Chapter 1

BASIC FORMULAS FOR CLASSICAL RADIATION
PROCESSES

In many ways the classical description of a
given radiation process is the easiest one to
visualize. Usefulness rather than rigor is
the goal of this book, so the classical or
semi-classical descriptions will be used
whenever possible.

In general, classical physics applies when
the de Broglie wavelength of the radiating
particle is small compared to the typical
dimensions of the problem, i.e., when

h/p << r

here h is Planck's constant, p is the momen-
tum of the radiating particle and r is a
typical dimension of the system. Stated
another way, the uncertainty in the position
of the particle must be much less than the
characteristic dimensions of the problem.

The dimension r may refer to the effective
radius of the interaction, or to the wave-
length of the radiation. The classical domain
can also be defined in terms of the energy W
of the radiating particle and the frequency

v of the emitted radiation. Since W = pv and
v ~ v/r, where v is the velocity of the par-
ticle, we have

hy << W

This condition states that a classical par-
ticle cannot convert a significant amount of
its energy into one photon, or alternatively,
that the classical approximation holds only



Chapter One 2

for transitions in which the relative change
in the principle quantum number is small.

In this chapter the basic formulas needed
to calculate classical radiation processes
are summarized.,

1.1 The Electromagnetic Field Equations

The classical theory of radiation is based
on Maxwell's theory of the electromagnetic
field. For a given distribution of charge
density p and current density 3 the field is
determined by Maxwell's equations:

curl E = - 1 3B (1-1)
C 3t
curl B = 40 3 4+ 12E (1-2)
C c 3t
div E = 4mp (1-3)
div B = 0 (1-4)

(CGS units will be used unless specifically
stated otherwise.,) Here E and B denote the
electric and magnetic fields and c¢ denotes
the speed of light in vacuum. From these
equations it follows that the electric charge
is conserved, i.e., that it satisfies a con-
tinuity equation:

aiv 3 + %% =0 (1-5)

The motion of the particles is described by
Newton's second law

dp/dt = F (1-6)
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where 5 is the momentum of the particle and
F the Lorentz force, which for particles of
charge e and velocity v is given by

-ﬁ = e(ﬁ + X—é—é) (1-7)

The fields which are to be used in the Lorentz
equation are the external fields as well as
the fields produced by the charge itself.
This self-produced field will also affect the
motion of the particle. The reaction of the
field in general has only a small influence
on the short-term motion of the particle, so
that to a first approximation, the external
fields only may be used in (1-6).

The rate of change of the kinetic energy
W of a charge in an electromagnetic field is
given by

dwW,/dt = v-dp/dt = e V-E (1-8)

The magnetic field does not enter into this
equation since the force which the magnetic
field exerts on the charge is always perpen-
dicular to its velocity, and hence does no
work on it. The rate of increase of energy
of all the particles in a unit volume is
found by summing (1-8) over all particles in
that volume. The result is

au,/dt = 3.E (1-9)

where U, is the kinetic energy density of the
particles. In a given volume it changes with
time because of changes in the energy of the
particles, and because of the flow of par-
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ticles out of the volume. Thus
dU,/dt = 3U,/3t + div 0 = 3-E (1-10)
where a is the energy flux density vector.

For a particle distribution function £(r,p, t),
Q is given by

¢ = Wv £(r,p,t)& Vv (1-11)

Through the use of Maxwell's equations and
some vector algebra, the scalar product 3-E
can be written in the form

§.E = - _3? (B_+ B)_ giv (cE x B)  (1-12)
8 4m
Equation (1-10 can now be rewritten as

3 +(E3+Ba)+d--*+ci:'x_é=o
Bt{Up 8 : ivio 41‘1'}

(1-13)

If we intergrate (1-13) over a volume V, and
use Gauss' theorem to express the divergence
term as a surface integral, then we obtain

> (E2_+ F?) - - (B +3) o

e i {u, + = } av [@ +7%)
(1-14)

where

S = (cE x B)/4m (1-15)

is called the Poynting vector.
For a closed system in which there are no
fields at the boundary and no heat transfer
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across the boundary, the surface integral
vanishes, and the quantity on the left hand
side of equation (1-14) is conserved. The
first term in the brackets represents the
kinetic energy density, so the second term
must be the energy density of the electromag-
netic field:

Ugpy = (2 + B®)/8nm (1-16)
In general the surface integral will not van-
ish; the first term gives the rate at which
heat flows into or out of the volume. The
second term therefore gives the flux of elec-
tromagnetic energy across the boundary, and
the Poynting vector S is the amount of elec-
tromagnetic energy passing through a unit
surface area in a unit time.

The equation for the rate of change of
linear momentum can be expressed in a form
which is similar to equation (1-14). From
equations (1-6) and (1-7) it follows that the
rate of change of the momentum density of the
particles is (assuming that the particle pres-
sure is negligible):

dﬁp/dt =B + (3 x B)/c (1-17)
Using Maxwell's equations to eliminate p and

J, we may write equation (1-17) in the form
(see Jackson, 1962)

2= L,BEx3B - .97
o) I vV = T.dA 1-18
ot I { p * 4mc }a I d ( )

Here the tensor %, called Maxwell's stress
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tensor, is in dyadic notation

- —_ -

T={EE+BB-—%—E(E2 + B)}/an  (1-19)

In tensor notation, the elements are given by

1

Tij = {E; Ey + B By -~ 3 f>ij(E2 + B )}/4n

(1-20)
For a closed system the integral on the right
hand side of (1-17) vanishes, so the second
term on the left is to be identified with the
electromagnetic momentum. The electromagnetic
momentum density, i is therefore

em’

I = (E x B)/4nc (1-21)
1.2 Constant Electromaqnesic Fields

In the special case when B = 0 and all time
derivatives vanish, Maxwell'’'s equations be-
come

7 - E = 4mp (1-22)

(e}
I

0 (1-23)

<l

X

Equation (1-23) shows that the electric field
E can be expressed in terms of a scalar poten-
tial

E = - vo (1-24)
Equation (1-22) then becomes

Ve = - 4mp (1-25)

Solving this equation yields the potential
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o (ﬁ ) at ﬁ due to a charge distribution p:

® (R) = [ Efﬁ;l_EZ% (1-26)
R ~-R

For a system of p01nt charges e, located at
R the potential at R is

(1-27)

For the case when E = 0 and all time deriva-
tives vanish, the magnetic field must satisfy
the equations

I

X B

A |

4ni/c (1-29)

If we introduce the vector potential 2 which
satisfies the conditions

; X A=38 (1-30)

then the equation (1-29) becomes
v A = -4n3/c (1-32)

In analogy with (1-26) the desired solution
for & is

A ( J) = % [ Jd(R )ﬂdV (1-33)
IR, -~ R?|

For a system of point charges ei with
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. 3 -
velocities vi

A (Ry) =23 ev;/(R, - R;) (1-34)
1.3 The Dipole and Higher Moments
Consider the field produced by a system of
charges at distances large compared with the
dimensions of the system.

