of even
order. If n has the same significance as in 1, there exists an irreducible real
character, not the 1-character, of a degree less than n. On the basis of this remark,
one can study the cases where n is small. If the results of C. Jordan and H. F.
Blichfeldt on linear grozps of a given degree could be improved materially, this
would make it possible to improve the results mentioned above in 1.

If p is a prime dividing g with the exact exponent a, it may be that © does
not possess irreducible characters of defect 0 for p, that is, characters whose
degrees are divisible by p°. On the other hand, many “interesting” groups do
have such characters. In Section V we give some sufficient conditions for the
existence of characters of defect 0.

Finally, if ® contains a subgroup $ of the type discussed in 4, rather detailed
information concerning the values of the irreducible characters of & for the
elements of § can be given. This is of great help in constructing the characters
of ©.

6. NoratioN. The normalizer of an element G of & will be denoted by N(G)
and its order by n(G). The set of elements X of @ which transform G into G
or G, that is, for which

X'GX =G or X'GX =G
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ON GROUPS OF EVEN ORDER 567

forms a subgroup Nt*(G). If G is non-real or if G is an involution, N*(G) = N(G)-
If G is real and of order greater than 2, R*(G@) has order 2n(G).

The classes of conjugate elements of @ will be denoted by R, &1, - -+, R+
Here, £ will be the class containing 1. Then the classes containing involutions
are taken, say these are the classes 81, -+ , ® . Next we take the other real
classes and finally the non-real classes. Usually, G; will denote a representative
element for &;. If n; = n(G;), then R; consists of g/n; elements.

The group ring of ® formed over the field of rational numbers will be denoted
by T. With each £; we associate an element K; of T. Here, K; is the sum of the

g/n; elements of &, . As is well known, the elements Ko, Ki, --- , Ke1 form a
basis for the center A of T, and hence we have formulae
(0) KK; = D b aiuKy.

Here, the a;;, are non-negative rational integers.
If § is a subgroup of ®, the index of $ in ® will be denoted by (&:9).

II. Existence of large subgroups

7. Let M be the set of involutions of the group ® of even order. Then M is
the union of &, f2, -+ , & . Set

0 M=K+K+ - +K.

Then M is that element of A which is the sum of all the involutions in &. It
follows from (0) that we have formula,e

(2) Zz-o Cz

Clearly, the coefficient ¢; is equal to the number of ordered pairs (X, Y) of
involutions X, Y such that

3) XY =G; (X, Y e M).

We show

LemMa (2A). If G2 5 1, then c; s the number of involutions of © which transform
G; into G7*. If G; is an involution, then ¢; = vi; — 1 where v; is the number of
tnwolutions tn N(G:). Finally, for G; = 1, ¢; = m.

Proor. If X, Y satisfy the conditions (3), then

G =YX = VX = X{(XV)X = X 'GX.

Conversely, if X'G;X = G;' and X ¢ I, then the element ¥ = XG; satisfies
the equation Y* = 1, Hence the conditions (3) are satisfied if ¥ ## 1. We have
Y = 1if and only if G; = X, and then G, itself is an involution. All the state-
ments of the lemma are now rea,dlly obtained.

CoRroLLARY (2B). If G; is non-real, c; = 0. For any G, ¢; < n(Gy). If Gi is
an tnvolution, ¢; £ n(G;) — 2.

Proor. If G; is not real, the lemma shows that ¢; = 0. If G; is real, there are
exactly n(G;) elements which transform G into G ' and hence ¢; £ n(@;) = ni.
Finally, if G; is an involution, »; £ n, — 1 and hence ¢; < n; — 2.
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6. Counting the number of group elements occurring on both sides of (2), we
obtain

m' = 2 icig/n:,

where m is the number of involutions in ®. We now apply (2A) and (2B). For
each real G;, ¢;g/n; = g. If k; is the number of real classes, we obtain

(4) m* = m+ 2 (v — Vg/ni+ (ko — r — 1)g

where the last term originates from the k; — r — 1 real classes &; of elements
of order larger than 2.
The number of involutions is given by

(5) m = EL: g/n;.
If we set
v = Max {v1, va, *+-, ¥}
we obtain
(4%) m L vm+ (kg —r — 1)g.

On the other hand, since the total number of real elements is at most g, we
have

(6) 14+ m+4 2i5hg/n: S g
Thus if we set

h = Max {n;} fori=r+1,r+2,-~,bk1—1
we have

(ky —r— 1)g < h(g — m — 1).

This is still true for &y = » 4+ 1, if we set b = 0. If we substitute this in (4*)
we obtain

(2C). Let & be a group of even order g which contains m involutions. If v is the
maximal number of tnvolutions which can occur in the normalizer of an involution,
then

m =hg+ (v — hym — h

where h is either the order of the normalizer W(H) of a real element H of order
greater than 2 or h = 0.

We now prove

TraeEOREM (2D). If ® is a group of even order g > 2, there exists a subgroup
B #= & of order v > /y.

