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3. In Section III , it is shown that if the group ~ contains more than one
class of involutions , then any t ,vo involutions have distance at most 3. This
implies that if the t " ,.o elements G and H both have normalizers of even order

1 An element G is real in ~ if and only if every character of ~ has a real value for G.
Note that if G is not real in ~ , it may be real in groups containing ~ as a subgroup.
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I . Introduction

1 . Let ~ be a group of finite order g . We prove first that if g > 2 is even ,

then there exists a proper subgroup of order v > - " ; ; y . The proof is quite elementary 

but the method cannot be applied if g is odd , though it seems probable

that a similar statement holds in that case too . Indeed , if ~ is soluble of an

order g > 1 , g not a prime , it is very easy to see that ~ has a proper subgroup

of order v ~ Vg . It is a , veil known unproved conjecture that all groups of

odd order are soluble .

We shall use the term involution for a group element of order 2 . If m is the

total . number of involutions of ~ and if we set n ;;:= u / m , the same method

shows that ~ contains . a normal subgroup tl distinct from ~ such that the index

of tl is either 2 or is less than [ n ( n + 2 ) / 2 ] ! ( where [ x ] denotes the largest integer

not exceeding the real number x ) . If J is an involution in ~ and if n ( J ) is the

order of its normalizer m ( J ) in ~ , then n ~ n ( J ) . It then follows that there

exist only a finite number of simple groups in \ vhich the normalizer of an involution 

is isomorphic to a given group .

2 . The following terminology will be useful . An element G of a group @ , viII

be said to be real in @ if G and Glare conjugate in ~ } Real elements different

from the identity 1 occur only in groups of even order . With G , every conjugate

element is real . We may therefore speak of real and non - real classes of conjugate

elements in @ .

Let ~ * denote the set of elements different from 1 in @ . We introduce adistanced

( G , H ) for any t , vo elements G , H of ~ 1I . If G = H , set d ( a , H ) = O .

If G ~ H and if there exists a chain Go , Gl , . . . , Gz of elements of @ , , vith

Go = G , Gz = H such that Gi - l and Gi commute , let d ( G , H ) denote the length

l of the shortest such chain connecting G and H . Inparticulard ( G , H ) = 1 if

and only if G and H commute and G ~ H . If there does not exist a chain connecting 

G and H , set d ( G , H ) = 00 . It is clear that this distance has all the

usual properties except that it can be infinite .

If m is a subset of ~ 1I and G E @ 1I , we define the distanced ( G , m ) of G from

m to be the minimum of the distances d ( G , H ) for HE Wl .
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in a group of this kind , then d(G, H ) ~ 5. The values 3 and 5 given here cannot

4. Section IV deals ,vith properties of real elements G different from 1. If G
has distance at least 4 from the set m of involutions , this distance is infinite .
Actually , the normalizer f ) = 9C(G) of G in ~ is an abelian group which is the
normalizer of each of its elements H ~ 1. This implies that d (H , L ) = 00 if H
is an element of f ) , H ~ 1, and L is an element of ~ not in f ) . Subgroups f )
of this type occur fairly frequently in groups of even order . They have a number
of interesting properties . In particular , the order h of ;f) is relatively prime to
its index . There exist involutions J which transform every element of f ) into its
inverse . If n (J ) is the order of the normalizer 9C(J ) of J in ~ , thenh ~ n (J ) + 1,
unless ;f) is a normal subgroup of ~ ; in the latter case, ~ " splits " into ;f) and a
subgroup 5ffi of 9C(J ) . There exist infinitely many simple groups ~ each of
which contains a subgroup ;f) of the type here discussed ,vith h = n (J ) + 1.

Our results concerning real elements G ~ 1 of distance at most 3 from the
set m of involutions are rather fragmentary . It can happen that the distance
from G to misactually equal to 3. In this connection , \ve sho\v that , under
certain conditions , some of the Sylow subgroups of ~ are abelian . It is, of course,
very easy to construct groups in which no Sylo ,v subgroup is abelian . Ho \vever ,
a large number of " interesting " groups seem to possess some abelian Sylo ,v subgroups

. Perhaps , in view of this , our result deserves consideration .

5. The last section deals with properties of the characters of groups of even
order . If n has the same significance as in 1, there exists an irreducible real
character , not the I -character , of a degree less than n . On the basis of this remark ,
one can study the cases ,vhere n is small . If the results of C. Jordan and H . F.
Blichfeldt on linear groGps of a given degree could be improved materially , this
would make it possible to improve the results mentioned above in 1.

If p is a prime dividing g ,vith the exact exponent a, it may be that ~ does
not possess irreducible characters of defect 0 for p, that is, characters whose
degrees are divisible by pa. On the other hand , many " interesting " groups do
have such characters . In Section V ,ve give some sufficient conditions for the
existence of characters of defect O.

Finally , if ~ contains a subgroup .\) of the type discussed in 4, rather detailed
information concerning the values of the irreducible characters of ~ for the
elements of f ) can be given . This is of great help in constructing the characters
of ~ .

FINITE GROUPS4

be replaced by smaller values .

6. NOTATION. The normalizer of an element G of ~ will be denoted by W(G)
and its order by n(G). The set of elements X of ~ \vhich transform G into G
or G- I, that is, for which

X- IGX = G or X- IGX = G- l
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forms a subgroup ~ *(G). If G is non-real or if G is an involution, ~ *(G) = ~ (G).
If G is real and of order greater than 2, ~ *(G) has order 2n(G).

The classes of conjugate elements of ~ will be denoted by Sfo , Sfl, . . . , srk- l .
Here, !to will be the class containing 1. Then the classes containing involutions
are taken, say these are the classes Sfl, . . . , Sf:r . Next we take the other real
classes and finally the non-real classes. Usually, Gi will denote a representative
element for sri . If ni = n(Gi), then Sfi consists of g/ ni elements.

The group ring of ~ formed over the field of rational numbers will be denoted
by r . With each sri '\ve associate an element Ki of r . Here, Ki is the sum of the
u/ ni elements of Sf!i . As is well known, th~ elements Ko, Kl , . . . , Kk- l form a
basis for the center A of r , and hence we have formulae

~ k- l(0) KiKj = "'-' IJ=O ai J' I J K I J .