For R, >> Ry equation (1-27) becomes

o = e R (1-35)

R R

(o}
o}

where the neglected terms are of the second "
order or greater in the small quantity (Ri/Ro)f
The sum

is called the electric dipole moment of the

system of charges. Note that if Zei = 0, the
i

dipole moment is independent of the choice of
the origin of the coordinates. In this case
the potential of the field at large distances
is

(1-37)

wIH

®=-d-v
©)

Thus the potential of the field at large dis-
tances produced by a system of charges with
total charge equal to zero is inversely pro-
portional to the square_of the distance and
the field intensity aR; . This field has
axial symmetry around the direction of d.
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The third term in the expansion of the
potential in powers of 1/Rj is

D n n
2 R®
o)
where
= - 2 -
DaB § (3 X i xBi r, 6as)ei (1-39)

is the electric quadrupole moment of the sys-
tem and n, are the components of a unit vec-
tor along Ro’

In a similar fashion we could write the
succeeding terms of the expansion of ¢, using

the theory of spherical harmonics. For the

At a distance which is large compared with
the dimensions of the system, the vector po-
tential of the fields produced by all the
charges at the point having the radius vector

RO is

A= (MxR)/RZ (1-40)

where

M=% e.R. xv (1-41)
2¢ 71 1 7d i

is the magnetic dipole moment of the system.
1.4 The Field of a Uniformly Moving Charge

Consider a charge e moving uniformly with
velocity v along the x-axis in the laboratory
frame of reference K. The charge is at rest
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in the frame K' which is moving with a veloc-
ity v along the x-axis of K. The axes y and

z are parallel to y' and z'. At time t = 0
the origins of the two systems coincide and
the charge is at its closest distance to the
observer, who is located at the point P which
has the coordinates (0,b,0) in the K frame.

In the frame K' the observer's point P has

the coordlnates (- vt, b ,0) and is a dis-
tance R' = (b + (vt') )2 away from the charge.
In the rest frame K' the electric and magnetic
fields are

E' = eR'/R"® B' =0 (1-42)
The coordinates in the two reference

frames are related by the Lorentz transforma-
tion

x' = y(x-vt); y' =y: z' =2z; t' = y(t- BX
(1-43)

where

g = v/c ; y = (1 - B"’)"l/2 (1-44)

In terms of the coordinates of K the compo-
nents of the electric field in K' is given
by

' - eyvt 0 eb
E = ., E
(bz + szztz )3/2 y (X + szzte )3/2

(1-45)

The components of the electric and magnetic
field parallel and perpendicular to the
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direction of motion of K' relative to K are
given by the Lorentz transformation for the
fields:

B o= B B =B

Il Il I i

-— _ -0| _ -— —-)' -— - —). L d —'ﬂ

El—y(E_L B X B ) Bl Y(B_L+BXE)
(1-46)

In this case we have B' = 0 so

_ v - eyvt _
Ey = E_ = . =0
(B + y3vP 8 )%
eb

E = ‘YE! = Y B = 0

Y Yy (B + y2vR 2 )32 4
(1-47)
1

E, =0 B, = yBEy = BE,

Introducing the angle 6 between the direction
of motion and the radius vector R from the
charge e to the field point (x,v,2), we can
write the expression for E in another form

(1 - 8%)
(1 - g®sin®g)®/®

(1-48)

2 _ eR
E =22

Along the direction of motion (6 = 0,m) the
field has the smallest value, equal to

E, =e(l -g%) /R (1-49)

|

The largest field is for 6 = n/2:



Chapter One 12

E =y e/R (1-50)
Note that as the velgcity increases, the field
E, decreases, while El increases. For veloci-
ties close to the velocity of light, the de-
nominator in (1-48) is close to zero in a
narrow interval of values 6 around 6 = n/2,
with a width of the order

A8~y (1-51)

so that the electric field of a relativistic
charge is large only in a narrow range of
angles in the neighborhood of the equatorial
plane. Thus as y increases the peak fields
increase ay, but the duration of the peak
field at the field point decreases ay'l. For
large y the observer sees nearly equal trans-
verse and mutually perpendicular electric and
magnetic fields, which are indistinguishable
from a pulse of plane polarized radiation
propagating in the x direction.

1.5 The Wave Equation
In a vacuum p = 0, and j = 0 so Maxwell's
equations become

curl E = - 1 0B (1-52)
c ot
curl B = & 3E (1-53)
c 2
div E =0 (1-54)
div B = 0 (1-55)
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These equations possess non-zero solutions,
so an electromagnetic field can exist even in
the absence of any charges. Such fields are
called electromagnetic waves, since they must
necessarily by time-varying. Otherwise the
solution, given by (1-26) and (1-33) with
p=0, andj=04is ¢ =0, &4 = 0. _

In general the vector potential A and the
scalar potential ¢ are defined by the equa-
tions (cf. equations (1-24) and (1-30) for
constant fields)

B =curl 2 |, E=-=22_ 7y (1-56)

Equations (1-53) and (1-54) then become

2% - - — —
_l_aA-va+v(voA+i§Q)=0 (1-57)
& It? c 3t

2 +1 7 .22 = 1-58
VotV -2 (1-58)
It is desirable to decouple these equations.
One way to do this is to choose a, ¢, such
that they satisfy the Lorentz condition

div 2 + L 89 = ¢ (1-59)
c 3t

In this case the equations for the potentials
become

(v - %z- ai:] A=-4ni/c =0 (1-60)
[v® - L 52] @ =-4dmp = 0 (1-61)
A 2 P

It is always possible to find potentials



Chapter One 14

to satisfy the Lorentz condition, because the
vector potential is arbitrary to the extent
that the gradient of some scalar function X
can be added. Thus B is left unchanged by
the transformation

Aa A =Aa+9X (1-62)

since curl (grad X) = 0. 1In order that the
electric field be left unchanged by this
transformation we must simultaneously have

e X o
~ OoUC

The demand that A and ¢ satisfy the Lorentz
condition can now be satisfied by choosing X
appropriately. For example, if le A +
(1/c) 3w/ot = Y for one choice of A and o,
the transformations (1-62) and (1-63) can be
used to obtain new potentials satisfying the
Lorentz condition, provided

(v -2 x=-% (1-64)
Jt?