Proor. If we set m = g/n, then (2C) yields

g’ 4+ (v — h)n = hn(n — 1) + .
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One of the groups N(G;) with 1 < ¢ < r contains v involutions and hence v <

n; — 1 for some such <. On the other hand, (5) yields
(5%) =l g e

and hence n £ n;. It now follows that

g £ hni(n; — 1) + (n; — Dng = (h + Dnyn; — 1).

If n; < h, then g < h*. Now £ is the order of a subgroup %(H) and, since H is
conjugate to H' > H in &, we have N(H) » ®. Hence the theorem holds in
this case.

If h < n;, we have g < n}.If n; g, the theorem is true with 8 = RN(G.).

It remains to deal with the case n; = g¢g. Then & contains an invariant
involution ;. We may assume that the theorem has been proved for groups
of even order less than g. If g/2 is even and ¢ > 4, we may apply the theorem
to &/{G:}. It follows that ®&/{G;} contains a subgroup B* = &/{G;} of an
order v* > +/g/2. Since we may set B* = B/{G:} where B is a subgroup of
order.v = 2v* of &, we have

g>v>Vig> Vg
Again the theorem holds. It is trivial for g = 4.
Finally, if g/2 is odd, it is well known® that ® contains a subgroup of order
g/2 and g/2 > ~/g. Hence the theorem holds in all cases.

(2E). If ® does not contain invariant involutions, the group B in (2D) can be
chosen as the normalizer of a suitable real element of ®.

9. We use a method very similar to that in 8 in order to obtain a slightly
stronger result.

Some of the classes &, f:, :++ , & may consist of invariant involutions.
Assume that the notation is chosen such that these are the classes ; with 7 =
1,2, --- , 7. If there is no invariant involution, set 7 = 0. Since we have n;
=g NG) = Ofort=1,2, --- ,r,wehavec; =v; — 1 =m — 1forl =
7 £ 7', Now (4) becomes

m' S m A+ r'(m— 1) + Diers (i — 2)g/ni + (ke — 7 — 1)g.
The formula (5) can be written in the form

m=1r 4+ Y ies1g/n
and we obtain
mMEm+rm—1)+@F—1r)g—2m—1r)+ k—-r—1)g
and hence

(7) mME@E —1m+r+@F—1r)g+ (—-r— 1y

? For instance, this is a simple consequence of a Theorem of Burnside. See [3], p. 133.
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Let u denote the minimal index of all the subgroups of & which are distinct
from @, and assume that 4 > 2. Since n; < gfor¢ =7 + 1, --- , r, we have
u < g/n; for these 7, and (5*) yields

(r—rus=m-—r.

Fori=r+1,r+4+2, -,k — 1, let N*G.) denote the group of order 2n;
introduced in 6. Since N*(G;) has a subgroup N(G.) of index 2 and we assumed
u > 2, we must have N*(G;) = &. It follows that « cannot exceed the index
g/2n; of M*(G;) in @. Now (6) implies

2uly —r—1)<g—1—m.
If we combine the last two inequalities with (7), we obtain
m' £ (' — m + 7' 4 (m — r)g/u+ glg — 1 — m)/2u.
Again set m = g/n. An easy computation yields
g < (" — n + gn/2u 4 gn’/2u,
g — gn(n + 1)/2u < (' — )n.

In particular, if #* < 1 we must have n(n + 1)/2u > 1, thatis, u < n(n + 1)/2.
Suppose that # > 1 and assume that © = n(n + 2)/2, u ¥ 2. Then (8)
yields

®

' — Dn > gn/2u
and hence
g < 2u(r — 1).

The 7 invariant involutions together with 1 form a subgroup € of order v’ + 1
of the center of ®. Since any subgroup of ®/€ different from &/C has an index
at least u, the order of such a subgroup is not greater than g/u(r’ 4 1), and

é/u(r’ + 1) < g/u(r — 1) < 2.

It follows that &/€ is certainly cyclic. Hence ® is generated by € and at most
one additional element. Since € lies in the center of @, it follows that & is abelian.
But then ® has a subgroup of index 2, whereas we assumed u > 2. Thus the
assumptions u > 2, u = n(n + 2)/2 lead to a contradiction. This proves the
theorem:

TueoreM (2F). Let & be a group of even order g which contains exactly m
tnvolutions. If n = g/m, then & contains a subgroup of indexr u such that either
u = 2or

1 <u<nn+ 2)/2

If ® contains at most one invariant snvolution, the number n(n + 2)/2 can be
replaced by n(n 4+ 1)/2.

8 FINITE GROUPS
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We now are able to obtain a slight improvement of (2D). We state:

CoroLLARY (2G). If & is a group of even order g > 2, there exists a subgroup
B = © of order v > V29 — 1/3.

Proor. If ® contains a subgroup of index 2, the statement is true, since
g/2 = /2g for g = 4. Assume that @ does not have subgroups of index 2.