Here, the aiil' are non-negative rational integers.
If ;f) is a subgroup of ~ , the index of ;f) in ~ ,viII be denoted by (~ :;f)).

II . Existence of large subgroups

7. Let mc be the set of involutions of the group @ of even order. Then mc is
the union of Sf! , Sf2, . . . , Sfr . Set

( 1 ) M' = K! + K2 + . . . + Kr .
Then M is that element of A which is the sum of all the involutions in @. It
Folio,vs from (0) that ,ve have formulae

( ) 2 ~ k- l2 M = L--i- O ciKi .

Clearly, the coefficient Ci is equal to the number of ordered pairs (X , Y) of
involutions X , Y such that

(3) XY = Gi (X , YE im).
We sho,v

LEMMA (2A). If G~ ~ 1, then ciis the number of involutions of ~ which transform
Gi into Gi1. If Gi is an involution, then Ci = Vi - 1 where Vi is the number of
involutions in 9'l;(Gi). Finally, for Gi = 1, Ci = m.

PROOF. If X , Y satisfy the conditions (3), then

.Oil = y - lX-1 = YX = X-1(XY)X = X-1GiX.

Conversely, if X- 1GiX = 0-;1 and X E wl, then the elementY = XGi satisfies
the equation y2 = 1. Hence the conditions (3) are satisfied if Y ~ 1. We have
Y = 1 if and only if Gi = X , and then G,. itself is an involution. All the statements 

of the lemma are no\Y readily obtained.
COROLLARY (2B). If Gi is non-real, Ci = O. For any Gi , Ci ~ n(Gi). If Gi is

an involution, Ci ~ n(Gi) - 2.
PROOF. If Gi is not real, the lemma shows that Ci = o. If Gi is real, there are

exactly n(Gi) elements which transform Gi into ail , and hence Ci ~ n(Gi) = ni .
Finally, if Gi is an involution, Vi ~ ni - 1 and hence Ci ~ ni - 2.
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5. Counting the number of group elements occurring on both sides of (2) , ,ve
obtain

m2 = Li CifJ/ni ,
where m is' the number of involutions in @. We no\v apply (2A) and (2B ) . For
each real Gi , cig / ni ~ g. If k1 is the number of real classes, ,ve obtain

(4) m2 ~ m + Li ~1 (Vi - l )g/ ni + (ki - r - l )g

where the last term originates from the ki - r - 1 real classes .R' i of elements
of order larger than 2.

The number of involutions is given by

(5) m = Li ~l g/ ni .
If we set

V = Max {VI , V2, . . . , Vr}

\ve obtain

(4*) m2 ~ vm + (ki - r - l )g.

6 FINITE GROUPS

On the other hand ) since the total number of real elements is at most g , we
have

(6) 1 + m + L ~~ ~l g/ ni ~ g.

Thus if , ve set

h = Max {nil for i = r + 1, r + 2, . . . , k1 - 1

,ve have

(k1 - r - l )g ~ h(g - m - 1) .

This is still true for k1 = r + 1, if ,ve set h = O. If we substitutt . thi ~ in (4*)
we obtain

(20 ) . Let G> be a group of even order g which contains m involutions . If v is the
maximal number of involutions which can occur in the normalizer of an involution ,
then

m2 ~ hg + (v - h)m - h

where h is either the order of the normalizer W(H ) of a real element H of order
greater than 2 or h = O.

We now prove

THEOREM (2D ) . If ~ is a group of even order g > 2, there exists a subgroup
5J3 ~ ~ of order v > -..:!g.

PROOF. If we set m = gin , then (20 ) yields

g ~ hn2 + (v - h)n = hn (n - 1) + vn.
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~ i ~ r contains v involutions and hence v ~

= g, SJl(Gi) = 6; for i =
i ~ r ' . Now (4) becomes

One of the groups m ( Gi ) with 1

ni - 1 for some such i . On the other hand , ( 5 ) yields

( 5 * ) - 1 - 1 - ] n = nl + n2 + . . .

and hence n ~ ni . It no , v Folio , vs that

g ~ hni ( ni - 1 ) + ( ni - l ) ni = ( h + l ) ni ( ni - 1 ) .

If ni ~ h , then g < h3 . Now h is the order of a subgroup m ( H ) and , since His

conjugate to H - 1 ~ H in ~ , we have m ( H ) ~ ~ . Hence the theorem holds in

this case .

If h < ni , , ve have g < n : . If ni ~ g , the theorem is true , vith 5 . 13 = m ( Gi ) .

It remains to deal with the case ni = g . Then ~ contains an invariant

involution Gi . We may assume that the theorem has been proved for groups

of even order less than g . If g / 2 is even and g ~ 4 , " ' " e may apply the theorem

to ~ / { Gi } . It Folio , vs that ~ / { Gi } contains a subgroup ~ * ~ ~ / { Gi } of an

order v * > - < ! " ij72 . Since we may set 5 . 13 * = 5 . 13 / { Gi } where 5 . B is a subgroup of

order . v = 2v * of ~ , ' ve have

g > v > - < ! 4 . r ; > . a ; y .

Again the theorem holds . It is trivial for g = 4 .

Finally , if g / 2 is odd , it is well known2 that ~ contains a subgroup of order

g / 2 and g / 2 > - < ! g . Hence the theorem holds in all cases .

( 2E ) . If ~ does not contain invariant involutions , the group ~ in ( 2D ) can be

chosen as the normalizer of a suitable real element of ~ .

9 . We use a method very similar to that in 8 in order to obtain a slightly

stronger result .

Some of the classes Sfl , . R ' 2 , . . . , Sfr may consist of invariant involutions .

Assume that the notation is chosen such that these are the classes Sfi with i =

1 , 2 , . . . , r ' . If there is no invariant involution , set r ' = O . Since we have n .i

1 2 . . . r ' we have C . = v . - 1 = m - 1 for 1 <
" " " =

m2 ~ m + r ' ( m - 1 ) + L ~ = T ' + l ( ni - 2 ) g / ni + ( kl - r - 1 ) g .
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Let u denote the minimal index of all the subgroups of ~ which are distinct

from ~ , and assume that u > 2 . Since ni < g for i = r / + 1 , . . . , r , , ve have

u ~ g / ni for these i , and ( 5 * ) yields

( r - r / ) u ~ m - r ' .