The dlfferent p0331ble ch01ces one can
make for A and ¢, leaving B and E unchanged
are called gauges, and the transformations
(1-62) and (1-63) are called gaug__transfor—
mations. The invariance of E and B under
these transformations is called gauge invari-
ance. The class of gauges satisfying (1-59)
is called the Lorentz gauge. Another import-
ant gauge is the Coulomb or transverse gauge.
Here one chooses X such that

div A = 0 (1-65)
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® =0 (1-66)

for free space. The name, Coulomb gauge, is
due to the fact that the scalar potential o

is given by the instantaneous Coulomb poten-
tial due to the charge density p in the
general case. It is also called the trans-
verse gauge because the condition (1-65)
ensures that the fields are always perpendicu-
lar to the direction of propagation.

For plane waves propagating along the + x
axis the fields are functions only of t - x/c.
Therefore if the plane wave is monochromatic,
its fields are simply periodic functions of
t - x/c:

f =Ccos w(t - %) + D sin w(t - %) (1-67)

here @ is the frequency in radians/sec and f
denotes the scalar potential ¢ or one of the
components of the vector potential A, or one
of the components of the electric or magnetic
fields. It is usually more convenient to
write the fields as the real parts of complex
expressions:

f = Re { £, exp(- iw(t - %)) } (1-68)

where fO is a constant complex number.

The period of variation of the field with
the coordinate x at a fixed time t is called
the wavelength and is here denoted by 1 :

A = 2mc/w (1-69)

The quantity
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k = w/c (1-70)

is called the wave number. For the general
case of propagation in an arbitrary direction
X is replaced by the radius vector R and the
wave number is replaced by the wave vector:

k = wn/c (1-71)

where N is the unit vector along the direction
of propagation of the wave:

n = R/R (1-72)

Rewriting (1-68) in terms of the wave
vector, we have

£=1Re { £, exp (iK-R - iwt) (1-73)

The quantity X.R is called the phase of the
wave. As long as we perform only linear
operations, we can omit the sign Re for tak-
ing the real part and operate with complex
quantities. Thus the expression for the
vector potential of a plane, monochromatic
wave can be written simply as

A= Ko exp { i (i - R - wt) 1} (1-74)
Substituting into equation (1-56) we find
E=i%XkA ; B =ik x A (1-75)

i.e., the electric and magnetic fields in a
monochromatic plane wave are perpendicular
to each other and to the direction of propa-
gation of the wave.
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1.6 Doppler Effect
Introduce the four dimensional wave vector
with components

Kk, = (&, iw/e) (1-76)

The phase of a monochromatic wave is just
the scalar product of ku with the four-vector
Xp, = (Rl iCt)l

ku X, =k « R - wt (1-77)
According to special relativity such scalar
products are invariant under Lorentz trans-
formations. Therefore for two frames in rela-
tive motion along the x-axis with velocity v
the phase of a wave is the same:

. R -t =k R - ot (1-78)
Using a Lorentz tragsformation to express R’
and t' in terms of R and t and_equating coef-
ficients of the components of R and t on both
sides of the equation we find

k'’ =k k!’ =k
Y Yy z z

k' = vy - = ) (1-79)
o = ylw - v k)

For light waves |k| = w/c, |k'| = o' /c, so
w = yw(l - g cos 0) (1-80)

where

W is the angle between the direction of
k and

6
V. It is related to the angle §'
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between k’/ and v by
tand’ = sinb/y(cosd - B) (1-81)
1.7 Polarization

For a monochromatic plane wave the electric
field E is given by

E =5, ei(K-R - ut) (1-82)
where ﬁo is a complex vector. Suppose
E, = E; + iE, = (Ely+ iEzy)y + (Ej,+ iEjy,)z

(1-83)

Then (if we suppress the spatial dependence
for the moment)

E, = E coswt + E2y sinpt

1
Y Y (1-84)
Ez = Elz coswt + E22 sinwt
Define ayr O, by means of
. Ely . Elz
sing, = sing, =
2 2 2 2
,\/Ely + Ezy WE1,® + E,,
(1-85)
The equations (1-84) become
E_ = E sin(wt + a,)
o] 1
Y Y (1-86)

Ez = Eoz sin(wt + az)
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where
— 2 =] — 2 2
= JEly +Eyy Eg, = /B ,)” + By,
(1-87)
When the phase difference a] - a m™, Or

some integral multiple thereof %he components
Ey and E, vary in phase, and the vector E
traces out a straight line in the E; - E,
plane as t varies. The wave is said to be
linearly polarized in this case. When the
phase difference = n/2, or some odd integral
multiple thereof, and E = o . E traces out
a circle as t varies. TKe wave is said to be
circularly polarized. If Ej # E, the wave
is elliptically polarized. %he wave is said
to have right hand polarization if E rotates
clockwise as seen by the observer and vice
versa for left hand polarization.

If the major axis of the ellipse described
by E, and E, makes an angle y with the Ey axis,
then

EX = E, cosg sin gt
Ex+n/2 = E, sing cos wt (1-88)
where

2 _ 2 3 _
ES = E,° + Eq, (1-89)

and tang is the ratio of the axes of the
ellipse. The angles y and £ are related to
a; and a, as follows:
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tanal =-tang tany
tang, = tanEcoty (1-90)

The case § = 0 corresponds to linear pol-
arization, the case § = n/4 to circular pol-
arization. Still another group of parameters
is useful in practice for analyzing the pol-
arization of a wave. They are the Stokes
parameters, defined by (see Chandrasekhar,
1960) :

= 2 2 2
I EOy + EOz EO

= 2 _ 2 = 2

Q Eoy EOz Eo cos2E cos2y
— _ - 2 :

U = 2EoyEozcos(a2 ql) E,° cos2g sin2y
= 3 - — 2 .