Suppose first that @ does not contain invariant involutions. If £ is a sub-
group of @ of maximal order » < g, Theorem (2F) shows that g/v < n(n + 1)/2.
It follows from (5*) that n < n,, and since #; is the order of a subgroup N(G1) #
®, we have n, < ». Thus 29 < o’(v + 1). One easily sees that this implies v >
V29 — 1/3.

The case in which & contains invariant involutions can be treated in a manner
similar to that used in the proof of (2D).

TraeoreM (2H). If & <s a group of even order g which contains m involutions and
if n = g/m, then there exists a normal subgroup & #= © of & such that /R is
isomorphic to a subgroup of the symmetric group on w letters with u = 2 or
u < n(n + 2)/2. In particular, (&:8) = 20r (0:9) < [n(n + 2)/2]! If ® contains
at most one tnvariant tnvolution, the number n(n + 2)/2 can be replaced by
n(n + 1)/2.

Proor. If LB is the subgroup mentioned in (2F), there corresponds to B a
permutation representation of & of degree u. We obtain (2H) by taking for
the kernel of this representation.

CoroLLARY (21). If & 7s a simple group of even order g > 2 which contains m
involutions and if n = g/m, then

g9 < In(n + 1)/2]!

If J is an involution of ®, then n in the inequality can be replaced by n(J). There
exist only a finite number of simple groups in which the normalizer of an involution
1s 1somorphic to a given group.

Proor. The first statement follows at once from (2H), since a simple group
of even order ¢ > 2 cannot contain an invariant involution. The second statement
then follows from (5*), which implies n < n(J).

10. For a later application, we mention still another result which is obtained
by the method used above.

TueoreM (27). If ® ¢s a group of even order g which contains exactly m invo-
lutions, then the number ki of real classes of & satisfies the tnequality

ki — 12z mim+ 1)/g.
Proor. In (4), »; can be replaced by n; — 1. Then
m Em+rg— 22 iag/ni+ (b —r — 1)g.
This, together with (5), yields
m* £ —m + (ks — l)g.
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III. Groups with more than one class of involutions

11. We now prove

Lemma (3A). If the two tnwolutions X and Y of ® are not conjugate in &, there
exists an tnvolution J which commutes with X and Y.

Proor. Set G = XY. As we have seen in the proof of (2A), both X and ¥
transform @ into G '. Then @ is real, and X and Y are elements of the group
N*(@) introduced in Section 6. If G = 1, then X = Y. If G has order 2, then
@ is an involution which commutes with X and Y. Thus we may suppose that
G has order greater than 2. Then N*(G) has order 2n(@). If n(G) were odd,
both {X} and {¥} would be 2-Sylow groups of N*(G). Then X and Y would
be conjugate in NM*(G) and hence in &, contrary to the hypothesis. Hence n(G)
is even. Let $* be a 2-Sylow group of N*(G) which contains X. Since X ¢ N(G),
the intersection P = P* n N(G) must have index 2 in P*, and P is a 2-Sylow
group of N(G). The order of P is at least 2, and since P is normal in P* we can
find a normal subgroup {J} of order 2 of $* such that {J} & PB. Then J is an
involution which commutes with X and G and hence with ¥ = XG.

We now prove

TurorEM (3B). Let & be a group of order g which contains r = 2 classes of
involutions &, Kz, +++ , K. For G; € R; , let n; denote the order of the normalizer
N(G;) of G , and let v; denote the number of involutions in N(G:). If v is the mazimum
of the v; , then

9= (=200 = 1/g" +n3" + - +n).

Proor. Let J range over the », — 1 involutions of N(G) distinet from G,
and for each J denote by (J) the set of involutions of R(J) which do not
commute with G, . For a fixed J, A(J) contains at most » — 3 elements, since
Gi, J, and GiJ are distinct involutions in N(J) which commute with G . It
follows from (3A) that each involution not in &, and not in 9(G:) must lie in
one of the sets A(J). If 1 denotes the union of the classes :, &, --- , &,
then at most (» — 1)(» — 3) elements of 11 do not commute with G . Since at
most »n — 1 elements of 1l do commute with Gy, and since U contains exactly
g(ns' + -+ + n,") elements, we obtain

gt + -+ 1) = (v = 2 — 1).
This proves the theorem.
CoroLLARY (3C). If the notation is the same as in (3B), and if the notation is
chosen such that ny < ny <+ -+ < n,, then
g < mnen,; (r — g < mn, Vneng --- n, £ mnr.

Indeed, since »; < n; — 1, we have

(v—2)(m — 1) < nn,.
On the other hand
ng 4 oo o0t 2 ong
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and
np ot bt 2 = )V 2 — D

In particular, we have n, >+7(r — 1)g. This shows that if @ does not contain
invariant involutions and if » = 2, then the group B in (2D) can be chosen as
the normalizer of an involution. For r = 3, we obtain an improvement of (2G).