For i = r + 1 , r + 2 , . . . , k1 - 1 , let 91 * ( Gi ) denote the group of order 2ni

introduced in 6 . Since 91 * ( Gi ) has a subgroup 91 ( Gi ) of index 2 and , ve assumed

u > 2 , we must have 91 * ( Gi ) ~ @ . It follows that u cannot exceed the index

g / 2ni of 91 * ( Gi ) jn @ . No , v ( 6 ) implies

2u ( k1 - r - 1 ) ~ g - 1 - m .

If we combine the last two inequalities \ vith ( 7 ) , we obtain

m2 ~ ( r ' - 1 ) m + r ' + ( m - r ' ) g / u + g ( g - 1 - m ) / 2u .

Again set m = gin . An easy computation yields

g < ( r ' - 1 ) n + gn / 2u + gn2 / 2u ,

( 8 )

g - gn ( n + 1 ) / 2u < ( r ' - 1 ) n .

In particular ) if r ' ~ 1 we must have n ( n + 1 ) / 2u > 1 ) that is , U < n ( n + 1 ) / 2 .

Suppose that r ' > 1 and assume that U ~ n ( n + 2 ) / 2 ) U ~ 2 . Then ( 8 )

yields

( r ' 1 )

and hence - n > gn / 2u

g < 2u ( r ' - 1 ) .

The r ' invariant involutions together \ vith 1 form a subgroup ~ of order r ' + 1

of the center of ~ . Since any subgroup of ~ / ~ different from ~ j ~ has an index

at least u , the order of such a subgroup is not , greater than gju ( r ' + 1 ) , and

g / u ( r ' + 1 ) < g / u ( r ' - 1 ) < 2 .

It Folio , vs that @ / ~ is certainly cyclic . Hence @ is generated by ~ and at most

one additional element . Since ~ lies in the center of @ , it follows that @ is abelian .

But then @ has a subgroup of index 2 , , vhereas we assumed u > 2 . Thus the

assumptions u > 2 , u ~ n ( n + 2 ) / 2 lead to a contradiction . This proves the

theorem :

THEOREM ( 2F ) . Let @ be a group of even order g which contains exactly m

involutions . If n = g / rn , then ~ contains a subgroup of index u such that either

' ll = 2 or
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We no\v are able to obtain a slight improvement of (2D ) . We state :
COROLLARY (2G) . If ~ is a group of even order g > 2, there exists a subgroup

Q3 ~ ~ of order v > ...:!2"g - 1/ 3.
PROOF. If ~ contains a subgroup of index 2, the statement is true , since

g/ 2 ~ ...:!Zg for g ~ 4. Assume that ~ does not have subgroups of index 2.
Suppose first that ~ does not contain invariant involutions . If Q3 is a subgroup 

of ~ of maximal order v < g, Theorem (2F ) sho\vs that g/ v < n (n + 1)/ 2.

It follows from (5*) that n ~ nl , and since nl is the order of a subgroup 9C(GJ ~
~ , \ve have nl ~ v. Thus 2g < v2(v + 1). One easily sees that this implies v >
...:!2g - 1/ 3.

The case in \vhich ~ contains invariant involutions can be treated in a manner

similar to that used in the proof of (2D ) .
THEOREM (2H ) . If ~ is a group of even order g which contains m involutions and

if n = g,lm , then there exists a normal subgroup ~ ~ ~ of ~ such that ~ / ~ is
isomorphic to a subgroup of the symmetric group on u letters with u = 2 or
u < n (n + 2)/ 2. In parti <;:ular , (~ :~) = 2 or (~ :~) < (n (n + 2)/ 2] ! If ~ contains
at most one invariant involution , the number n (n + 2)/ 2 can be replaced by
n (n + 1)/ 2.

PROOF. If Q3 is the subgroup mentioned in (2F ) , there corresponds to Q3 a
permutation representation of ~ of degree u . We obtain (2H ) by taking for ~
the kernel of this representation .

COROLLARY (21) . If ~ is a simple group of even order g > 2 which contains m
involutions and if n = g/ m, then

g < [n (n + 1)/ 2] !

If J is an involution of @, then n in the inequality can be replaced by n (J ) . There
exist only a finite number of simple groups in which the normalizer of an involution
is isomorphic to a given group .

PROOF. The first statement follows at once from (2H ), since a simple group
of even order g > 2 cannot contain an invariant involution . The second statement

then follows from (5*) , which implies n ~ n (J ) .

10. For a later application , we mention still another result '\vhich is obtained
by the method used above .

THEO!tE M (2J) . If ~ is a group of even order g which contains exactly m involutions
, then the number k1 of real classes of ~ satisfies the inequality

k1 - 1 ~ m (m + 1)/ (1.

PROOF. In (4) , Vi can be replaced by ni - 1. Then

m2 ~ m + r(l - 2L ~=1 (I/ ni + (k1 - r - 1)(1.

This , together with (5), yields

m2 ~ - m + (k1 - 1)(1.



III . Groups with more than one class of involutions

11 . We no \v prove

LEMMA (3A ) . If the two involutions X and Y of ~ are not conjugate in ~ , there
exists an involution J which commutes with X and Y .

PROOF. Set G = XY . As \\'e have seen in the proof of (2A) , both X and Y
transform G into G - 1. Then G is real , and X and Yare elements of the group

~ * (G) introduced in Section 6. If G = 1, then X = Y. If G has order 2, then
G is an involution which commutes \vith X and Y . Thus \ve may suppose that

G has order greater than 2. Then ~ * (G) has order 2n (G). If n (G) ,\'ere odd ,
both {X } and { Y } would be 2-Sylo 'v groups of ~ * (G). Then X and Y would
be conjugate in ~ * (G) and hence in ~ , contrary to the hypothesis . Hence n (G)
is even. Let ~ * be a 2-Sylo \v group of ~ * (G) which contains X . Since X 4 ~ (G) ,
the intersection ~ = ~ * n ~ (G) must have index 2 in ~ * , and ~ is a 2-Sylo \\'
group of ~ (G) . The order of ~ is at least 2, ~nd since ~ is normal in ~ * ,,'e can
find a normal subgroup {J } of order 2 of ~ * such that {J } ~ ~ . Then J is an
involution \vhich commutes ,vith X and G and hence ,vith Y = XG .