\' 2EoyEoz s:Ln(cx2 al) EO sin2Eg

{(1-91)

Linear polarization implies U = V = 0, where-
as for circular polarization Q = U = 0,

In practice the amplitudes and phases are
not constants; however, due to the high fre-
quency of vibration, we may assume that the
amplitudes and phases are constant for many
vibrations and yet change irregularly many
times during the period of observation. The
Stokes parameters may then be defined as a
time average over many vibrations:

= 2 . 2 . -
I=E,’ +E, ; etc. (1-92)

This has the consequence that, for a number
of independent waves, the Stokes parameters
for the mixture is the sum of the respective
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Stokes parameters of the separate streams:

I =X I, ; etc. (1-93)
i 1

For an arbitrarily polarized beam, there

always exists among the quantities I, Q, U

and V the inequality

I >Q + 10 + WV (1-94)

The equality holds for the case when the ratio
of the amplitudes and the difference in phase
remain constant through all fluctuations.
These are the same as the conditions for the
radiation to be elliptically polarized.

The degree of elliptical polarization I
is defined as the ratio

I= (PR +® +Wv)3/ 1 (1-95)

For circular polarization, II = V/I, whereas
for linear polarization II = Q/I.

1.8 The Lienard-Wiechert Potentials

In Section 1.5 we saw that in the general case
of non-zero charge and current density the
vector and scalar potentials satisfy the equa-
tions

- 2_° —
VA - %2 th = - 4n3/c (1-96)
1 P _
Vacp — = g.tg = - 4mp (1-97)

The solution of the inhomogeneous equations
(1-96) and (1-97) is
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f = fc + fp (1-98)
whege f represents any one of the components
of A or ¢, £, is the solution of the equation
with the right-hand side equal to zero (com-
plementary solution) and f£_ is a particular
integral of the equation. " To find the par-
ticular integral we introduce the Green's
function, G, defined by

2 - -
ve -1 S5 - 4ns®, - R)e(t - )

ot (1-99)

Note: The §-function §(x) is defined so that
5(x) = 0 for all x # 0, and §(x) » «» as x = 0,
so that the integral over a finite interval
including x = 0 is equal to unity:

b
I §(x) dx = 1
-b

where b is any non-zero number.
Therefore for any continuous function f£(x),

b
[ £(x)s(x) ax = £(0)
b

and

J g(x) 8{f(x)} ax = {g(X)/f’(X)}f

(%) =0

where f’ (x) = df(x)/dx.
Another useful equality is
iwt

& (w) =(l/2n)jm e dt
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The three-dimensional §-function é(ﬁ) is de-
fined as

5(R) = 8(x)8(y)s(z)

Physically g(ﬁo,t,ﬁ',t') represents the
gisturbance at R, caused by a point source at
R’ turned on for only an infinitesimal inter-
val at t' = t. Because of the linearity of
the field equations, the actual field will be
the sum of the fields produced by all such
point sources (see Figure 1l.1).

Figure 1l.1.

The particular solution for ¢, for example,
is then given by

9, = [FR [at G(R, t.R ,t')p(R,t)  (1-100)

Everywhere except at 'l-io =R, 5(§° -R)
= 0 so we have
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3®°G = g (1-101)

1
v G - 2L
& 32

Since in this case G should be spherically
symmetric about R’, we can assume that it is
a function only of R = |R, - R"|. Upon mak-
ing the substitution G = g/R we find

g _ 1 *g =g (1-102)
AR ? o

The solution to this equation has the form

g=f1(t-.§-t')+f2(t+§-t’) (1-103)

Since we only want a particular solution-
we need use only one of f; and f5. 1In this
situation we are clearly dealing with out-
going waves so we takg f2 = 0. Then every-
where except at R’ = R,, G has the form

G=g(t--cfi-t’)/R. (1-104)

We must now choose g such that G has the cor-
rect value at R = 0. The potential of a
point charge becomes infinite at the locus

of the charge and so do its spatial deriva-
tives, so the time derivatives in G can be
neglected at R' = ﬁo' and (1-99) becomes

VG =-4ns(R)s(t - t’) (1-105)

This is just the Poisson equation (1-25) with
¢ replaced by G and p replaced by &§(R)s(t-t').
The solution at the origin is therefore (see
equation (1-27)) G = 5(t - t')/R and
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g = &8(t - R _ t’ ). The Green's function for

this problem is
G =5(t - g - t')/R (1-106)

The general solutions of equations (1-96) and
(1-97) are

s(t - R -t )p(R,t)

o = - at’ av’ + g
(1-107)
. s(t -2 - ¢)IR .t .
A= dt’ av + A
R (¢}
(1-108)

where Pq and A are solutions of the homo-
geneous wave equatlon. These solutions are
determlned by the initial or boundary condi-
tions. lR - R | is the distance between
the source coordlnate R’ and the point Ro at
which the field is observed. The potentials
are sometimes called the retarded potentials
because they exhibit the causal behavior
associated with a wave disturbance. The
effect observed at the point ﬁo at time t is
due to the behavior of the current or charge
density at an earller or retarded time t' =
t - R/c at the point R’

For a point charge w1th a position vector
r(t ) and velocity vector v(t ) the charge
and current densities are given by

o(®,t') = e 8{R - z(t')]} (1-109)
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SR L) =e v s{R - ()] (1-110)

Upon substituting these expressions into
equations (1-107) and (1-108) and performing
the integrations, using the properties of the
§-function given in the note following equa-
tion (1-99) the potentials are found to be
(see Jackson, 1962):

¥ {e/KR}re (1-111)

t

A {eG/KR}ret (1-112)

where { }r means that the quantity inside
the brackets is to be evaluated at the re-
tarded time t’ = t - R/c, and

k=1-% -3 (1-113)

A = R/R (1-114)
For non-relativistic motion ¥ » 1. For rela-
tivistic motion K becomes small for some
angles, which implies large potentials.

By expanding the charge and current density
into monochromatic waves, the potentials can
be expressed in terms of Fourier components:

e ® o iw(t+R/c)
plw) =5-[ % at (1-115)
and iw(t+R/c)

Aw) = 57 [ at (1-116)
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where
e -iwt

p(t) = f vl(w)e dw, etc. (1-117)
-}

In the case of periodic motion an expan-
sion in Fourier series yields:

iswg (t+R/c)
e

= 2 T _

o(s) === [ = at (1-118)
(@]

and

- . = iswg (t+R/C)

A(s) = 2& [ee at (1-119)

T o R

where
55 —iswot

w(t) = Re { Zﬁ p(s)e } (1-120)
S:

and T is the fundamental period of the motion
(= 2n/wg) -

To determine the electric and magnetic
fields, we need to differentiate the poten-
tials with respect to position and time (see
equation (1-56)). To do this it is simpler
to work with the integral expressions for the
potentials (1-107) and (1-108). Using the
relationships

dn _ nx (nxg) _
T L = ] (1-121)

and
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1 d —a® _ 2.8 _R& 2 _
E.EET (xR) B Bon S0 B (1-122)
one finds
- = _ rAh-8)(1-8%)
E(R_,t) =
(Rg,t) =el pry ]ret
+e D o) « =
= [KsR { (n-g) B}]re
B=nxE (1-123)

