
where <I>near is a rapidly decaying function of distance (e.g. the Van der Waals

potential in chemical physics ) , <I> external is independent of the number of particles

(e.g. an applied external electrostatic field ) , and <I>far , the far -field potential , is
Coulombic or gravitational . Such models describe classical celestial mechanics and
many problems in plasma physics and molecular dynamics . In the vortex method
for incompressible fluid flow calculations [12], an important and expensive portion
of the computation has the same formal structure (the stream function and the
vorticity are related by Poisson's equation ) .

In a system of N particles , the calculation of <I>near requires an amount of work

proportional to N , as does the calculation of <I>external. The decay of the Coulombic
or gravitational potential , however , is sufficiently slow that all interactions must be
accounted for , resulting in CPU time requirements of the order O (N2 ) . In this

dissertation , a method is presented for the rapid (order 0 (N )) evaluation of these
interactions for all particles to within round -off error .

1 Intraductian

<I> = <I>near + <I>external + <I>far ,

The study of physical systems by particle simulation is well - established in a number

of fields . It is becoming increasingly important in others . A classical example

is celestial mechanics , but much recent work has been done in formulating and

studying particle models in plasma physics , fluid dynamics , and molecular dynamics

[ 24 ] .

There are two major classes of simulation methods . Dynamical simulations follow

the trajectories of N particles over some time interval of interest . Given initial

positions { Xi } and velocities , the trajectory of each particle is governed by Newton ' 8

second law of motion :

~ Xi ~ <I > f . N

mi - ; j . i2 = - v i or t = 1 , . . . , ,

where ffli is the mass of ith particle , and the force is obtained from the gradient

of a potential function < P . When one is interested in an equilibrium configuration

of a set of particles rather than their time - dependent properties , an alternative

approach is the Monte Carlo method . In this case , the potential function < P has

to be evaluated for a large number of configurations in an attempt to accurately

describe the potential surface .

In a typical application , the potential has the form



1.1 Brief History

2 Chapter 1. Introduction

There have been a number of previous efforts aimed at reducing the computational

complexity of the N - body problem . Particle - in - cell methods [ 24 ] have received

careful study and are used with much success , most notably in plasma physics .

Assuming the potential satisfies Poisson ' s equation , a regular mesh is layed out

over the computational domain and the method proceeds by :

1 . interpolating the source density at mesh points ,

2 . using a " fast Poisson solver " to obtain potential values on the mesh ,

3 . computing the force from the potential and interpolating to the particle positions

.

The complexity of these methods is of the order O ( N + M log M ) , where M is

the number of mesh points . The number of mesh points is usually chosen to be proportional 

to the number of particles , but with a small constant of proportionality

so that M   N . Therefore , although the asymptotic complexity for the method

is O ( N log N ) , the computational cost in practical calculations is usually observed

to be proportional to N . Unfortunately , the mesh provides limited resolution , and

highly non - uniform source distributions cause a significant degradation of performance

. Further errors are introduced in step ( 3 ) by the necessity for numerical

differentiation to obtain the force .

To improve the accuracy of particle - in - cell calculations , short - range interactions

can be handled by direct computation , while far - field interactions are obtained from

the mesh , giving rise to so - called particle - particle / particle - mesh ( P3 M ) methods

[ 24 ] . For an implementation of these ideas in the context of vortex calculations ,

see [5 ] . While these algorithms still depend for their efficient performance on a

reason  ably uniform distribution of particles , in theory they do permit arbitrarily

high accuracy to be obtained . As a rule , when the required precision is relatively

low , and the particles are distributed more or less uniformly in a rectangular region ,

p3 M methods perform satisfactorily . However , when the required precision is high

( as , for example , in the modeling of highly correlated systems ) , the CPU time

requirements of such algorithms tend to become excessive .

Appel [7 ] introduced a " gridless " method for many - body simulation with acom -

putational complexity estimated to be of the order O ( N log N ) . It relies on using a

monopole ( center - of - mass ) approximation for computing forces over large distances
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and sophisticated data structures to keep track of which particles are sufficiently
clustered to make the approximation valid . For certain types of problems , the

method achieves a dramatic speed-up compared to the naive O(N2) approach. It is
less efficient when the distribution of particles is relatively uniform and the required
precision is high .

1 . 2 Outline of the Dissertation

The algorithms presented here make use of multipole expansions to compute potentials 
or forces to whatever accuracy is required . Portions of the work described

below have been published previously [20,21,11]. The approach taken is similar
to the one introduced in [36] for the solution of boundary value problems for the
Laplace equation .

In chapter 2, we consider potential problems in two dimensions and begin with
the introduction of the necessary mathematical preliminaries . A fast multipole
algorithm is then developed for the evaluation of the potentials and forces in large -
scale systems of particles randomly distributed in a square domain . This method
requires an amount of work proportional to N to evaluate all pairwise interactions
in a system of N charges. The chapter ends with a description of an adaptive
version of the algorithm whose CPU time requirements are proportional to Nand
independent of the statistics of the charge distribution .

In Chapter 3, three -dimensional systems of particles are considered . The mathematical 
foundation of the method in this case is the theory of spherical harmonics ,

which is developed in some detail . In particular , two generalizations of the classical

addition theorem for Legend re polynomials (Theorems 3.5.1 and 3.5.2) are formulated 
and proved. They appear to have been previously unknown, and are needed

for the development of efficient translation operators which are critical features of

the algorithm . It should be noted , however , that despite the increased mathematical 
complexity of the three -dimensional case, the framework of the fast multipole

algorithm is the same as in two dimensions .
In chapter 4, we present numerical results demonstrating the actual performance

of the method , and in chapter 5, we briefly outline some applications and general-
izations .