12. Using the terminology introduced in the introduction, we state

TuroreM (3D). If ® contains more than one class of involutions, then any two
involutions of & have distance at most 3.

Proor. If the two involutions X and Z belong to different classes, it follows
from (3A) that d(X, Z) < 2. Suppose then that X, Z belong to the same class
K. It follows from (3A) that some element X; of §; must commute with an
involution ¥ not in ;. After replacing X, and Y by conjugates, we may assume
X equals X, . Since Z and Y belong to different classes, we have d(Z, ¥) < 2.
On the other hand, d(X, Y) = 1. Hence d(X, Z) < 3.

CoroLLARY (3E). If © contains more than one class of involutions, then any two
elements Gy and Gy with even n(Gh), n(Gz) have distance at most 5.

Indeed, if n(G,) is even, there exists an involution X; which commutes with
G; . Hence

dG, X)) =1,  d(X:,Xy) £83, d(X:,G) £ 1.

It follows that d(G,, G2) £ 5.

Remarxk. There exist groups with more than one class of involutions in which
involutions of distance 3 occur. For instance, let & be the symmetric group on
p letters, where p is a prime and p 2 5. If G is a cycle of length p, there exists
an involution X which transforms @ into G~'. Then ¥ = X@ also is an involution.
If an element Z commutes with both X and Y, then Z would commute with G
and hence Z would be a power of G. The only power of G which commutes with
an involution is 1. Hence Z = 1 and this shows that d(X, ¥) > 2.

A similar argument can be used to prove

BF). If © is a group of even order which conlains a real element G such that
n(H) is odd for every H different from 1 in N(G), then © contains involutions
which have distance greater than 2.

One can also show by examples that the number 5 in (3E) cannot be replaced
by a smaller value.

IV. The set of real elements

13. We prove

Lemma (4A). If G is a real element of the group ® of even order and if n(Q)
1s odd, then there exists an tnvolution J which transforms G into G, All involutions
which transform G into G~ are conjugate in ®, and the number of such involutions
18 equal to the index of M(G) n N(J) 7n N(Q).

Proor. Since n(G) is odd, G is not an involution. Then the group N*(G) has
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even order 2n(G) and therefore it contains an involution J. Since n(@) is odd, J
cannot transform @ into G. Hence J transforms G into G".

If X is any involution such that X7'GX = G, one sees as in the proof of
(3A) that X is conjugate to J in M*(G). The number of elements in the class of
J in N*(G) is equal to the index of N*(G) n N(J) in N*(G), and every element
in this class is an involution which transforms @ into G~'. Since J does not
belong to the subgroup N(G) of index 2 of N*(GF), it follows that N(G) n N(J)
has index 2 in N*(@) n N(J). Hence the index of N(G) n N(J) in N(Q) is equal
to the index of NM*(G) n N(J) in M*(GF). This completes the proof.

The following theorem is essentially a restatement of a result due to Burnside,
[2], pp. 229, 230.

TuEOREM (4B). Let § be a subgroup of ®. If there exists an tnvolution J in the
normalizer of 9, and if J commutes with no element of O different from 1, then
s abelian of odd order and J transforms every element of O into its tnverse.

Proor. Every element of § can be written in the form JH 'JH for H ¢ 9.
Hence J transforms every element of $ into its inverse. This implies that $
cannot contain an involution. For H, K ¢ §,

KH = JEH'K™J = (JH'J)(JK™'J) = HK,

and hence $ is abelian.

As an immediate consequence of (4B), we have

CoroLLARY (4C). Assume that G = 1 is an element of ® which is transformed
into its inverse by the involution J. If d(G, J) = 3, then N(Q) is abelian of odd
order and J transforms each element of N(G) into its inverse.

We now prove

THEOREM (4D). Assume that d(G, J) = 4 in (4C). Then N(G) vs the normalizer
of each of its elements different from 1; and d(H, Z) = o« for H e R(G), Z ¢ N(G),
H = 1.

Proor. It follows from (4C) that R(@) is abelian. If H ¢ R(G), then N(G) <
R(H). For H % 1, we have d(H, J) = 3 and hence (4C) can be applied to H
instead of G: Since N(H) is abelian and G ¢ N(H), we have N(H) g N(G) and
hence N(G) = N(H).

It is now clear that any element H > 1 of N(G) has distance at most 1 from
every element different from 1 of (@) and distance « from every element not
in N(G).

CoroLLARY (4E). If a real element G ¥ 1 has distance at least 4 from the set M
of involutions, then d(G, M) = o« and N(G) is the normalizer of each H # 1 in
N(G).

Indeed, (4A) shows that there exists an involution J such that J7'GJ = G
Then (4C) and (4D) apply. Since n(G) is odd, all involutions lie outside N(G).