The fields consist of two types. The first
depends only on the velocity of the particle
and not its acceleration and varies at large
distances as 1/R2. The second depends on the
acceleration and varies as 1/R at large dis-
tances. The ratio of the two types of fields
is

/E __C (l- 2) C_T_ 1 2
IEvel acc| ~ R 5 ~ R, (1-8%)
~ ﬁL (1-g2) (1-124)
o

where T is the characteristic time for changes
in the system and )\ is the characteristic
wavelength of radiation from the system. Thus
at distances Ry large compared to the wave-
length of the radiation, Evel/Eacc << 1, the
electric and magnetic fields are given by

?E.(E,t) = % [?1 x { (n-g) x —B'}:]r

k3 R et
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B(R,t) = n x E (1-125)

Since the point of observaticn is assumed
to be at a large distance compared with the
region where the charge changes its direction,
(R, >> R'), the vectordﬁ is approximately in
the same direction as Ro’ and

AT d

neR
R~ R, (1 - 2:E (1-126)
o

To determine the potentials from equations
(1-111) and (1-112) or the fields from equa-
tion (1-125), we can neglect ﬁoﬁ'/Ro compared
with unity in the denominator, but not in
evaluating the expressions at the retarded
time. Whether or not this term can be neglec-
ted in that calculation depends not on the
relative values of ﬁo and n-R’, but on how
much the velocity and acceleration changes in
the time n-R’/c.

Thus when the point of observation is at
a large distance compared with the region
where the charge carries out its motion, the
potentials can be written in the form

e
0 = & l———] R, R
O 1 - n-g(t’) t'=t - — + (1-127)
C C
and
- = 9_ g N —
A R [ ] noR’

A R
o 1 -n-g(t') t'=1¢t - —-g- + = (1-128)

The Fourier components become (see equa-
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tions (1-115), (1-116))

ikR ifwt=k°R’ ]
e

- e o _
plw) = (ZnRo)e J at (1-129)
and
- ikR - i[wt—]—‘; °§’ ]
A(w) = (—==—)e  ° e at  (1-130)
w 2'rrRO I B

1.9 Dipole Radiation
The term n-R’ /c in the retarded time can be
neglected if the distribution of charge
changes by a negligible amount during that
time.

If r is the characteristic dimension of
the system then

AR’ /c ~ r/C (1-131)

If the time scale for an appreciable change
indposition of the charge is T, then the term
fi-R’ /c will be small if

r << cT (1-132)

But T is related to the frequency of the radi-
ation from the system by T ~ 1/v, so the con-
dition (1-132) can also be written as

r << c/v = )\ (1-133)

That is, the dimensions of the system must be
small compared to the wavelength of the radi-
ation. From the definition of (1-70) of the
wave number, this is also equivalent to
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kR’ << 1 (1-134)

The condition for the neglect of the term

n- R /c can also be expressed in terms of the
velocity vV of the charges, which must be of
order r/t, from which it follows, using
(1-133) that

v << C (1-135)

i.e., the motion should be non-relativistic.

This approximation is called the dipole
approximation and the radiation in this case
is called dipole radiation. In this approxi-
mation we can set K = 1, R = R, and evaluate
all quantities at t' = —Ro/c, which is a
considerable simplification since Ry is inde~
pendent of t'. For all practical purposes we
can drop the reference to the retarded time
when working in the dipole approximation.

The expression for the electric field then
takes the form

E=S8x (dx B)/cR (1-136)

For a number of charges

!
Il

%x(aneB)=/ﬁx(nxd)

-1
R PR (1-137)

where d is the dipole moment of the system
(see equation (1-36)). Note that the radia-
tion is determined by the second derivative
of the dipole moment, hence the name "dipole
approximation"

The power radiated is obtained from
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Poynting's vector (see equation (1-15))

- (.TE’X-é) “I\2 .2 ?1
S =c¢-= (d)° sin°®@ ——— (1-138)
4 4mc® R?

where @ is the angle between d and 0 and d =
ld] .

The power radiated per unit solid angle is
given by

sin®®

dp - P(Q) = R S.h = (4)2
dan

Upon integration of equation (1-139) over
solid angle dQ = 2m sin® d®, the total power
radiated is found to be
aw 2(4)?

at = P = =& (1-140)

This is Larmor's formula for the radiation
from a non-relativistic charge. Note that
the angular distribution of the radiation is
symmetric about the direction of the accelera-
tion of the charge and independent of its
velocity (see equation (1-139) and Figure 1.2).
To obtain information about the spectrum
of dipole radiation, we need the Fourier com-
ponents of dP/dQ. We cannot calculate this,
but we can calculate the energy dw/dQ radi-
ated per unit solid angle over the entire
time during which the charge is accelerated:

aw = J“ (ap/dQ)dat = (cR® /4n) jE?dt (1-141)
daQ

by using Parseval's theorem:
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—
n

Figure 1.2, The angular distribution of the
power radiated by a non-relativistic charge
undergoing an acceleration a. The power unit
solid angle radiated in the direction of the
vector N is proportional to the radius vec-
tor as indicated in the figure.
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[ #(at = ar [ [E@) | dw (1-142)
-0 (@]

Therefore the amount of energy radiated per
solid angle is

aw  _ 2 2
= __ = CcR E d -143
c j‘ |E(w) ] W (1-143)

The energy per unit frequency interval is
therefore

dwlw) _ g |E(w)]? (1-144)
an

where

B(w) = x BX 3W)
c*R

(1-145)

Substituting (1-145) into (1-144) yields

]

aw(w)/dQ = [d(w) P sinfe/c
= ot &£ (w) sinfe/ (1-146)

since d(w) = w®*d(w). Integrating (1-146)
over all angles yields

Ww(w) = 8n(d(w))?/3c® = 8m uf & (w)/3c® (1-147)

For periodic motion Parseval's theorem takes
the form

2 7 - 7 2 1-14
2 IO E? (t)dt s§1 |E | ( 8)
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sSO

7 (AW_/dQ) = (dg)° sinfe/8nc? (1-149)

The classical formula for dipole radia-
tion can be used to calculate low frequency
radiation resulting from the acceleration .of
a charged particle (see Chapters 4 and 5).

