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Part I

Basic Concepts and Models





1 Spiking Neurons

Wulfram Gerstner

An organism which interacts with its environment must be capable of re-
ceiving sensory input from the environment. It has to process the sensory
information, recognize food sources or predators, and take appropriate ac-
tions. The difficulty of these tasks is appreciated, if one tries to program a
small robot to do the same thing: It turns out to be a challenging endeavor.
Yet animals perform these tasks with apparent ease.

Their astonishingly good performance is due to a neural system or ‘brain’
which has been optimized over the time courses of evolution. Even though
a lot of detailed information about neurons and their connections is avail-
able by now, one of the fundamental questions of neuroscience is unsolved:
What is the code used by the neurons? Do neurons communicate by a ‘rate
code’ or a ‘pulse code’?

In the first part of this chapter, different potential coding schemes are dis-
cussed. Various interpretations of rate coding are contrasted with some
pulse coding schemes. Pulse coded neural networks require appropriate
neuron models. In the second part of the chapter, several neuron models
that are used throughout the book are introduced. Special emphasis has
been put on spiking neurons models of the ‘integrate-and-fire’ type, but
the Hodgkin-Huxley model, compartmental models, and rate models are
reviewed as well.

1.1 The Problem of Neural Coding

1.1.1 Motivation

Over the past hundred years, biological research has accumulated an enor-
mous amount of detailed knowledge about the structure and the function
of the brain see, e.g., [Kandel and Schwartz, 1991]. The elementary pro-
cessing units in the brain are neurons which are connected to each other in
an intricate pattern. A portion of such a network of neurons in the mam-
malian cortex is sketched in Figure 1.1. It is a reproduction of a famous
drawing by Ramón y Cajal, one of the pioneers of neuroscience around the
turn of the century. We can distinguish several neurons with triangular
or circular cell bodies and long wire-like extensions. This drawing gives a
glimpse of the network of neurons in the cortex. Only a few of the neurons
present in the sample have been made visible by the staining procedure. In
reality the neurons and their connections form a dense network with more
than 104 cell bodies and several kilometers of ‘wires’ per cubic millimeter.
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Figure 1.1. This reproduction of a drawing of Ramón y Cajal shows a few neurons
in the cortex. Only a small portion of the neurons are shown; the density of neurons
is in reality much higher. Cell b is a nice example of a pyramidal cell with a triangu-
larly shaped cell body. Dendrites, which leave the cell laterally and upwards, can
be recognized by their rough surface. The axon extends downwards with a few
branches to the left and right. From Ramón y Cajal.

In other areas of the brain the wiring pattern looks different. In all areas,
however, neurons of different sizes and shapes form the basic elements.

A typical neuron has three parts, called dendritic tree, soma, and axon;
see Figure 1.2. Roughly speaking, signals from other neurons arrive onto
the dendritic tree and are transmitted to the soma and the axon. The tran-
sition zone between the soma and the axon is of special interest. In this
area the the essential non-linear processing step occurs. If the total exci-
tation caused by the input is sufficient, an output signal is emitted which
is propagated along the axon and its branches to other neurons. The junc-
tion between an axonal branch and the dendrite (or the soma) of a receiving
neuron is called a synapse. It is common to refer to a sending neuron as the
presynaptic neuron and to the receiving neuron as a postsynaptic neuron.
A neuron in the cortex often makes connections to more than 104 postsy-
naptic neurons. Many of its axonal branches end in the direct neighbor-
hood of the neuron, but the axon can also stretch over several millimeters
and connect to neurons in other areas of the brain.

So far, we have stated that neurons transmit signals along the axon to thou-
sands of other neurons – but what do these signals look like? The neuronal
signals can be observed by placing a fine electrode close to the soma or
axon of a neuron; see Figure 1.2. The voltage trace in a typical record-
ing shows a sequence of short pulses, called action potentials or spikes. A
chain of pulses emitted by a single neuron is usually called a spike train
– a sequence of stereotyped events which occur at regular or irregular in-
tervals. The duration of an action potential is typically in the range of 1-2
ms. Since all spikes of a given neuron look alike, the form of the action
potential does not carry any information. Rather, it is the number and the
timing of spikes which matter.

Throughout this book, we will refer to the moment when a given neuron
emits an action potential as the firing time of that neuron. The firing time
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Figure 1.2. A single neuron. Dendrite, soma, and axon can be clearly distinguished.
The inset shows an example of a neuronal action potential (schematic). Neuron
drawing after Ramón y Cajal. The action potential is a short voltage pulse of 1-2
ms duration.

of neuron i will be denoted by t(f)i . The spike train of a neuron i is fully
characterized by the set of firing times

Fi = ft(1)i ; : : : ; t
(n)
i g (1.1)

where t(n)i is the most recent spike of neuron i.

In an experimental setting, firing times are measured with some resolu-
tion �t. A spike train may be described as a sequence of ones and zeros
for ‘spike’ and ‘no spike’ at times �t; 2�t : : :, respectively. The choice of
ones and zeros is, of course arbitrary. We may just as well take the number
1=�t instead of unity to denote the occurrence of a spike. With this defi-
nition, the spike train of a neuron i corresponds to a sequence of numbers
Si(�t); Si(2�t); : : : with

Si(n�t) =

�
1=�t if n�t � t

(f)
i < (n+ 1)�t

0 otherwise:
(1.2)

Formally we may take the limit �t ! 0 and write the spike train as a
sequence of �-functions

Si(t) =

nX
t
(f)
i
2Fi

�(t� t
(f)
i ) (1.3)

where �(:) denotes the Dirac � function with �(s) = 0 for s 6= 0 andR1
�1 �(s)ds = 1.