14. We consider a subgroup § of an arbitrary group & of finite order g such

that © is the normalizer of each of its elements different from 1. Our results
will apply to the subgroup N(G) in (4D).
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It is clear that © will be abelian. If p is a prime dividing the order A of O,
there exists an element P of order p in §. Let P be a p-Sylow group of @ which
contains P, and let Py # 1be an element of the center of B. Then Py e N(P) =
$ and hence N(Po) = $. Since P S N(Po) = 9, it follows that p is prime to the
index g/h of 9.

Let N denote the normalizer of § in ©. Since $ is a normal subgroup of N
and since h is relatively prime to (M:9), there exists a subgroup LB such that
(3], p. 125)

RN=96B/W, HnB®W= {1}

If B has order w, then N has order hw.

In M, the b — 1 elements H > 1 of  have normalizers of order h. Hence they
are distributed into (A — 1)/w classes of conjugate elements each consisting of
w elements. In particular, w divides A — 1. Actually, if p® is the highest power
of a prime p dividing h, then w divides p* — 1. This is seen by considering a
Sylow group of 9.

If an element A of ® transforms an element H 5 1 of § into an element K
of §, we have A7RN(H)A = N(K), that is, A7'9A = © and hence A4 lies in N.

No two distinct conjugates of © can have an intersection different from 1,
since each conjugate of § is the normalizer of each of its elements different from
1. Now the arguments leading to Sylow’s theorem show that the number of
conjugates is congruent to 1 modulo k. If we denote this number by 1 + Nh,
where N is a rational integer, then g/ (hw) = 1 + Nh and hence g = wh(l + Nh).

We have proved s

TueoreM (4F). If ® is a group of finite order g and O is a subgroup such that
$ is the normalizer of each of its elements different from 1, then © is abelian and
its order h is relatively prime to its index g/h. We can set

9) g = hw(l + N&); h— 1=t

where t, w, and N are rational integers, t = 0, w = 1, N Z 0. The normalizer N
of © has order hw and there exists a subgroup B of order w such that

(10) N = OW; Hn B = (1}.

Each element of O different from 1 is conjugate in ® to exactly w elements of
and any two of these w elements are conjugale in N.

16. We now take for © the group N(G) in (4D). Since J maps each H ¢
on its inverse, we have J ¢ M. After replacing B by a conjugate group in 9%,
we may assume J ¢ B. Let H be a fixed element of $ dlfferent from 1. Since

N(H) = $, only the elements of $J will transform H into H™. On the other
hand, for W e 8, the element W 'JW transforms each element of $ into its
inverse. Hence we have W 'JW = H,J with Hy ¢ 9. Since J, W ¢ B, it follows
that Hy ¢ 8. Now (10) shows that H, = 1 and hence that W™'JW = J. We
now have
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TuEOREM (4G). If ® is a group of even order g and G s a real element different
from 1 which has distance at least 4 (and hence distance =) from the set of involutions,
the results of (4F) apply to © = N(G). If J is an involution which transforms G
into G and hence every element of © into its inverse, we may choose Ly in (10)
such that J ¢ W and W < N(J). The number w is even.

16. Let H ¢ ©, H > 1. Our results show that there exist exactly h involutions
which transform H into H'. It then follows from (2A) and its proof that there
exist exactly h ordered pairs (X, Y) of involutions with the product H; moreover,
if (X, Y) is any such pair, then both X and Y transform H into H™'. Then, by
(4A), X and Y belong to the same class of © as J does. Denote this class by
1. We now see that there are exactly h ordered pairs of elements of & with the
product H.

From (0) we have

(11) Ki = =0 aniK; .

If H ¢ &, then am is equal to the number of ordered pairs of elements of £
with the product H. Hence ain = h.

The number of elements in £; is g/n; . It follows easily that ane = g/n: .
Counting the number of group elements occurring on both sides of (11), we
obtain

(12) (g/m)* = g/mi + 20021 ang/mi.

For the class ), we have axn = h, ma = &, and thus the term in (12) for¢7 = A
is g. There are exactly (h — 1)/w = ¢ classes R\ which contain elements of $
different from 1.

It may happen that there are several non-conjugate groups of the same
type as © whose elements are transformed into their inverses by the same
involution J. Let us denote these groups by ©:; ¢ = 1, 2, - , s) and let ¢
have the same significance for §; as ¢ had for . Then the elements of §; different
from 1 will contribute ¢; terms g to the sum in (12) and different $; must con-
tribute different terms. Hence

g/ = g/m+ g2 iati, g=m+niyt.