1.10 Radiation from a Relativistic Charged
Particle

In the non-relativistic case we derived a
simple expression for the total power radi-
ated by an accelerated charge (see equation
(1-140))

2.

Of course this formula does not apply when
the particle motion is relativistic. However
in the frame of reference where the particle
is at rest we certainly have v << ¢ and
(1-150) applies. In this reference frame the
particle radiates in time dt the energy

2e®
3c°

In this reference frame the momentum radiated
is zero:

aw = ( ) dt (1-151)

dp=[T-nardt=0 (1-152)

(see (1-19) and (1-136)). This is due to
the symmetry of dipole radiation.
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Writing equations (1-151) and (1-152) in
four-vector notation we have

dp; = (2e® /3c) (duk/ds)2 ax; (1-153)
where

u, = dxi/ds = yvi/c (1-154)
ds = ¢ dt/y (1-155)
vi = (v, ic) (1-156)

Since dp; and dx; are both four-vectors, the
quantity relating them must be a scalar and
therefore a Lorentz invariant:

(2 e®/3c) (duk/ds)2 = invariant (1-157)

The total power radiated in an arbitrary
reference frame is found by noting that

dp, = i dWw/c ; dx, = i c dt (1-158)
SO
dp, /dx, = (1/c) dw/dt

(2 €2 /3c®)y? (duy/at)? (1-159)

]

Since this quantity is a Lorentz invariant we
have that the total power radiated in any
frame of reference (arbitrary velocity) is
given by

aw/dt = (2 €®/3c)y? (duy/dat)?
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- (22/30)¥ (- (B x 87} (1-160)

In terms of forces, note that for a particle
of mass m:

du/ds = (y/mc® )dp/dt (1-161)
du, /ds = (y/mcf) dw/dt = y dy/dt (1-162)

In the case of a particle in electric and mag-
netic fields

du/ds = (ey/mc®) (E + 8 x B) (1-163)
dy, /ds = ey/mn?) (8 - E) (1-164)

(see equations (1-7) and (1-8)).

—

aw/at = (2 2 </3)y* {|E + BxB|* - |8-E[?}
(1-165)
where E, B refer to external fields, and

ro=¢e/m . (1-166)
Equation (1-165) shows that the power radi-
ated is inversely proportional to the square
of the mass of the radiating particle, so
that electrons radiate much more energy than
protons in given electric and magnetic fields.
In the case of a particle moving parallel
to the magnetic field and experiencing accel-
eration by an electric field which is parallel
to the magnetic field,

aw/dt = (2 r%c/3)E°
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= (2 rf)c/3e'<?)(d£>'/dt)2 (1-167)

In the case of motion in a magnetic field,
with the electric field equal to zero,

aw/dt (2 r%c/3)y? 83 B

= (2 r3c/3¢? )v? (dp/at)? (1-168)

where g, is the component of E perpendicular
to the magnetic field. For relativistic par-
ticles these losses are proportional to the
square of the energy and can become very
large.

Thus for comparable forces, the power
radiated by relativistic charges is a factor
v? less for acceleration parallel to the ve-
locity than for acceleration perpendicular to
the velocity.

In order to determine the angular distri-
bution of the radiation, we must substitute
the fields given by equation (1-125) into
equation (1-15):

dp(t)/dQ = cEE R /4n
= (e2/4nc) {|Ax [(A-B)xp 12 /K" )
t' + R=¢
C
(1-169)

This is the energy per unit solid angle per
unit time detected at the observer at time t
due to radiation emitted by the charge at a
time t’ = t - R/c. To get the power radiated
per unit solid angle in terms of the charge’s
time, we must multiply equation (1-169) by



Basic Formulas For Classical Radiation 39
Processes

the factor (dt/dt’) to take into account the
relativistic effects caused by the charge's
motion toward or away from the observer.
From equation (1-126)

A

at/dt’ = 1 - n.g = (1-170)

In the ultrarelativistic case B ~ 1, and
1l - 8 << 1, so the terms in the denominator
become small for n- B ~ B i.e., for radiation
in the dlrectlon of B If 0 denotes the angle
between n and § then for small 6

2
K=1-Bcosem1-g+«5—%— (1-171)

For 8 ~ 1, the expansion on the right will be
small if the third term is of the order of
the first two, i.e., if

6° ~ 2(1-8)/B ~ (148)(1-g) = 1/+°
or
6 ~ 1/y (1-172)

Thus most of the radiation is confined to a
narrow cone of half-angle ~ Y"l around the
direction of the velocity of the particle.

When the velocity and acceleration of the
particle are parallel, the intensity distri-
bution is

dpr(t’)/da0 = (e®/4mc)p® sin?8/(l-g cosB)®
(1-173)

For B << 1, this reduces to the Larmor result.
As the speed of the charge approaches the
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speed of light
dP(t’)/dQB:1 (8e® /mc)yB 8% (v8)3/(1+20°)°
(1-174)

As the velocity of the charge increases, the
“"figure eight" distribution characteristic of
radiation from a non-relativistic charge is
tipped forward and the peak intensity in-
creases in magnitude proportional y8.

Integrating equation (1-174) over all
angles, we obtainﬂthe“result given in equa-
tion (1-160) for g x 8 = O.

when the velocity and the acceleration
are perpendicular

@ (t' )/an = (e /4nc)
. {Ya (1- gcosd)?® - sin® gcos® @ )
¥® (1- gcosd)®

(1-175)

where @ is the azimuthal angle of n_relative
to the plane passing through g and §. Again
this reduces to the Larmor result for small
B, since 1 - sin2g coszw = sin%6. 1In the
ultrarelativistic case (1-175) becomes

ap (t’' )/dn = (2e® /nc)@?

R {(l*'f 6 )2 - 4vy® 6% cos® )
(1 + y?6®)° (1-176)

The radiation pattern for the case 9w = 0 and
acceleration produced by the magnetic field
(see Chapter 3) is shown below in Figure 1l.3.
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Figures 1.2 and 1.3, or equations (1-139),
(1-173) and (1-176) illustrate how the radi-
ation pattern from an accelerated charge
changes as its velocity increases. For non-
relativistic motion the angular distribution
is independent of the velocity vector and is
distributed over a wide angle. For relativ-
istic motion the radiation is greatly enhanced
in the direction of motion and is confined to
a very narrow cone about that direction.