We now prove

THEOREM (3B ) . Let ~ be a group of order g which contains r ~ 2 classes oj
involutions St' l , '~2, . . . , St' r . For GiE St' i , let ni denote the order of the normalizer
~ (Gi) of Gi , and let Vi denote the number of involutions in ~ (Gi) . If V is the maximum
of the Vi , then

g ~ (v - 2)(VI - 1)/ (n; 1 + nil + . . . + n~l).

PROOF. Let J range over the VI - 1 involutions of ~ (GJ distinct from G1,
and for each J denote by ~ (J ) the set of involutions of ~ (J ) \vhich do not
commute \vith G1. For a fixed J , ~ (J ) contains at most V - 3 elements , since
G1, J , and G1J are distinct involutions in ~ (J ) ,vhich commute ,vith G1. It
Folio\vs from (3A ) that each involution not in St' l and not in ~ (GJ must lie in
one of the sets ~ (J ) . If U denotes the union of the classes St'2 , St'3, . . . , St' r ,
then at most (VI - 1) (v - 3) elements of U do not commute with G1.. Since at
most VI - 1 elements of U do commute ,vith G1 , and since U contains exactly
g(n; 1 + . . . + n~l) elements , ,,'e obtain

g(nil + . . . + n~l) ~ (v -- 2)(V1 - 1).

This proves the theorem .

COROLLARY (3C). if the notation is the same as in (3B), and if the notation is
chosen such that ni ~ n2 ~ . . . ~ nr , then

r : : lj 2
g < n1n2nr ; (r - l )g < nlnr vn2n3 . . ' nr ~ n1nr .

Indeed , since V i ~ ni - 1, \ve have

(v - 2) (VI - 1) < n )nr .
On the other hand

- ) - )

+ nr ~ n2

572 RICHARD BRAUER AND K. A. FOWLER

- J +n2 . . .

FINITE GROUPS10
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and

n; l + . . . + n-;l ~ (r - 1) r~ (n2 . . . nr)- l ~ (r - l )n-;l.

In particular , ,ve have nr > ~ (r - l )g. This sho,vs that if ~ does not contain
invariant involutions and if r ~ 2, then the group ~ in (2D ) can be chosen as
the normalizer of an involution . For r ~ 3, we obtain an improvement of (2G).

12. Using the terminology introduced in the introduction , we state
THEOREM (3D ) . If ~ contains more than one class of involution $, then any two

involutions of ~ have distance at most 3 .

PROOF. If the two involutions X and Z belong to differellt classes, it Folio,vs
from (3A ) that d(X , Z ) ~ 2. Suppose then that X , Z belong to the same class
J7;i . It Folio\vs from (3..1\.) that some element Xl of J7;.i must commute \vith an

involutionY not in ,R' i . After replacing Xl and Y by conjugates , \ve may assume
X equals Xl . Since Z and Y belong to different classes, we have d(Z , Y) ~ 2.
On the other hand , d (X , Y) = 1. Hence d(X , Z ) ~ 3.

COROLL.-\RY (3E ). If ~ contains more than one class of involutions , the'n any tW6
elements 01 and O2 with even n (GJ , n (G2) have distance at most 5.

Indeed , if n (Gi) is even, there exists an involution Xi \\Thich commutes \vith
0 i . Hence

d (G1, XI .) ~ 1, d (xi , X2) ~ 3, d(X2 , G2) ~ 1.

It Folio,vs that d(G1 , G2) ~ 5.
REMARK . There exist groups ,vith more than one class of involutions in ,vhich

involutions of distance 3 occur . For instance , let @ be the symmetric group on
p letters , where p is a prime and p ~ 5. If G is. a cycle of length p , there exists
an involution Xvhichtransforms G into G - I . Then Y = XG also is an involution .

If an element Z commutes ,vith both X and Y , then Z would commute '\vith G

and hence Z ,vould be a power of G. The only power of G ,vhich commutes with
an involution is 1. Hence Z = 1 and this sho,vs that d(X , Y) > 2.

A similar argument can be used to prove

(3F ) . If @ is a group of even order which contains a real element G such that
n (H ) is odd for every H different from 1 in W(G), then @ contains involutions
which have distance greater than 2 .

One can also sho,v by examples that the number 5 in (3E ) cannot be replaced
by a smaller value .

IV . The set of real elements

13 . We prove

LEMMA (4A ). If G is a real element of the group Q; of even order and if n (G)
is odd, then there exists an involution Jwhichtransforms G into G- 1. All involutions
which transform G into G- ] are conjugate in ~ , and the number of such involutions
is equal to the indexof S J1(G) n SJ1(J ) in SJ1(G).

PROOF. Since n (G) is odd , G is not an involution . Then the group l11* (G) has



574 RICHARD BRAUER AND K. A. FOWLER

and hence .\1 is abelian .
As an immediate consequence of (4B ) , we have

FINITE GROUPS12

~

even order 2n(G) and therefore it contains an involution J . Since n (G) is odd , J
cannot transform G into G . Hence Jtransforms G into a - 1.

If X is any involution such that X - 1GX = G- 1, one sees as in the proof of
(3A ) that X is conjugate to J in 91* (G) . The number of elements in the class of
J in 91* (G) is equal to the index of 91* (G) n 91(J ) in 91* (G) , and every element
in this class is an involution which transforms G into G - 1. Since J does not

belong to the subgroup 91(G) of index 2 of 91* (G) , it Folio\vs that 91(0 ) n 91(J )
has index 2 in 91* (G) n 91(J ) . Hence the index of 91(G) n 91(J ) in 91(G) is equal
to the index of 91* (G) n 91(J ) in W* (G) . This completes the proof .

The Folio\ving theorem is essentially a restatement of a result due to Burnside ,
[2], pp . 229, 230.

THEOREM (4B ) . Let ~ be a subgroup of ~ . If there exists an involution J in the
normalizer of ~ , and if J commutes with no element of ~ different from 1, then .p
is abelian of odd order and Jtransforms every element of f ) into its inverse.