We have shown

(4H). Suppose that J is an tnvolution of ® and that there exist elements
X,, X2, --+ , X, each of which is transformed into its inverse by J, each of which
has distance at least 4 from J, and which are such that no element of the class of X
commutes with X ; for © 5 j. If the elements different from 1 of ©: = N(X;) belong
to t; different classes in ®, then

(13) gz nJ) +nlJ) Xt

17. Again let © be the group mentioned in (4G), and consider the & sets
HM with H e . If two such sets H;I and H I with H, , H, ¢ $, Hy, #* H,,
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have an element D in common, there exist involutions J;, and J; such that
D = H\Jy = HyJ,, H{'H; = J1J; . Then, as we have seen in the proof of (2A),
Ji transforms Hi'H, into its inverse. Hence J; ¢ §J, HiJ: e $J, and hence
HIR n HIR © ©J. Conversely, if H and H, are any two elements of §, then
J'H'HoJ = Hy'H. It follows that (H'HyJ)* = 1. Since J does not lie in
9, H'HyJ ¢ M. This shows that $J is contained in each of the sets HI%. Thus,
H 1,§.U& nH 2% = -5:] .

If m again denotes the number of involutions in @, then each HI? contains
the h elements of $J and m — h elements which do not appear in any of the
other sets H,9. The number of elements in the union of the sets HI? is there-
fore b 4+ h(m — k). No element of § can appear in a set HI? since $ has odd
order and cannot contain an involution. Since we have g elements in &, at most
g — h distinet elements can lie in the union of the sets HYt. Hence

h+him —h)y<g—nh
This yields mh — g £ h(h — 2).If we again set m = g/n, we obtain
gth — n) £ h(h — 2)r

(41). Let h be the order of the group D in (4G), and let m be the number of invo-
lutions in @. If h > g/m = n, then

h(h — 2)n

18. Set n(J) = n;. Since w divides n1 (cf. (4G)), we can set n, = wz, where
z is a positive rational integer. On the other hand, n, divides g/h. Indeed, if
this were not so, there would exist an element P in R(J) of a prime order dividing
h. Some conjugate P, of P then belongs to  and hence n(P;) = h. This implies
that n(P) = h. However, since J ¢ N(P), n(P) must be even and we have a
contradiction. Thus n, divides g/h. Since n, = wgz, it follows from (9) that z
divides 1 4+ Nh. Set 1 + Nh = zz, where z is a positive rational integer. Then

g = hwzz;
h— 1= wt, 1 4 Nh = zz, n = we.

Suppose that A > n,; . It then follows from (5*) that A > 7 and hence (14)
holds. Since n(h — n1) < m(h — n),

(15)

(16) g ¥z
Set v = h — n; > 0. We then have
2w = zh — any = zh — 2wz = —w + h(z — wN).
It follows from (15) and (16) that x < (h — 2)/v. Thus, we must have
(17) z— wN =1; w = —w-+ h
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Since wz = n; = h — v, the equation (15) becomes
(18) g = hmy(h — w)/(h — n1) = h(h — v)(h — w)/v.
On the other hand, (13) shows that
m 4+ nit <g.
This in conjunction with (18) yields
(19) (1 + nt)(h — n1) £ h(h — w).

Multiply both members of (19) by w and recall that wt = k — 1. An easy
computation yields

(20) W — w) — h(n} +m — »°) + (w + ni) < 0.

If w = n;, then (15) shows that z = 1, z = 1 4+ Nh, and since (17) implies
wN = hN, where w £ h — 1, we must have N = 0. Then $ is normal in ©.
If this case is excluded, then by (15) 1 > w, z > 1. If we had
h =z 0} + n — w’)/(ny — w), the left hand side of (20) would be positive,

which is impossible. Hence
<+ n—w)/(n—w) =mn+w+ n/(n — w).

Now ny/(ny — w) = wz/(wz — w) = 2/(z — 1) < 2. Thush £ ns + w + 1.
By (15), h=1 = 1 4 n; (mod w), and since we assumed h > ny, it follows
that h = 1 + myor b = 1 + my -+ w. In the latter case, (19) becomes

(1 + nat)(l + w) < k(1 + n) = (w + (1 + ),

and then nif + w £ wt + my, m(t — 1) < w(t — 1). Since n; > w, we must
have{ = 1. Then h — 1 = w, and since h = 1 + n; + w, we obtainn, = 0, a
contradiction. It follows that we must have h = 1 4 n; . This yields the result

TuroreM (4J). Let ® be a group of even order g which contains a real element
@ different from 1 and with distance at least 4 from the set of involutions. Let J be
any inwolution which transforms G into G2. If the group N(Q) is not normal in @,
then its order h is at most n(J) + 1. The case h = n(J) + 1 occurs only if g =
h(h — 1)(h — w), where w is the order of the group T mentioned in (4G).

There exist infinitely many groups in which the case . = n(J) + 1 occurs.
If @ is the group LF(2, 2% of order g = (2* + 1)2°(2° — 1), there exists only
one class of involutions, 7 = 1, n = n; = 2°, and there exists a subgroup $ of

a—1

the type here discussed with » = 2* + 1. Here, w = 2,t = (h — 1)/2 = 27

19. We conclude this section with a few simple remarks:

(4K). If My is a set consisting of mg tnvolutions of ®, any subgroup L of order
1> g/(me + 1) contains an element Ly different from 1 which is transformed into
its inverse by some element J of My .