So far we have focused on the spike train of a single neuron. Since there
are so many neurons in the brain, thousands of spike trains are emitted
constantly by different neurons; see Figure 1.3. What is the information
contained in such a spatio-temporal pattern of pulses? What is the code
used by the neurons to transmit that information? How might other neu-
rons decode the signal? As external observers, can we read the code, and
understand the message of the neuronal activity pattern?
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Figure 1.3. Spatio-temporal pulse pattern. The spikes of 30 neurons (A1-E6, plotted
along the vertical axes) are shown as a function of time (horizontal axis, total time
is 4 000 ms). The firing times are marked by short vertical bars. From [Krüger and
Aiple, 1988].

At present, a definite answer to these questions is not known. Traditionally
it has been thought that most, if not all, of the relevant information was
contained in the mean firing rate of the neuron. The firing rate is usually
defined by a temporal average; see Figure 1.4. The experimentalist sets
a time window of, let us say, T = 100ms or T = 500ms and counts the
number of spikes nsp(T ) that occur in this time window. Division by the
length of the time window gives the mean firing rate

� =
nsp(T )

T
(1.4)

usually reported in units of s�1 or Hz.

The concept of mean firing rates has been successfully applied during the
last 80 years. It dates back to the pioneering work of Adrian [Adrian, 1926,
1928] who showed that the firing rate of stretch receptor neurons in the
muscles is related to the force applied to the muscle. In the following
decades, measurement of firing rates became a standard tool for describ-
ing the properties of all types of sensory or cortical neurons [Mountcastle,
1957; Hubel and Wiesel, 1959], partly due to the relative ease of measur-
ing rates experimentally. It is clear, however, that an approach based on
a temporal average neglects all the information possibly contained in the
exact timing of the spikes. It is therefore no surprise that the firing rate
concept has been repeatedly criticized and is subject of an ongoing debate
[Abeles, 1994; Bialek et al., 1991; Hopfield, 1995; Shadlen and Newsome,
1994; Softky, 1995; Rieke et al., 1996].



1.1 The Problem of Neural Coding 7

During recent years, more and more experimental evidence has accumu-
lated which suggests that a straightforward firing rate concept based on
temporal averaging may be too simple for describing brain activity. One of
the main arguments is that reaction times in behavioral experiments are of-
ten too short to allow slow temporal averaging [Thorpe et al., 1996]. More-
over, in experiments on a visual neuron in the fly, it was possible to ‘read
the neural code’ and reconstruct the time-dependent stimulus based on
the neurons firing times [Bialek et al., 1991]. There is evidence of precise
temporal correlations between pulses of different neurons [Abeles, 1994;
Lestienne, 1996] and stimulus dependent synchronization of the activity in
populations of neurons [Eckhorn et al., 1988; Gray and Singer, 1989; Gray
et al., 1989; Engel et al., 1991; Singer, 1994]. Most of these data are incon-
sistent with a naı̈ve concept of coding by mean firing rates where the exact
timing of spikes should play no role. In this book we will explore some of
the possibilities of coding by pulses. Before we can do so, we have to lay
the foundations which will be the topic of this and the next three chapters.

We start in the next subsection with a review of some potential coding
schemes. What exactly is a pulse code – and what is a rate code? We then
turn to models of spiking neurons (Section 2). How can we describe the
process of spike generation? What is the effect of a spike on a postsynaptic
neuron? Can we mathematically analyze models of spiking neurons?

The following Chapters 2 and 3 in the ‘Foundation’ part of the book will
focus on the computational power of spiking neurons and their hardware
implementations. Can we build a Turing machine with spiking neurons?
How many elements do we need? How fast is the processing? How can
pulses be generated in hardware? Many of these questions outlined in the
Foundation chapters will be revisited in the detailed studies contained in
the parts II and III of the book. Chapter 4, the last chapter in the Foundation
part, will discuss some of the biological evidence for temporal codes in
more detail.

1.1.2 Rate Codes

A quick glance at the experimental literature reveals that there is no unique
and well-defined concept of ‘mean firing rate’. In fact, there are at least
three different notions of rate which are often confused and used simulta-
neously. The three definitions refer to three different averaging procedures:
either an average over time, or an average over several repetitions of the
experiment, or an average over a population of neurons. The following
three subsections will reconsider the three concepts. An excellent discus-
sion of rate codes can also be found in [Rieke et al., 1996].

1.1.2.1 Rate as a Spike Count (Average over Time)

The first and most commonly used definition of a firing rate refers to a tem-
poral average. As discussed in the preceding section, this is essentially the
spike count in an interval T divided by T ; see Figure 1.4. The length of the
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Figure 1.4. Definition of the mean firing rate via a temporal average.

time window is set by the experimenter and depends on the type of neu-
ron recorded from and the stimulus. In practice, to get sensible averages,
several spikes should occur within the time window. Values of T = 100 ms
or T = 500 ms are typical, but the duration may also be longer or shorter.