PROOF. Every element of f ) can be ,vritten in the form JH - 1 J H for HE ~ .
Hence Jtransforms every element of f ) into its inverse . This implies that f )
cannot contain an involution . For H , K E ~ ,

KH = J (H - 1K- 1)J = (JH - J J ) (JK - 1 J ) = HK ,

COROLLARY (4C) . Assume that G ~ 1 is an element of ~ which is transformed
into its inverse by the involution J . If d(G, J ) ~ 3, then 91(G) is abelian of odd
order and Jtransforms each element of 91 (G) into its inverse.

We no \v prove

THEOREM (4D ) . Assume that d(G, J ) ~ 4 in (40 ) . Then 91(G) is the normalizer
of each of its elements different from 1; and d (H , Z ) = 00 for HE 91 (G) , Z . 91(G) ,
H ~ 1 .

PROOF. It Folio\vs from (4C) that 91(G) is abelian . If HE 91(G), then SJl(G)
91(H ) . For H ~ 1, \ve have d(H , J ) ~ 3 and hence (4C) can be applied to H
instead of G: Since W(H ) is abelian and G E 91(H ) , we have W(H ) s: SJl(G) and
hence 91(G) = 91(H ) .

It is now clear that any element H ~ 1 of SJl(G) has distance at most 1 from
every element different from 1 of SJl(G) and distance 00 from every element not
in 91(G).

COROLLARY (4E ) . If a real element G ~ 1 has distance at least 4 from the set Wl
of involutions , then d(G, Wl) = 00 and 91(G) is the normalizer of each H ~ 1 in
91(G).

Indeed , (4A ) sho\vs that there exists an involution J such that J - 1GJ = G- I.
Then (40 ) and (4D ) apply . Since n (G) is odd , all involutions lie outside 9~(G) .

14. We consider a subgroup f ) of an arbitrary group ~ of finite order g such
that ~ is the normalizer of each of its elements different from 1. Our results

will apply to the subgro.up 91(G) in (4D ).
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that Ho E ~ . No \v (10) shows that Ho =
now have

It is clear that f ) ,viII be abelian . If p is a prime dividing the order h of f ) ,
there exists an element P of order p in f ) . Let ~ be a p-Sylow group of GJ which
contains P , and let Po ~ 1 be an element of the center of ~ . Then Po E 91: (P ) =
~ and hence SJ1(Po) = f ) . Since ~ ~ SJ1(Po) = ~ , it follows that p is prime to the
index gjh of ~ .

Let 91: denote the normalizer of ~ in GJ. Since f ) is a normal subgroup of 91:
and since h is relatively prime to (91: : f  ) , there exists a subgroup 5ill such that
([3], p . 125)

SJ1 = ~ 5ill, ~ n 5ill = { I } .

If 5ill has order w , then 91: has order hw .

In 91:, the h - 1 elements H ~ 1 of f ) have normalizers of order h. Hence they
are distributed into (h - l )jw classes of conjugate elements each consisting of
w elements. In particular , w divides h - 1. Actually , if pa is the highest po,ver
of a prime p dividing h, then w divides pa - 1. This is seen by considering a
Sylo ,v group of f ) .

If an element A of ~ transforms an element H ~ 1 of ~ into an element K

of f ) , we have A - 1SJ1(H )A = 91:(K ) , that is, A - 1~ A = ~ and hence A lies in SJ1.
No two distinct conjugates of f ) can have an intersection different from 1,

since each conjugate of ~ is the normalizer of each of its elements different from
1. Now the arguments leading to Sylow 's theorem sho\v that the number of
conjugates is congruent to 1 modulo h. If ,ve denote this number by 1 + Nh ,
,vhere N is a rational integer , then gj (hw) = 1 + Nh and hence g = wh(1 + Nh ).

We have proved t
THEOREM (4F ) . If GJ is a group of finite order g and !;) is a subgroup such that

~ is the normalizer of each of its elements different from 1, then !;) is abelian and
its order h is relatively prime to its index g j h. TVe can set

(9) g = hw(1 + Nh ) ; h - 1 = wt ,

where t , w, and N are rational integers, t ~ 0, w ~ 1, N ~ O. The normalizer m
of !;) has order hw and there exists a subgroup 5ill of order w such that

(10) SJ1 = ~ ~ ; ~ n ~ = { I } .

Each element of f ) different from 1 is conjugate in GJ to exactly w elements of .\)
and any two of these w elements are conjugate in SJ1.

15. We now take for ~ the group 91: (G) in (4D ) . Since J maps each HE !;)
on its inverse , ,ve have JE 91: . After replacing 5ill by a conjugate group in SJ1,
we may assume JE ~ . Let H be a fixed element of ~ different from 1. Since
91: (H ) = ~ , only the elements of ~ J ,viII transform H into H - 1. On the other
hand , for WE ~ , the element W- JTVtransforms  each element of ~ into its
inverse . Hence \ve have TV- IJW = Ho J ,vith Ho E ~ . Since J , JV E ~ , it Folio\vs

1 and hence that W .- 1 JT 'V = J . We
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THEOREM ( 4G ) . If ~ is a group of even order g and G is a real element different

from 1 which has distance at least 4 ( and hence distance 00 ) from the set of involutions ,

the results of ( 4F ) apply to . \ ) = 91 ( G ) . If J is an involution which transforms G

into G - 1 and hence every element of . \ ) into its inverse , we may choose ~ in ( 10 )

such that J f : ~ and ~ ~ 91 ( J ) . The number w is even .

16 . Let HE f ) , H ~ 1 . Our results sho \ v that there exist exactly h involutions

, vhich transform H into Fl . It then follows from ( 2A ) and its proof that there

exist exactly h ordered pairs ( X , Y ) of involutions with the product H ; moreover ,

if ( X , Y ) is any such pair , then both X and Y transform H into H - 1 . Then , by

( 4A ) , X and Y belong to the same class of ~ as J does . Denote this class by

Sf : l . We now see that there are exactly h ordered pairs of elements of Sf : 1 , vith the

product H .

From ( 0 ) , ve have

( ) 2 , " " k - l11 Kl =  . . Ji = O alliKi .

If He Sf ) . , then all ) . is equal to the number of ordered pairs of elements of SfI

with the product H . Hence all ) . = h .

The number of elements in srI is glnl . It follows easily that all  O = glnl .

Counting the number of group elements occurring on both sides of ( 11 ) , we

obtain

( 12 ) ( gjnJ2 = gjnl + L ~ : ~ alligjni .