Proor. If € contains an element J of My, we may take Ly, = J and we have
J'LoJ = Ly'. Assume then that & and M are disjoint.
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If two sets Lt and Lo , with Ly, Ly € ®, L1 # Ls, are not disjoint, there
exist involutions J1, J2 € D such that LyJy = LeoJs. Then LT7L, = JyJ: and
Ji transforms the element Lo = L7 L, ¢  into its inverse.

If the I sets LM , L € &, are pairwise disjoint, their union contains Img distinct
elements. Since no element of ¢ appears, we have Ilmg < g — ! and hence I =
g/ (mo + 1).

As a special case, we note

(4L). If ® contains m involutions, any subgroup Q of order 1 > g/(m + 1)
contains real elements different from 1. In particular, if n = g/m, any subgroup of
order I =.n contains real elements different from 1.

The following example shows that this result cannot be improved substantially.
If & = LF(2, q) and g is a prime power with ¢ = —1 (mod 4), the subgroups
of order ¢ do not contain real elements different from 1. On the other hand,
m = ¢(¢ — 1)/2and g/(m + 1) < ¢+ L

As another consequence of (4K), we note that if the group ® in (4G) contains
r = 2 classes of involutions R, 82, -+ , K- and if J e Ry, then

RS @t a4t )T
Indeed, as we have seen above, no element of one of the classes Rz, R3, -+ , &
can transform an element of  different from 1 into its inverse.

It is a consequence of (4G) that if subgroups $ of the type discussed there
occur, then some of the Sylow groups of ® are abelian and consist entirely of
ren] elements. We can obtain the same conclusion under slightly different
assumptions. :

(4M). Let p be an odd prime. If © contains real elements of an order divisible
by p, and if every real element of order p has distance greater than 2 from the set of
involutions of ®, then the p-Sylow groups B of © are abelian and consist entirely
of real elements. All the elements of B different from 1 have the same normalizer,
which s abelian and consists entirely of real elements.

Proor. Let G be a real element of an order divisible by p. After replacing G
by a suitable power, we may assume that G has order p. Then (4A) and (4C)
show that there exist involutions J which transform G into G, that N(G) is
abelian, and that J transforms every element of N(@) into its inverse. Let B
be a p-Sylow subgroup of & which contains @, and let Go be an element of order
p in the center of PB. Since Go e N(G), we can apply the above argument to G,
instead of G. Since P S N(Go), B is abelian and consists entirely of real elements.

Now let P be an element of B different from 1. A suitable power P of P has
order p. The above argument shows that N(P*), and hence N(P), is abelian and
consists entirely of real elements. It now follows easily that all the elements of
P different from 1 have the same normalizer.

V. Results concerning the characters

20. Let @ be a group of even order g. Let xo, x1, = - 5 Xi—1 denote the ordinary
irreducible characters of ©, and let f; denote the degree of x:. We take xo to
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be the 1-character. It is well known that the number of real characters is equal
to the number k; of real classes of conjugate elements. Let f be the minimal
degree of a real character x; with 7 > 0. Since

Sihfi =g
it follows that
1+ (b — ff < 9.

Now (2J) shows that m(m + 1)f* £ g(g — 1). This yields
(5A). If ® is a group of even order g which contains m involutions, there exists
a real character, not the 1-character, of a degree f such tha!

F = Vg — D/m* + m).

In particular, if n = g/m, then f < n.

Thus if n < 2, that is, if at least half of the elements of & are involutions, &
has a real character of degree 1 which is not the 1-character. This implies that
® has a normal subgroup of index 2. One can also show that the elements in ©
of odd order form a normal subgroup of ®. Using the known groups of degree
2, one can obtain

(5B). If the group © of even order g contains al least g/3 involutions, then ® has
a normal subgroup &g such that &/, either is cyclic of order 2 or 3 or is the icosa-
hedral group of order 60.

If (5A) is combined with Jordan’s and Blichfeldt’s Theorems on linear groups
of given degrees, results similar to (2H) can be obtained. However, our present
knowledge in this matter does not enable us to improve the results given in II.

21. We denote by x,: the value of the character x, for the class ;. It is well
known that to every character x, of & there corresponds a character w, of degree
1 of the center A of the group algebra I'. The values of w, for the elements of
the basis Ko, - -+ , Ki—1 of A are given by

) = gx‘)i
wp(Ki) nifp .

It follows from (0) that
0p(K)w,(Kj) = 2o aisuop(K,),
and hence
N MG XeiXpi = So 2w GiisXpull -

If we multiply both members of the last equation by X, for a fixed value of A,
add over all p, and apply the orthogonality relations for group characters, we
obtain the well known formulae

(21) Aip = gn?n .1Tl Ea XpiXpJ?_(prp—l'
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As above, we denote the classes containing involutions by f1, &, --- , & .
1t follows from (1), (0), and (2) that

(22) o= 2%.m1@ipn
If we take into account that x,; is real for ¢ = 1,2, --- , r, we obtain
(23) . = gz:.:%l n:anT! Zp Xﬂ:‘XpiXp)\fP_l'

We now show

(5C). Suppose that G is a real element of the group & of even order g for which
n(G) is odd and that J is an involution which transforms G into G~ ' (cf. 4A). If p
is @ prime which divides n(G) with the ezact exponent v but which does not divide
n(J), then ® possesses a p-block B of defect d < v. We may choose B such that it
contains characters of positive defect for 2.