This definition of rate has been successfully used in many preparations,
particularly in experiments on sensory or motor systems. A classical exam-
ple is the stretch receptor in a muscle spindle [Adrian, 1926]. The number
of spikes emitted by the receptor neuron increases with the force applied
to the muscle. Another textbook example is the touch receptor in the leech
[Kandel and Schwartz, 1991]. The stronger the touch stimulus, the more
spikes occur during a stimulation period of 500 ms.

These classical results show that the experimenter as an external observer
can evaluate and classify neuronal firing by a spike count measure – but
is this really the code used by neurons in the brain? In other words, is a
neuron which receives signals from a sensory neuron only looking at and
reacting to the numbers of spikes it receives in a time window of, say, 500
ms? We will approach this question from a modeling point of view later
on in the book. Here we discuss some critical experimental evidence.

From behavioral experiments it is known that reaction times are often rather
short. A fly can react to new stimulus and change the direction of flight
within 30-40 ms; see the discussion in [Rieke et al., 1996]. This is not long
enough for counting spikes and averaging over some long time window.
It follows that the fly has to react to single spikes. Humans can recognize
visual scenes in just a few hundred milliseconds [Thorpe et al., 1996], even
though recognition is believed to involve several processing steps. Again,
this leaves not enough time to perform temporal averages on each level.

Temporal averaging can work well where the stimulus is constant or slowly
moving and does not require a fast reaction of the organism - and this is
the situation usually encountered in experimental protocols. Real-world
input, however, is hardly stationary, but often changing on a fast time
scale. For example, even when viewing a static image, we perform sac-
cades, rapid changes of the direction of gaze. The retinal photo receptors
receive therefore every few hundred milliseconds a new input.

Despite its shortcomings, the concept of a firing rate code is widely used
not only in experiments, but also in models of neural networks. It has led to
the idea that a neuron transforms information about a single input variable
(the stimulus strength) into a single continuous output variable (the firing
rate). In this view, spikes are just a convenient way to transmit the analog
output over long distances. In fact, the best coding scheme to transmit
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Figure 1.5. Definition of the spike density in the Peri-Stimulus-Time Histogram
(PSTH).

the value of the rate � would be by a regular spike train with intervals
1=�. In this case, the rate could be reliably measured after only two spikes.
From the point of view of rate coding, the irregularities encountered in real
spike trains of neurons in the cortex must therefore be considered as noise.
In order to get rid of the noise and arrive at a reliable estimate of the rate,
the experimenter (or the postsynaptic neuron) has to average over a larger
number of spikes. A critical discussion of the temporal averaging concept
can be found in [Shadlen and Newsome, 1994; Softky, 1995; Rieke et al.,
1996].

1.1.2.2 Rate as a Spike Density (Average over Several Runs)

There is a second definition of rate which works for stationary as well as
for time-dependent stimuli. The experimenter records from a neuron while
stimulating with some input sequence. The same stimulation sequence is
repeated many times and the results are reported in a Peri-Stimulus-Time
Histogram (PSTH); see Figure 1.5. For each short interval of time [t; t +
�t], before, during, and after the stimulation sequence, the experimenter
counts the number of times that a spike has occurred and sums them over
all repetitions of the experiment. The time t is measured with respect to
the start of the stimulation sequence and �t is typically in the range of one
or a few milliseconds. The number of occurrences of spikes n(t; t + �t)
divided by the number K of repetitions is a measure of the typical activity
of the neuron between time t and t+�t. A further division by the interval
length �t yields the spike density of the PSTH

�(t) =
1

�t

n(t; t+�t)

K
: (1.5)

Sometimes the result is smoothed to get a continuous ‘rate’ variable. The
spike density of the PSTH is usually reported in units of Hz and often
called the (time-dependent) firing rate of the neuron.

As an experimental procedure, the spike density measure is a useful method
to evaluate neuronal activity, in particular in the case of time-dependent
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∆t
1 t∆n act (    )

(several neurons, single run)

local pool
(or distributed assembly)

A = 

activity

 rate = average over pool of equivalent neurons

N

Figure 1.6. Definition of the population activity.

stimuli. The obvious problem with this approach is that it can not be the
decoding scheme used by neurons in the brain. Consider for example a
frog which wants to catch a fly. It can not wait for the insect to fly repeat-
edly along exactly the same trajectory. The frog has to base its decision on
a single ‘run’ – each fly and each trajectory is different.

Nevertheless, the experimental spike density measure can make sense, if
there are large populations of neurons which are independent of each other
and sensitive to the same stimulus. Instead of recording from a population
of N neurons in a single run, it is experimentally easier to record from a
single neuron and average over N repeated runs. Thus, the spike density
coding relies on the implicit assumption that there are always populations
of neurons and therefore leads to the third notion of a firing rate, viz., a
rate defined as a population average.