For the class Sf >, . , we have all > " = h , n >, . = h , and thus the term in ( 12 ) for i = A

is g . There are exactly ( h - l ) jw = t classes . Q ' >, . " , vhich contain elements of ~

different from 1 .

It may happen that there are several non - conjugate groups of the same

type as ~ whose elements are transformed into their inverses by the same

involution J . Let us denote these groups by ~ i ( i = 1 , 2 , . . . , 8 ) and let ti

have the same significance for ~ i as t had for ~ . Then the elements of ~ i different

from 1 will contribute ti terms g to the sum in ( 12 ) and different ~ i must contribute 

different terms . Hence

g2ln ~ ~ glnl + g ~ ~ = l ti , g ~ nl + n ~ ~ tf .

We have shown

( 4H ) . Suppose that J is an involution of ~ and that there exist elements

Xl , X2 , . . . , Xa each of which is transformed into its inverse by J , each of which

has distance at least 4 from J , and which are such that no element of the class of Xi

commutes with Xj for i ~ j . If the elements different from 1 of ~ i = ~ ( X i ) belong

to ti different classes in ~ , then

( 13 ) g ~ n ( J ) + n ( J ) 2L ~ - 1 ti .

17 . Again let ~ be the group mentioned in ( 4G ) , and consider the h sets

Hm " Tith HE ~ . If t , vo such sets HIm and H29Jl , vith H ) , H2 E ~ , HI ~ H2 '
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- w + h(x - wN ).

(h - 2)jv . Thus , ,ve must have

xv = - w + h .

15 REPRINT OF [64]

( 16 ) g ~ h ( hh - 2 ) nl . - nl

Set v = h - nl > O . We then have

xv = xh - xni = xh - xwz =

It follows from ( 15 ) and ( 16 ) that x ~

( 17 ) x - wN = 1 ;

have an elementD in common , there exist involutions Jl and J2 such that

D = HIJI = H ~ J2 ~ Hl1H2 = JIJ2 . Then , as we have seen in the proof of ( 2A ) , .

Jtransforms  H - ; l H 2 into its inverse . Hence J I E ,~ J , H IJ 1 E . \ : : : , J , and hence

Him n H 2m ~ . \ : : : , J . Conversely , if Hand Ho are any t \ VO elements of . \ : : : " then

J - IH - I Ho  J = BOtH . It follows that ( H - I Ho  J ) 2 = 1 . Since J does not lie in

. S ) , H - 1 H oj Em . This shows that . .\ ) J is contained in each of the sets Hm . Thus ,

HIm n H2m = r : > J .

If m again denotes the number of involutions in ~ , then each Hm contains

the helements of . .
' ) J and m - helements " vhich do not appear in any of the

other sets Him . The number of elements in the union of the sets Hm is therefore 

h + h ( m - h ) . No element of . \ ) can appear in a set Hm since . \ ) has odd

order and cannot contain an involution . Since \ ve have g elements in ~ , at most

g - h distinct elements can lie in the union of the sets Hm . Hence

h + h ( m - h ) ~ g - h .

This yields mh - g ~ h ( h - 2 ) . If we again set m = gin , we obtain

g ( h - n ) ~ h ( h - 2 ) ~

( 41 ) . Let h be the order of the group .\ J in ( 4G ) , and let m be the number of involutions 

in ~ . If h > g / m = n , then

( 14 ) g ~ ~ ~ - = - ~ ! ! : .

18 . Set n ( J ) = nl . Since w divides nl ( cf . ( 4G  , we can set ni = WZ , \ vhere

Z is a positive rational integer . On the other hand , nl divides gjh . Indeed , if

this \ vere not so , there would exist an element P in 9l ( J ) of a prime order dividing

h . Some conjugate PI of P then belongstop and hence n ( PJ = h . This implies

thatn ( P ) = h . Ho \ vever , since JE 9lCP ) , n ( P ) must be even and \ ve have a

contradiction . Thus nl divides gjh . Since nl = WZ , it Folio \ vs from ( 9 ) that Z

divides 1 + Nh . Set 1 + Nh = zx , where x is a positive rational integer . Then

g = hwxz '

( 15 ) ,

h - 1 = wi , 1 + Nh = xz , nl = wz .

Suppose that h > nl . It then Folio , vs from ( 5 * ) that h > ri and hence ( 14 )

.holds . Since n ( h - nJ ~ nl ( h - n ) ,
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Since wz =

(18) nJ = h(h - v) (h - w)fv .g = knI (k - w)f (k -

On the other hand , (13) sho,vs that

nl + n~t ~ g.

+ nit) (h - nJ ~ h(h - w).

h 1. An easy- -

- h (n ~ + nl - ~ O.

Nh , and since (17) implies
Then ~ is normal in ~ .

z > 1 . If we had

(20) ,vould be positive ,

This in conjunction , vith ( 18 ) yields

( 19 ) ( 1

Multiply both members of ( 19 )

computation yields

( 20 ) h2 ( nl - w )

If w = nl , then ( 15 ) shows that z

wN = hN , . " \vhere w ~ h - 1 ,

If this case is excluded , then

h ~ ( ni + nl - w2 ) / ( nl - w ) ,

which is impossible . Hence

nl + w + 1.

nl , it folio ,vs
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nl = h - V, the equation (15) becomes

   by wand recall that wt

w2 ) + ( w + ni )

= 1 , x = 1 +

we must have N = O .

by ( 15 ) nl > w ,

the left hand side of

h < ( ni + nl - w2 ) / ( nl - w ) = nl + w + nl / ( nl - w ) .

Now nl / ( nJ - w ) = wz / ( wz - w ) = z / ( z - 1 ) ~ 2 . Thus h ~

By ( 15 ) , h = = 1 = = 1 + nl ( mod w ) , and since we assumed h >

that h = 1 + nl or h = 1 + nl + w . In the latter case , ( 19 ) becomes

( 1 + Nit ) ( 1 + w ) ~ h ( 1 + nv = ( tw + 1 ) ( 1 + nv ,

and then nIt + w ~ wt + nl , nl ( t - - 1 ) ~ w ( t - 1 ) . Since nl > w , we must

have t = 1 . Then h - 1 = w , and since h = 1 + nl + w , , ve obtain nl = 0 , a

contradiction . It follows that \ ve must have h = 1 + nl . This yields the result

THEOREM ( 4J ) . Let 6 ; be a group of even order g which contains a real element

G different from 1 and with distance at least 4 from the set of involutions . Let J be

any involution which transforms G into 0 - 1 . If the group ~ ( G ) is not normal in 6 ; ,

then its order h is at most n ( J ) + 1 . The case h = n ( J ) + 1 occurs only if g =

h ( h - 1 ) ( h - w ) , where w is the order of the group > 1B mentioned in ( 4G ) .