Proor. It follows from (4A) that all involutions transforming @ into G~ !
lie in one class, say in & . If G belongs say to & , then (2A) and (4A) show that
ex = am and that ¢, is a divisor m\/s of nx , where s is the order of R(G) n N(J).
Then, for ¢, j = 1, (21) becomes

mny = gs 2, XorX S -

Since p and n, are relatively prime, there must exist a value of p such that

gy Xoxanfs ' = Xp10p(Kn)
is not divisible by a prime ideal divisor p of p in the field of characters. Then

(24) Xp1 # 0 (mOd p)7 wP(KX) # 0 (mOd p)

The second condition implies that x, belongs to a p-block of defect d =< ».
Indeed, if x, belongs to a p-block B of defect d, there exists a character x. in B
with g/(p%,) prime to p. Now w,(Kx) = w,(Ks) (mod p). Since

w(Ka) = gxn/ (\fy)

is prime to p, n, must be divisible by p?, that is, » = d. The first condition (24)
implies x,1 > 0, and hence x, must be of positive defect for 2.

CoroLLARY (5D). If, in (5C), n(G) is prime to p, then there exisis a character
of ® which is of defect O for p and of positive defect for 2.

99. There is a second case in which we can prove that & possesses characters
of defect 0.

(5E). Suppose that J is an involution and that for some odd prime p there exists
a prime power group Po of order p° > 1 such that no element of Bo different from 1
is mapped on its inverse by any conjugate of J. If p divides n(J) with the exact
exponent v, then there exists an irreducible characler x, whose degree s divisible by
p°™" and which is of positive defect for 2. In particular, if Po can be taken as a
p-Sylow group of ® and if v = 0, then x, is of defect 0 for p.

Proor. If J belongs to £, then the proof of (2A) shows that under our
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assumptions a;, = 0 for each class f with A > 0 which contains elements of
Bo. For P ¢ Py, set

(25) W(P) = 2, x(I)xu(P)f7 .

It follows from (21) that ¢(P) = 0 for every element P 5 1in PBo. For P = 1,
we see from the orthogonality relations that

Y1) = 25, %) = n(J).
If ¢ denotes the character of the regular representation of Py, it follows that
(26) ¥ = n(J)/p%.

On the other hand, we can express the restriction of x, to P, in terms of the
irreducible characters of Py, in order to obtain an expression of Y(P) in terms
of the irreducible characters of Py . If the restriction of x, contains the 1-charac-
ter of Py with the multiplicity b, , then comparison of the multiplicity of this
1-character in (25) and (26) yields

ZXP(J)2bP/fP = n(J)/p".

Since the right hand side contains p with the exponent ¢ — » in the denomi-
nator, and since all x,(J) and b, are rational integers, there must exist a value
o such that p" divides f, and x,(J) # 0. This yields the statement.

An immediate consequence of (5E) is

(5F). Let J be an involution and let p be an odd prime dividing g. If no element
of order p 1s transformed into its inverse by J, and if p divides n(J) with the exact
exponent v and g with the exact exponent a, then there exists an irreducible character
whose degree is divisible by p " and which is of positive defect for 2.

23. We conclude the paper with some remarks concerning the case that ©
contains a subgroup $ which satisfies the assumptions of (4F). It is immaterial
here whether the order g is even or odd, but we mention these remarks here
since they can be applied in the case of (4G). If the notation is the same as in
(4F), there exist ¢ characters 6;, --- , 6, of degree w of the group 9. Then ®
possesses ¢ irreducible characters 1, --- , ¢, all of the same degree z such that

Vi(H) = v -+ 60,(H)

for H ¢ , H 5 1. Here, v and § are independent of j and H, v is a rational
integer, and 8 = 1. For elements G of ®@ which are not conjugate to such an
element H, we have

(@) = (@) = --- = ¥.(G).

If x; are the other characters, not of this “exceptional” kind, then x;(H) has
a fixed rational integral value a; for all H ¢ , H = 1. The degree f; of x; satisfies
the congruence

fi=a; (mod h),
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while the degree z of the ¥; satisfies
=y + ow (mod h).

These results are a special case of a more general result which was obtained
originally as an application of a theorem on characters [1]. A direct simple
proof using induced characters was given by M. Suzuki.

Using the orthogonality relations for group characters, one obtains the
following additional relations:

C— I+ =+2a=wt+l, tyz+ 2fia; =0
HarvARD UNIVERSITY
UNIVERSITY OF ARIZONA
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