1.1.2.3 Rate as Population Activity (Average over Several Neurons)

The number of neurons in the brain is huge. Often many neurons have sim-
ilar properties and respond to the same stimuli. For example, neurons in
the primary visual cortex of cats and monkeys are arranged in columns of
cells with similar properties [Hubel and Wiesel, 1962, 1977; Hubel, 1988].
Let us idealize the situation and consider a population of neurons with
identical properties. In particular, all neurons in the population should
have the same pattern of input and output connections. The spikes of the
neurons in a population j are sent off to another population k. In our ideal-
ized picture, each neuron in population k receives input from all neurons in
population j. The relevant quantity, from the point of view of the receiving
neuron, is the proportion of active neurons in the presynaptic population
j; see Figure 1.6. Formally, we define the population activity

A(t) =
1

�t

nact(t; t+�t)

N
(1.6)

whereN is the size of the population, �t a small time interval, and nact(t; t+
�t) the number of spikes (summed over all neurons in the population) that
occur between t and t+�t. If the population is large, we can consider the
limit N ! 1 and take then �t ! 0. This yields again a continuous quan-
tity with units s�1 – in other words, a rate.

The population activity may vary rapidly and can reflect changes in the
stimulus conditions nearly instantaneously [Tsodyks and Sejnowsky, 1995].
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Thus the population activity does not suffer the disadvantages of a firing
rate defined by temporal averaging at the single-unit level. The problem
with the definition (1.6) is that we have formally required a homogeneous
population of neurons with identical connections which is hardly realistic.
Real populations will always have a certain degree of heterogeneity both in
their internal parameters and in their connectivity pattern. Nevertheless,
rate as a population activity (of suitably defined pools of neurons) may be
a useful coding principle in many areas of the brain. For inhomogeneous
populations, the definition (1.6) may be replaced by a weighted average
over the population. A related scheme has been used successfully for an
interpretation of neuronal activity in primate motor cortex [Georgopoulos
et al., 1986].

1.1.3 Candidate Pulse Codes

In this subsection, we will briefly introduce some potential coding strate-
gies based on spike timing. All codes will be discussed in more detail later
on and will be referred to throughout the book.

1.1.3.1 Time-to-First-Spike

Let us study a neuron which abruptly receives a new input at time t0. For
example, a neuron might be driven by an external stimulus which is sud-
denly switched on at time t0. This seems to be somewhat academic, but
even in a realistic situation abrupt changes in the input are quite common.
When we look at a picture, our gaze jumps from one point to the next. Af-
ter each saccade, there is a new visual input at the photo receptors in the
retina. Information about the time t0 of a saccade would easily be available
in the brain. We can then imagine a code where for each neuron the timing
of the first spike to follow t0 contains all information about the new stimu-
lus. A neuron which fires shortly after t0 could signal a strong stimulation,
firing somewhat later would signal a weaker stimulation; see Figure 1.7.

In a pure version of this coding scheme, only the first spike of each neuron
counts. All following spikes would be irrelevant. Alternatively, we can
also assume that each neuron emits exactly one spike per saccade and is
shut off by inhibitory input afterwards. It is clear that in such a scenario,
only the timing conveys information and not the number of spikes.

A coding scheme based on the time-to-first-spike is certainly an idealiza-
tion. In Chapter 2 it will be formally analyzed by Wolfgang Maass. In a
slightly different context coding by first spikes has also been discussed by
S. Thorpe [Thorpe et al., 1996]. Thorpe argues that the brain does not have
time to evaluate more than one spike from each neuron per processing step.
Therefore the first spike should contain most of the relevant information.
Using information-theoretic measures on their experimental data, several
groups have shown that most of the information about a new stimulus
is indeed conveyed during the first 20 or 50 milliseconds after the onset
of the neuronal response [Optican and Richmond, 1987; Kjaer et al., 1994;
Tovee et al., 1993; Tovee and Rolls, 1995]. Rapid computation during the
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Figure 1.7. Three examples of pulse codes. A) Time-to-first spike. The second
neuron responds faster to a change in the stimulus than the first one. Stimulus onset
marked by arrow. B) Phase. The two neurons fire at different phases with respect
to the background oscillation (dashed). C) Synchrony. The upper four neurons are
nearly synchronous, two other neurons at the bottom are not synchronized with
the others.

transients after a new stimulus has also been discussed in model studies
[Hopfield and Herz, 1995; Tsodyks and Sejnowsky, 1995; van Vreeswijk
and Sompolinsky, 1997].

1.1.3.2 Phase

We can apply a coding by ’time-to-first-spike’ also in the situation where
the reference signal is not a single event, but a periodic signal. In the hip-
pocampus, in the olfactory system, and also in other areas of the brain,
oscillations of some global variable (for example the population activity)
are quite common. These oscillations could serve as an internal reference
signal. Neuronal spike trains could then encode information in the phase
of a pulse with respect to the background oscillation. If the input does not
change between one cycle and the next, then the same pattern of phases
repeats periodically; see Figure 1.7 B.

The concept of coding by phases has been studied by several different
groups, not only in model studies [Hopfield, 1995; Jensen and Lisman,
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1996; Maass, 1996], but also experimentally [O’Keefe and Recce, 1993].
There is for example evidence that the phase of a spike during an oscil-
lation in the hippocampus of the rat conveys information on the spatial
location of the animal which is not accounted for by the firing rate of the
neuron alone [O’Keefe and Recce, 1993].