There exist infinitely many groups in , vhich the case h = n ( J ) + 1 occurs .

If @ is the group LF ( 2 , 2Q ) of order g = ( 2G + 1 ) 2Q ( 2Q - 1 ) , there exists only

one class of involutions , r = 1 , n = nl = 2Q , and there exists a subgroup . f ) of

the type here discussed with h = 2G + 1 . Here , w = 2 , t = ( h - 1 ) / 2 = 2a - l .

19 . We conclude this section , vith a fe , v simple remarks :

( 4K ) . If mo is a set consisting of mo involutions of 6 ; , any subgroup 2 of order

l > g / ( mo + 1 ) contains an element Lo different from 1 which is transformed into

its inverse by some element J of mo .

PROOF . If 2 contains an element J of mo , , ve may take Lo = J and we have

J - 1LoJ = L ; l . Assume then that 2 and mo are disjoint .
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If two sets LI9Jlo and L2mO, \vith L1 , L2 E ~, L1 ~ L2 , are not disjoint, there-
exist involutions J1, J2 E mo such that L1J1 = L2J2. Then L~IL2 = J1J2 and
Jtransforms  the element Lo = L-l L2 E ~ into its inverse.

If the l sets Lmo , LE ~, are pairwise disjoint, their union contains lmo distinct
elements. Since no element of ~ appears, ,ve have lmo ~ g - l and hence l ~
g/ (mo + 1).

As a special case, \ve note
(4L). If ~ contains m involutions, any subgroup ~ of order l > g/ (m + 1)

contains real elements different from 1. In p~rticular, .if n = g/ m, any subgroup of
order l :?;; n contains real elements different from 1.

The following example sho\vs that this result cannot be improved substantially.
If ~ = LF(2, q) and q is a prime power with q =:; - 1 (mod 4), the subgroups
of order q do not contain real elements different from 1. On the other hand,
m = q(q - 1)/ 2 and g/ (m + 1) < q + 1.

As another consequence of (4K), ,ve note that if the group ~ in (4G) contains
r :?;; 2 classes of involutions .R'1 , .R'2, . . . , Str and if JE .R'l , then

h ( - 1 - 1~ n2 + na + + -1 + -1)-1. . . n,. g .

Indeed, as we have seen above, no element of one of the cla~ses ~2 , ~3, . . . , ~T
can transform an element of ~ different from 1 into its inverse.

It is a consequence of (4G) that if subgroups ~ of the type discussed there
occur, then some of the Sylo,v groups of @ are abelian and consist entirely of
rPH,l piements. We can obtain the same conclusion under slightly different
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assumptions.
(4M). Let p be an odd prime. If ~ contains real elements of an order divisible

by p, and if every real element of order p has distance greater than 2 from the set of
involutions of ~ , then the p-Sylow groups ~ of ~ are abelian and consist entirely
of real elements. All the elements of ~ different from 1 have the same normalizer,
which is abelian and consists entirely of real elements.

PROOF. Let G be a real element of an order divisible by p. After replacing G
by a suitable po'\verve may assume that G has order p. Then (4A) and (4C)
show that there exist involutions J ,vhich transform G into G- I, that m(G) is
abelian, and that Jtransforms every element of ~ (G) into its inverse. Let ~
be a p-Sylo'\v subgroup of ~ which contains G, and let Go be an element of order
p in the center of ~ . Since Go Em(G), '\ve can apply the above argument to Go
instead of G. Since ~ ~ ~ (Go), ~ is abelian and consists entirely of real elements.

Now let P be an element of ~ different from 1. A suitable power ps of P has
order p. The above argument sho'\vs that m(ps), and hence ~ (P), is abelian and
consists entirely of real elements. It no'\v follo'\vs easily that all the elements of
~ different from 1 have the same normalizer.

V. Results concerning the characters

20. Let ~ be a group of ev.en order g. Let Xo , Xl , . . . , Xk- l denote the ordinary
irredu Qible characters of @, and let f i denote the degree of Xi . We take Xo to
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C-'p(Ki) = &inil p .
It follows from (0) that

LII aijll,,",p(KII)'CrJp(Ki)CrJp(Kj ) -

and hence
-1 -1 .f ~ -1gni nj XpiXpj = J p ~ "Ail"Xp"n" .

18 FINITE GROUPS

21. We denote by Xpi the value of the character XP for the class St' i . It is ,yell
known that to every character XP of ~ there corresponds a character CJJp of degree
1 of the center A of the group algebra r . The values of CJJp for the elements of
the basis Ko , . . . , Kk- l of A are given by

be the I -character . It is ,veIl kno \vn that the number of real characters is equal
to the number k1 of real classes of conjugate elements . Let .f be the minimal
degree of a real character Xi with i > O. Since

~ k- l f2L. , 1'=0. i = g,

it follows that

1 + (k1 - 1)f2 ~ g.

No '\v (2J) sho\vs that m(m + l )f2 ~ g(g - 1) . This yields
(5A ). If @ is a group of even order g which contains m involutions , there exists

a real character, not the I -character, of a degree f such that

f ~ v g(g - 1}/ (m2 + m).

In particular , if n = gIm , then f < n .
Thus if n ~ 2, that is, if at least half of the elements of ~ are involutions , ~

has a real character of degree 1 which is not the I -character . This implies that
~ has a normal subgroup of index 2. One can also sho\v that the elements in ~
of odd order form a normal subgroup of ~ . Using the kno \vn groups of degree
2, one can obtain

(5B ). If the group (;$5 oj even order g contains at least g/ 3 involutions , then ~ has
a normal subgroup ~ o such that ~ / ~ o either is cyclic of order 2 or 3 or is the icosa-
hedral group of order 60.