1 U U ~ 8

Figure 1.3. A relativistic particle spiraling
in a magnetic field emitting synchrotron
radiation with the angular pattern as indi-
cated.

For a charged particle undergoing arbi-
trary ultra-relativistic motion the radiation
emitted at any instant can be thought of as a
coherent superposition of contributions com-
ing from the components of acceleration paral-
lel and perpendicular to the velocity. How-
ever, equations (1-167) and (1-168) show that,
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for comparable parallel and perpendicular
forces the radiation from the parallel com-
ponent is negligible (of order l/Y2) compared
to that from the perpendicular component.
Therefore the radiation emitted by ultrarela-
tivistic particles is very nearly the same as
that emitted by a particle moving instantan- .
eously along the arc of a circular path whose
radius of curvature is given by

ro = c?/ﬁl (1-177)

where Gl is the perpendicular component of
the acceleration. As discussed above the
radiation is concentrated primarily within a
cone whose aperture angle A6 is approximately
equal to 2/y about the direction of the in-
stantaneous velocity of the particle. With-
in the limits of the angle A8 the electron
moves in the direction of the observer for a
time

At! ~ r, A8/c ~ 2r /ey (1-178)

During this time the electron moves a distance
vAt’ in the direction of the observer, so the

radiation pulse contracts the length vat'.

As a result, the observed length of the pulse

is of the order

cAt = (c-v)at’ (1-179)
and its duration is
At = At (1-8) ~ At /4P (1-180)

The observed radiation spectrum will
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therefore contain frequencies up to a maximum
frequency uy:

3
wy, ~ 1/At ~ cy /rc (1-181)

For frequencies much greater than this the
exponential term in the Fourier transform of
the fields oscillates rapidly and the slowly
varying parts of the integral interfere de-
structively so that the integral becomes neg-
ligibly small (see equation (1-183)).

In the case of circular motion in a mag-
netic field

r, = m,c®g y/eB ~ cy/wg (1-182)

where wp = eB/mgc is the electron cyclotron
frequency. The observed radiation spectrum
will consist of harmonics of the frequency
wg/Y extending up to ~ Y wg.

The equation describing the spectral dis-
tribution of the radiation from an accelerated
charge can be obtained from equations (1-115),
(1-125), (1-126), (1-144), and (1-170):

aw(w) _ & I“ nx [(n-) x 6]
an 4R ¢ K2

-0

‘ 2
iw(t’ - n-R’ '

. lult - nR/e) ., (1-183)

This expression can be integrated by parts
using the relationship
n x (n-g) x g - _d {ﬁ X (an)}

(1 - f-p)? at’ 1 - n.g
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The result is

aw(w)/dQ = (e?u® /4n®c)

In the case of periodic motion
aw,/tdn = dplda = (e®*w®/8nc)

n . - isw (t—a°§'/c) 2
- IIT % x (Rxple ° at’ |
o

(1-183"")

1.11 The Influence of Cosmic Plasma on_ the
Propagation and Emission of Electromagnetic
Waves

Up to this point it has been assumed that the
radiation is emitted and propagated in a vac-
uum. Usually, this is a reasonable approxi-
mation to the actual situation. Sometimes,
however, the medium radically influences the
character of the electromagnetic radiation,
with regard to both the emission and propaga-
tion of the waves.

Radiation processes in a dielectric medium
can be discussed in terms of the formalism
developed for radiation in a vacuum by making
the substitutions

) c/nr e e/nr (1-184)

where n.. is the index of refraction, which

b
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for an isotropic plasma and for frequencies
much greater than the frequency of collisions
between particles is (Alfven and Falthammar,
1963, Ginzburg, 1964)

ﬂi(w) =1 - (w;/hf) (1-185)
1 1
wy = (4m N e®/m )" =(3x10° Nerirad/sec
(1-186)
(Ne = electron number density).

That the transformation (1-184) is the correct
one follows from the form of Maxwell's equa-
tions for a dielectric medium:

GoB = 4mp

X B = 4ﬂ3/c + aﬁ/cat (1-187)
Since D = n2 E, it is evident that the sub-
stitution (1-184) will cast the equations
into a form identical with the form of Max-
well's equations for a vacuum.

The angular and frequency distribution of
radiation emitted by a charged particle in
motion is given by

<

aw(w) /a0 = (e® v’ n./4n°c)

iw(t-n n-R(t')/c) |°
dt

- [ B x (nxBle
(1-188)

when @ < w,., n. is imaginary and the radia-

P r
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tion is exponentially damped.

The index of refraction can also have an
imaginary component if absorption is occur-
ring in the plasma. Denoting the imaginary
component due to absorption by u:

n =n_ +1iy (1-189)

The electric field produced by an accelerated
charge is

- - - iw(t-n_.z/c)
E=Eje wwz/c x (1-190)

for a wave propagated in the z-direction. 1In
general the index of refraction and the
absorption coefficient depend on the proper-
ties of the medium (density, temperature,
magnetic field) and the frequency of the radi-
ation. The determination of the exact nature
of the dependence is a complex problem to
which entire books are devoted (see e.g.
Ginzburg, 1964). The general method of com-
puting the absorption coefficient from the
properties of the plasma is discussed in
Chapter 2.

If the plasma has a magnetic field B, and
if absorption is unimportant, index of refrac-
tion takes the form

o,X
1 2vV(1 - V)

2(1-V)-U sin®q+(U®P sin*q+4U(1-V)? coszcn);i
vV = (wp/w)a U= (wB/w)2 (1-191)

Here o is the angle between the direction of
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propagation of the wave and the magnetic field.
The subscripts o and x refer to the two pos-
sible modes of propagation, the ordinary and
the extraordinary modes, corresponding to
taking the positive and negative square root,
respectively, in the denominator of (1-191).
When B = 0, equation (1-191) reduces to
the simple form (1-185) and there is no dis-
tinction between the o~ and x-modes. For
B # 0 and propagation along the magnetic field
(o = 0), (1-191) becomes

By, x = 1l - (w;/w(ijB)) (1-192)

Using (1-192) in the wave equation shows that
the o- and x-modes correspond to circularly
polarized waves rotating clockwise (o) and
counterclockwise (x) as they propagate along
the field.