1.1.3.3 Correlations and Synchrony

We can also use spikes from other neurons as the reference signal for a
pulse code. For example, synchrony between a pair or a group of neu-
rons could signify special events and convey information which is not con-
tained in the firing rate of the neurons; see Figure 1.7 C. One famous idea is
that synchrony could mean ‘belonging together’ [Milner, 1974; Malsburg,
1981]. Consider for example a complex scene consisting of several objects.
It is represented in the brain by the activity of a large number of neurons.
Neurons which represent the same object could be ‘labeled’ by the fact that
they fire synchronously [Malsburg, 1981; Malsburg and Buhmann, 1992;
Eckhorn et al., 1988; Gray et al., 1989]. Coding by synchrony has been
studied extensively both experimentally [Eckhorn et al., 1988; Gray et al.,
1989; Gray and Singer, 1989; Singer, 1994; Engel et al., 1991ab; Kreiter and
Singer, 1992] and in models [Wang et al., 1990; Malsburg and Buhmann,
1992; Eckhorn, 1990; Aertsen and Arndt, 1993; Koenig and Schillen, 1991;
Schillen and Koenig, 1991; Gerstner et al., 1993; Ritz et al. 1993; Terman and
Wang, 1995; Wang, 1995]. For a review of potential mechanism, see [Ritz
and Sejnowski, 1997]. Coding by synchrony is discussed in Chapter 11.

More generally, not only synchrony but any precise spatio-temporal pulse
pattern could be a meaningful event. For example, a spike pattern of three
neurons, where neuron 1 fires at some arbitrary time t1 followed by neu-
ron 2 at time t1 + �12 and by neuron 3 at t1 + �13, might represent a certain
stimulus condition. The same three neurons firing with different relative
delays might signify a different stimulus. The relevance of precise spatio-
temporal spike patterns has been studied intensively by Abeles [Abeles,
1991; Abeles et al., 1993; Abeles, 1994]. Similarly, but on a somewhat
coarse time scale, correlations of auditory neurons are stimulus depen-
dent and might convey information beyond the firing rate [deCharms and
Merzenich, 1996].

1.1.3.4 Stimulus Reconstruction and Reverse Correlation

Let us consider a neuron which is driven by a time dependent stimulus
s(t). Every time a spike occurs, we note the time course of the stimulus in
a time window of about 100 ms immediately before the spike. Averaging
the results for several spikes yields the typical time course of the stimu-
lus just before a spike. Such a procedure is called a ‘reverse correlation’
approach; see Figure 1.8. In contrast to the PSTH experiment sketched in
Section 2.2 where the experimenter averages the neuron’s response over
several trials with the same stimulus, reverse correlation means that the
experimenter averages the input under the condition of an identical re-
sponse, viz., a spike. In other words, it is a spike-triggered average; see,
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t

t

stimulus

Figure 1.8. Reverse correlation technique (schematic). The stimulus in the top trace
has caused the spike train shown immediately below. The time course of the stim-
ulus just before the spikes (dashed boxes) has been averaged to yield the typical
time course (bottom).

e.g., [de Ruyter van Steveninck and Bialek, 1988; Rieke et al., 1996]. The
results of the reverse correlation, i.e., the typical time course of the stim-
ulus which has triggered the spike, can be interpreted as the ‘meaning’ of
a single spike. Reverse correlation techniques have made it possible for
example to measure the spatio-temporal characteristics of neurons in the
visual cortex [Eckhorn et al., 1993; DeAngelis et al., 1995].

With a somewhat more elaborate version of this approach, W. Bialek and
his co-workers have been able to ‘read’ the neural code of the H1 neuron
in the fly and to reconstruct a time-dependent stimulus [Bialek et al., 1991;
Rieke et al., 1996]. Here we give a simplified version of the argument.

Results from reverse correlation analysis suggest, that each spike signifies
the time course of the stimulus preceding the spike. If this is correct, a
reconstruction of the complete time course of the stimulus s(t) from the set
of firing times F = ft(1); : : : t(n)g should be possible; see Figure 1.9.

As a simple test of this hypothesis, Bialek and coworkers have studied a
linear reconstruction. A spike at time t(f) gives a contribution �(t� t(f)) to
the estimation sest(t) of the time course of the stimulus. Here, t(f) 2 F is
one of the firing times and �(t � t(f)) is a kernel which is nonzero during
some time before and around t(f); see inset of Figure 1.9. A linear estimate
of the stimulus is

sest(t) =

nX
f=1

�(t� t(f)) : (1.7)

The form of the kernel � was determined through optimization so that the
average reconstruction error

R
dt[s(t) � sest(t)]2 was minimal. The qual-

ity of the reconstruction was then tested on additional data which was not
used for the optimization. Surprisingly enough, the simple linear recon-
struction (1.7) gave a fair estimate of the time course of the stimulus [Bialek
et al., 1991; Bialek and Rieke, 1992; Rieke et al., 1996]. These results show
nicely that information about a time dependent input can indeed be con-
veyed by spike timing.
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(t)s
est

Figure 1.9. Reconstruction of a stimulus (schematic). A stimulus evokes a spike
train of a neuron. The time course of the stimulus may be estimated from the spike
train. The inset shows the principle of linear stimulus reconstruction. The estima-
tion sest(t) (dashed) is the sum of the contributions (solid lines) of all spikes. Main
figure redrawn after [Rieke et al., 1996].