If (5A ) is combined \vith Jordan 's and Blichfeldt 's Theorems on linear groups
of given degrees, results similar to (2H ) can be obtained . Ho " Tever, our present
knowledge in this matter does not enable us to improve the results given in II .

If we multiply both members of the last equation by xp ) . for a fixed value of A ,

add over all p , and apply the orthogonality relations for group characters , , ve

obtain the well known formulae

- 1 - 1 ~ - rl

( 21 ) ai1h = gni niL . " p Xpi  Xpj  Xp > ' J p .



Since p and nl are relatively prime , there must exist a value of p such that
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As above , we denote the classes containing involutions by srI , .R'2, . . .
It follows from (1) , (0) , and (2) that

(22) c). = Li.i=l ai J A'

2 ~ 2 -1nXnl = gs ~p xplxp~f p .

-1 2 j -l 2 ( )gnx XptXp). p = Xpl(I Jp K).
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1 2 . .. . r we obtain" "

( ) ~ r - 1 - I ~ / - 123 = gL , . , i , j = 1 ni nj L, . , p Xpi  Xpj  Xp A p .

We now sho \ v

( 50 ) . Suppose that G is a real element of the group @ of even order g for which

n ( G ) is odd and that J is an involution which transforms G into 0 - 1 ( cf . 4A ) . If p

is a prime which divides n ( G ) with the exact exponent v but which does not divide

n ( J ) , then @ possess  es a p - block B of defectd ~ v . ~V e may choose B such that it

contains characters of posit1 've defect for 2 ,

PROOF . It follows from ( 4A ) that all involutions transforming G into a - 1

lie in one class , say in S' f: 1 . If G belongs say to S' f: ~ , then ( 2A ) and ( 4A ) show that

c ~ = all ~ and that c ~ is a divisor n ~/ s of n ~ , where s is the order of m ( G ) n ~ ( J ) .

Then , for i , j = 1 , ( 21 ) becomes
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, Sfr .

is not divisible by a prime ideal divisor ~ of p in the field of characters . The  Il

( 24 ) Xpl ~ 0 ( mod p ) , ' - ' p ( KA ) ~ 0 ( mod ~ ) .

The second condition implies that XP belongs to a p - block of defectd

<= v.

Indeed , if Xp belongs to a p-block B of defectd , there exists a character xJ& in B
with g/ (pdfp) prime to p . No ,v ~p(K).) = ~p(K).) (mod p) . Since

~ji(K).) = gXJ&).j (n>Jp)

is prime to p, n). must be divisible by pd, that is; v ~ d. The first condition (24)
implies Xpl ~ 0, and hence Xp must be of positive defect for 2.

COROLLARY (5D ). If , in (5C) , n (G) is prime to p , then there exists a character
of ~ which is of defect 0 for p and of positive defect for 2.

22. There is a second case in \vhich \,re can prove that 6; possess es characters
of defect O.

(5E ) . Suppose that J is an involution a1w that for some odd prime p there exists
a prime power group ~ o of order pc > 1 such that no element of ~ o different from 1
is mapped on its inverse by any conjugate of J . If P divides n (J ) with the exact
exponent v, then there exists an irreducible character XP whose degree is divisible by
pC- II and which is of positive defect for 2. f n particular , if ~ o can be taken as a
p-Sylow group of ~ and if v = 0, then XP is of defect 0 for p .

PROOF. If J belongs to srI , then the proof of (2...\ ) sho,vs that under our
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assumptions all ~ = 0 for each class !;l:~ with A > 0 ,vhich contains elements of
~ o . For P E ~ o , set

(25) 'I/;(P ) = Lp Xp(J )2Xp(p )j ; l ,

It follows from (21) that 1/;(P ) = 0 for every element P ~ 1 in ~ o . For P = 1,
we see from the orthogonality relations that

)/1(1) = Lp Xp(J )2 = n (J ).

If (p denotes the character of the regular representation of ~ o , it follows that

(26) )/I = n (J )/ pccp.

On the other hand , " re can express the restriction of XP to ~ o in terms of the
irreducible characters of ~ o , in order to obtain an expression of 1/;(P ) in terms
of the irreducible characters of ~ o . If the restriction of XP contains the l -charac-
ter of ~ o with the multiplicity bp , then comparison of the multiplicity of this
I -character in (25) and (26) yields

LXp (J)2bpjfp = n(J)jpc.

Since the right hand side contains p with the exponent c - v in the denominator
, and since all Xp(J ) and bp are rational integers , there must exist a value

p such that pc- v divides fp and Xp(J ) ~ O. This yields the statement.
An immediate consequence of (5E ) is
(5F ) . Let J be an invol ' ldion and let p be an odd prime dividing g. If no element

of order p is transformed into its inverse by J , and if p divides n (J ) with the exact
exponent v and g with the exact exponent a, then there exists an irreducible character

whose degree is divisible by p a- v and which is of positive defect for 2.

23. We conclude the paper ,vith some remarks concerning the case that @
contains a subgroup .f) ,vhich satisfies the assumptions of (4F ) . It is immaterial
here ,vhether the order g is even or odd , but ,ve mention these remarks here

since they can be applied in the case of (4G ). If the notation is the same as in
( 4F ) , there exist t characters (Jl , . . . , (J t of degree w of the group ?Jl:. Then @
possess es t irreducible characters 1fl , . . . , 1ft all of the same degree z such that

1/Ii (H ) = 'Y + fj(J AH )

for HE f ) , H ~ 1. Here , 'Y and 0 are independent of j and HY is a rational
integer , and 0 = =l:: 1. For elements G of ~ \vhich are not conjugate to such an
element H , \ve have

7/ll (G) = 7/l2(G) = . . . = 7/lt (G) .

If Xj are the other characters , not of this " exceptional " kind , then Xj (H ) has
a fixed rational integral value aj for all HE f ) , H ~ 1. The degree ! j of Xj satisfies
the congruence

.f j == aj (mod h),
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while the degree z of the 1/1 i satisfies

z = 'Y + ow (mod h).

These results are a special case of a more general result ,vhich ,vas obtained
originally as an application of a theorem on characters [1] . A direct simple
proof using induced characters ,vas given by M . Suzuki .

Using the orthogonality relations for group characters , one obtains the
following additional relations :

(t - 1)'Y2 + ('Y - 0)2 + L a~ = w + 1, t'Yz + L ! jaj = oz.
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