For waves propagating perpendicular to
the magnetic field (a = n/2),

2 _ (2,2
no=1 (wp/w)

Il

n2

=1 - (w;(wg- w;)/wz(wz—w;- o?))  (1-193)

The o-mode is polarized parallel to the mag-
netic field. Thus the magnetic field has no
effect on the motion of the charges and the
velocity of propagation is independent of th
strength of the magnetic field. The x-mode
is polarized perpendicular to the field so
its propagation velocity does depend on the
field strength.
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For most cases of interest the frequency
of the wave is much greater than the electron
cyclotron frequency (w >> wB) and the expres-
sion (1-191) can be simplified. 1In the limit
where

1 - (w;/we) >> wB sin® a/w cosa (1-194)

(1-191) reduces to

o]
Il

o,x =1 - (wzp/w(w + wg)) (1-195)

where wp, = wp COSA. Equation (1-195) is the
same as equation (1-192) for propagation along
the magnetic field (longitudingal propagation)
with wg replaced by wy,. Hence the propaga-
tion is called "quasi-longitudinal". This
approximation is adequate to describe most of
the situations encountered in astrophysics.

The propagation of waves in a magneto-
active plasma generally depends strongly on
the intensity and direction of the magnetic
field. However, except in the vicinity of
stars, the magnetic fields are sufficiently
weak that the frequency of the radiation is
much greater than the electron cyclotron fre-
quency:

w >> wg (1-196)

In this limit the plasma can be considered
practically isotropic, with the index of re-
fraction given by (1-185). However, in the
consideration of the polarization of the wave,
even a small anisotropy can be important.
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This is the basis of the Faraday effect, which
is an important tool for measuring cosmic
magnetic fields.

Consider a wave of amplitude A which is
linearly polarized in the y-direction. This
wave can be decomposed into two circularly
polarized waves with opposite directions of
rotation. At the origin we have

E=E_ +E =4 o0t 4 peiut

o - (1-197)

In the quasi-longitudinal approximation the
two waves propagate at different velocities
given by (1-195) so after propagation through
a distance R the waves are described by

_'t iUJ (t+no’ XR/C)

Eo,x = Ae (1-198)

and the composite wave by

AeiA/Z (eiw(t+s)+ e—iw(t+s))

E = (1-199)
where

s = (ng+ n.) (wR/c)

A = (ng- n.) (wR/c) (1-200)

Thus after traveling a distance R cm the
wave is still linearly polarized but has been
rotated through an angle

o= A/2 = w R cosa/2u° ¢
p (1-201)

2.4%x10* N,B R cosa/V° rad.
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(v = w/2m).

In general, B, Ng and o will not be constant
along the line of sight, so the product
N,BRcosa must be replaced by the integral

[ NgBcosa dR, taken along the line of sight.
If we express the frequency in terms of the
wavelength of the radiation in meters, A\
and dR in parsecs, then

’

m

¥ = (8.1x10° [ NgB cosa dR)®Xy = Rp\y (1-202)

where Ry is called the rotation measure.

This integral cannot be determined from a
single observation of the position angle of
the plane of polarization because there is
almost never any way to estimate the position
angle of the plane of polarization at the
source, and because there is no way to dis-
tinguish between values of { that differ by
180©., It is necessary to observe the source
at several frequencies, and then to plot the
observed position angles as a function of i/ .
The straight line fit to these points then
gives the rotation measure.

Observations of the polarization of radio
sources shows that the magnitudes of the Fara-
day rotation are on the average much smaller
for high latitude extragalactic radio sources
than for low latitude sources. Thus it seems
that the major part of the rotation occurs
within the galaxy rather than in the sources
themselves or in the intergalactic medium.

In addition it has been observed (Morris and
Berge, 1964) that the sense of Faraday rota-
tion changes sign from one side of the
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galactic plane to the other. This indicates
that, in the neighborhood of the sun, the
magnetic field changes sign when crossing the
galactic plane. Magnetic fields calculated
from the absolute value of the rotation mea-
sure range from 10—6 gauss to a few times
10-> gauss, depending on the assumed values
of Ng and R, the distribution of electron
density over the field structures, and whether
the field is predominantly uniform in direc-
tion, or is composed of a number of anti-
parallel filaments, or is rather irregular.

The radiation from cosmic radio sources
can be de-polarized if the rotation measure
is not the same for all the elements of the
source within the observing beamwidth. These
effects are discussed by Gardner and Whiteoak
(1966) and Burn (1966).
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Problems

1.1. The redshift z = A\/\ = 2 for receding
galaxies corresponds to what value of v/c?

l.2. Show that, for a source with redshift
z, the observed flux density F(v) is related
to the emitted flux density F’' (v) by

F(v) = F{(1+z)v]/(1+2)
and the total fluxes are related by
F = F (142)3

1.3. A quarter-wave plate and a polariza-
tion filter are placed along the path of a
beam of monochromatic light. Before entering
the quarter-wave plate, the light has right-
handed elliptical polarization; the ratio of
the major to the minor axes is 4:1. No light
is transmitted through the polarization filter.
Show in a diagram the orientation of the axes
of the plate and of the transmission axis of
the filter with respect to the axes of the
ellipse. Compute the angle formed by the
transmission axis of the filter with the y-
axis.

l.4. Magnetic dipole radiation is described
by the same formulas as electric dipole radia-
tion, with the electric dipole moment replaced
by the magnetic dipole moment, and the elec-
tric vector rotated by 90°. Compute the radi-
ation from a rotating magnetic star in which
the magnetic moment is perpendicular to the
axis of rotation. In particular if the
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magnetic moment is M and the angular velocity
of rotation is w, show that:

(a) the angular distribution of the radi-
ation averaged over the period of the rota-
tion is

dp/dq = M u* (l+cos®9)/8nc’

where 6 is the angle between the direction of
observation and the axis of rotation:;

(b) the total radiation is
P = 2M y* /3c°

(c) the radiation along the axis of rota-
tion is circularly polarized.

1.5. In some pulsar models (see, e.g., P.
Sturrock, Ap. J. 164, 529, (1971) electrons
are accelerated to ultrarelativistic speeds
in a narrow cone near the surface of a neu-
tron star and move away from the star along
magnetic field lines. Since the lines are
curved, they will emit "curvature radiation"
as discussed in Section 1.10. Assuming a
dipole configuration and considering only
small angles near the pole, find the total
power emitted and the peak frequency for the
radiation from an electron of energy ymc“.

l.6. Show that, if the index of refraction
of the interstellar medium can be described
by equation (1-185), then an infinitely sharp
pulse of radiation emitted by a pulsar at a
distance R from the earth will be smeared out
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at the receiver over a time

At = (Rd;/cws)Aw sec

where Aw is the bandwidth of the receiver.

Assume that w >> w,, and the density is con-
stant between the source and the observer.