1.1.4 Discussion: Spikes or Rates?

The dividing line between pulse codes and firing rates is not always as
clearly drawn as it may seem at first sight. Some codes which were first
proposed as pure examples of pulse codes have later been interpreted as
variations of rate codes.

For example the stimulus reconstruction (1.7) with kernels seems to be a
clear example of a pulse code. Nevertheless, it is also not so far from a
rate code based on spike counts [Theunissen and Miller, 1995]. To see this,
consider a spike count measure with a running time window K(:). We can
estimate the rate � at time t by

�(t) =

R
K(�)S(t� �)d�R

K(�)d�
(1.8)

where S(t) =
Pn

f=1 �(t � t(f)) is the spike train under consideration. The
integrals run from minus to plus infinity. For a rectangular time window
K(�) = 1 for �T=2 < � < T=2 and zero otherwise, (1.8) reduces exactly to
our definition (1.4) of a rate as a spike count measure.

The time window in (1.8) can be made rather short so that at most a few
spikes fall into the interval T . Furthermore, there is no need that the win-
dowK(:) be symmetric and rectangular. We may just as well take an asym-
metric time window with smooth borders. Moreover, we can perform the
integration over the � function which yields

�(t) = c

nX
f=1

K(t� t(f)) (1.9)

where c = [
R
K(s)ds]�1 is a constant. Except for the normalization, the

generalized rate formula (1.9) is now identical to the reconstruction for-
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mula (1.7). In other words, the linear reconstruction is just the firing rate
measured with a cleverly optimized time window.

Similarly, a code based on the ’time-to-first-spike’ is also consistent with a
rate code. If, for example, the mean firing rate of neuron is high for a given
stimulus, then the first spike is expected to occur early. If the rate is low,
the first spike is expected to occur later. Thus the timing of the first spike
contains a lot of information about the underlying rate.

Finally, a code based on population activities introduced in Section 1.1.2
as an example of a rate code may be used for very fast temporal coding
schemes [Tsodyks and Sejnowski, 1995]. As discussed later in Chapter 10
the population activity reacts quickly to any change in the stimulus. Thus
rate coding in the sense of a population average is consistent with fast tem-
poral information processing, whereas rate coding in the sense of a naı̈ve
spike count measure is not.

We do not want to go into the details of the discussion whether or not to call
a given code a rate code [Theunissen and Miller, 1995]. What is important,
in our opinion, is to have a coding scheme which allows neurons to quickly
respond to stimulus changes. A naı̈ve spike count code with a long time
window is unable to do this, but many of the other codes are. The name of
such a code, whether it is deemed a rate code or not is of minor importance.

In this book, we will explore some of the possibilities of coding and compu-
tation by spikes. As modelers – mathematicians, physicists, and engineers
– our aim is not to give a definite answer to the problem of neural coding
in the brain. The final answers have to come from experiments. One pos-
sible task of modeling may be to discuss candidate coding schemes, study
their computational potential, exemplify their utility, point out their limita-
tions – and this is what we will attempt to do in the course of the following
chapters.

1.2 Neuron Models

Neural activity may be described at several levels of abstraction. On a
microscopic level, there are a large number of ion channels, pores in the
cell membrane which open and close depending on the voltage and the
presence (or absence) of various chemical messenger molecules. Compart-
mental models, where each small segment of a neuron is described by a set
of ionic equations, aim at a description of these processes. A short intro-
duction to this model class can be found in section 1.2.4.

On a higher level of abstraction, we do not worry about the spatial struc-
ture of a neuron nor about the exact ionic mechanisms. We consider the
neuron as a homogeneous unit which generates spikes if the total excita-
tion is sufficiently large. This is the level of the so-called integrate-and-fire
models. In Section 1.2.3, we will discuss this model class in the framework
of the ‘spike response model’.

The spiking neuron models should be contrasted with the rate models re-
viewed in Section 1.2.5. Rate models neglect the pulse structure of the neu-
ronal output, and are therefore higher up in the level of abstraction. On a



1.2 Neuron Models 17

yet coarser level would be models which describe the activity in and inter-
action between whole brain areas.

Most chapters in the book will make use of a generic neuron model on the
intermediate description level. We therefore devote most of the space to
the discussion in Section 1.2.3. For those readers who are not interested in
the details, we present the basic concepts of our generic neuron model in a
compressed version in the following section 1.2.1.

1.2.1 Simple Spiking Neuron Model

Spike Response Model - definitions
The state of neuron i is described by a state variable ui. The neuron is
said to fire, if ui reaches a threshold #. The moment of threshold crossing
defines the firing time t(f)i ; see Figure 1.10. The set of all firing times of
neuron i is denoted by

Fi = ft(f)i ; 1 � f � ng = ft jui(t) = #g : (1.10)

For the most recent spike t(f)i < t of neuron iwe write either t(n)i or, shorter,
t̂.

Two different processes contribute to the value of the state variable ui.

First, immediately after firing an output spike at t(f)i , the variable ui is
lowered or ‘reset’. Mathematically, this is done by adding a negative con-
tribution �i(t � t

(f)
i ) to the state variable ui. An example of a refractory

function �i is shown in Figure 1.10. The kernel �i(s) vanishes for s � 0 and
decays to zero for s!1.

Second, the model neuron may receive input from presynaptic neurons
j 2 �i where

�i = fj j j presynaptic to ig : (1.11)

A presynaptic spike at time t(f)j increases (or decreases) the state ui of neu-

ron i for t > t
(f)
j by an amount wij �ij(t � t

(f)
j ). The weight wij is a factor

which accounts for the strength of the connection. An example of an �ij
function is shown in Figure 1.10b. The effect of a presynaptic spike may
be positive (excitatory) or negative (inhibitory). Because of causality, the
kernel �ij(s) must vanish for s � 0. A transmission delay may be included
in the definition of �ij ; see Figure 1.10.

The state ui(t) of model neuron i at time t is given by the linear superposi-
tion of all contributions,

ui(t) =
X

t
(f)
i
2Fi

�i(t� t
(f)
i ) +

X
j2�i

X
t
(f)
j
2Fj

wij �ij(t� t
(f)
j ) : (1.12)

An interpretation of the terms on the right-hand side of (1.12) is straight-
forward. The �i contributions describe the response of neuron i to its own
spikes. The �ij kernels model the neurons response to presynaptic spikes.
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Figure 1.10. a) The state variable ui(t) reaches the threshold # at time t(f)i . Imme-
diately afterwards ui(t) is reset to zero. The reset is performed by adding a kernel
�i(t � t

(f)
i ). The function �i(s) takes care of refractoriness after a spike emitted at

s = 0. b) The state variable ui(t) changes after a presynaptic spike has occured at
t
(f)
j . The kernels �ij describes the response of ui to a presynaptic spike at s = 0.

The postsynaptic potential can either be excitatory (EPSP) or inhibitory (IPSP).

We will refer to (1.10) - (1.12) as the Spike Response Model (SRM). In a bi-
ological context, the state variable ui may be interpreted as the electrical
membrane potential. The kernels �ij are the postsynaptic potentials and �i
accounts for neuronal refractoriness.

To be more specific, let us consider some examples of suitable functions �i
and �ij . The kernel �i(s) is usually nonpositive for s > 0. A typical form of
�i is shown in Figure 1.10a). A specific mathematical formulation is

�i(s) = �# exp
�
� s
�

�
H(s) (1.13)

where � is a time constant and H(s) is the Heaviside step function which
vanishes for s � 0 and takes a value of 1 for s > 0. Note that at the
moment of firing ui(t) = #. The effect of (1.13) is that after each firing the
state variable ui is reset to zero. If the factor # on the right-hand side of
(1.13) is replaced by a parameter �0 6= #, then the state variable would be
reset to a value # � �0 6= 0. For a further discussion of the �-kernel, the
reader is referred to section 1.2.3.1.

The kernels �ij describe the response to presynaptic spikes; see Figure
1.10b). For excitatory synapses �ij is non-negative and is called the exci-
tatory postsynaptic potential (EPSP). For inhibitory synapses, the kernel
takes non-positive values and is called the inhibitory postsynaptic poten-
tial (IPSP). One of several potential mathematical formulations is

�ij(s) =

�
exp

�
�s��ax

�m

�
� exp

�
�s��ax

�s

��
H(s��ax) : (1.14)

where �s; �m are time constants and �ax is the axonal transmission delay.
The amplitude of the response is scaled via the factor wij in (1.12). For
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Figure 1.11. Dynamic threshold interpretation. The last firing of neuron i has
occured at t = t̂. Immediately after firing the dynamic threshold # � �i(t � t̂)
(dashed) is high. The next output spike occurs, when the sum of the EPSPs
P

t
(f)
j

2Fj
wij�ij(t � t

(f)
j ) caused by presynaptic spikes at times t(f)j (arrows in the

lower part of the figure) reaches the dynamic threshold again.

inhibitory synapses, the kernel �ij would have a negative sign in front of
the expression on the right-hand side. Alternatively, we can put the sign in
the synaptic efficacy and use wij > 0 for excitatiory synapses and wij < 0
for inhibitory synapses.

Equations (1.10) and (1.12) give a fairly general framework for the discus-
sion of neuron models. We will show in Section 1.2.3., that the Spike Re-
sponse Model (1.10) - (1.12) with kernels (1.13) and (1.14) is equivalent to
the integrate-and-fire model. Furthermore, with a different choice of ker-
nels, the Spike Response Model also approximates the Hodgkin-Huxley
equations with time-dependent input; see Section 1.2.4. and [Kistler et al.,
1997].

Dynamic threshold model
We note that (1.10) - (1.12) may also be formulated in terms of a dynamic
threshold model. To see this, consider the threshold condition ui(t) = #;
see (1.10). With (1.12) we getX

j2�i

X
t
(f)
j
2Fj

wij �ij(t� t
(f)
j ) = #�

X
t
(f)
i
2Fi

�i(t� t
(f)
i ) (1.15)

where we have moved the sum over the �i’s to the right-hand side of (1.15).
We may consider the expression #�P

t
(f)
i
2Fi �(t�t

(f)
i ) as a dynamic thresh-

old which increases after each firing and decays slowly back to its asymp-
totic value # in case of no further firing of neuron i.

Short term memory
There is a variant of the Spike Response Model which is often useful to
simplify the analytical treatment. We assume that only the last firing con-
tributes to refractoriness. Hence, we simplify (1.12) slightly and only keep
the influence of the most recent spike in the sum over the � contributions.
Formally, we make the replacementX

t
(f)
i
2Fi

�(t� t
(f)
i ) �! �(t� t̂i) (1.16)
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where t̂i < t denotes the most recent firing of neuron i. We refer to this
simplification as a neuron with short term memory. Instead of (1.12), the
membrane potential of neuron i is now

ui(t) = �i(t� t̂i) +
X
j2�i

X
t
(f)
j
2Fj

wij�ij(t� t
(f)
j ) : (1.17)

The next spike occurs whenX
j2�i

X
t
(f)
j
2Fj

wij�ij(t� t
(f)
j ) = #� �(t� t̂i) : (1.18)

A graphical interpretation of (1.18) is given in Fig. 1.11.

External input
A final modification concerns the possibility of external input. In addition
to (or instead of) spike input from other neurons, a neuron may receive
an analog input current Iext(t), for example from a non-spiking sensory
neuron. In this case, we add on the right-hand side of (1.12) a term

hext(t) =

Z 1

0

~�(s) Iext(t� s) ds : (1.19)

Here ~� is another kernel, which discribes the response of the membrane
potential to an external input pulse. As a notational convenience, we in-
troduce a new variable h which summarizes all contributions from other
neurons and from external sources

h(t) =
X
j2�i

wij
X

t
(f)
j
2Fj

�ij(t� t
(f)
j ) + hext(t) : (1.20)

The membrane potential of a neuron with short term memory is then sim-
ply

ui(t) = �(t� t̂i) + h(t) : (1.21)

We will make use of (1.21) repeatedly, since it allows us to analyze the
neuronal dynamics in a transparent manner.

The equations (1.10) - (1.21) will be used in several chapters of this book.
The following subsections 1.2.3-1.2.5 will put this generic neuron model
in the context of other models of neural activity. Readers who are not in-
terested in the details may proceed directly to Chapter 2 - or continue with
the next subsection for a first introduction to coding by spikes in the frame-
work of the above spiking neuron model.

1.2.2 First Steps towards Coding by Spikes

Before we proceed further with our discussion of neuron models, let us
take a first glance at the type of computation we can do with such a model.
To this end, we will reconsider some of the pulse codes introduced in Sec-
tion 1.1.3. A full discussion of computation with spiking neurons follows
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Figure 1.12. Time to first spike. The firing time t(f) encodes the number n1 or n2
of presynpatic spikes which have been fired synchronously at tpre. If there are less
presynaptic spikes, the potential u rises more slowly (dashed) and the firing occurs
later. For the sake of simplicity, the axonal delay has been set to zero.

in Chapter 2 of this book. Here we use simple arguments from a graphical
analysis to get a first understanding of how the model works.

Time-to-first-spike
Let us start with a coding scheme based on the ‘time-to-first-spike’. In
order to simplify the argument, let us consider a single neuron i which
receives spikes from N presynaptic neurons j over synaptic connections
which all have the same weight wij = w0. There is no external input. We
assume that the last spike of neuron i occurred long ago so that the spike
afterpotential �(:) in (1.12) may be neglected.

At t = tpre, a total number of n1 < N presynaptic spikes are simultane-
ously generated and transmitted to the postsynaptic neuron i. For t > tpre,
the potential of i is

ui(t) = n1 w0 �(t� tpre) : (1.22)

An output spike of neuron i occurs whenever ui reaches the threshold #.
We consider the firing time t(f)i of the first output spike

t
(f)
i = minft > tpre jui(t) = #g (1.23)

A graphical solution of (1.23) is shown in Figure 1.12. If there are less presy-
naptic spikes n2 < n1, then the postsynaptic potential is reduced and the
firing occurs later as shown by the dashed line in Figure 1.12. It follows
that the time difference t(f)i � tpre is a measure of the number of presynap-
tic pulses. To put it differently, the timing of the first spike encodes the
input strength.

Phase coding
Phase coding is possible if there is some periodic background signal which
can serve as a reference. We include the background into the external input
and write

hext(t) = h0 + h1 cos(2�
t

T
) (1.24)

where h0 is a constant and h1 is the amplitude of the T -periodic signal.

Let us consider a single neuron driven by (1.24). There is no input from
other neurons. We start from the simplified spike response mode (1.21)
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Figure 1.13. Phase coding. Firing occurs whenever the total input potential
h(t) = h0+h1 cos(2�t=T ) hits the dynamic threshold #��(t�t̂) where t̂ is the most
recent firing time; cf. Fig. 1.11. In the presence of a periodic modulation h1 6= 0,
a change �h0 in the level of (constant) stimulation results in a change �' in the
phase of firing.

which yields the membrane potential

u(t) = �(t� t̂) + hext(t) : (1.25)

As usual t̂ denotes the time of the most recent spike. To find the next firing
time, (1.25) has to be combined with the threshold condition u(t) = #. We
are interested in a solution where the neuron fires regularly and with the
same period as the background signal. In this case the threshold condition
reads

#� �(T ) = h0 + h1 cos(2�
t̂

T
) : (1.26)

For a given period T , the left-hand side has a fixed value and we can solve
for ' = 2� t̂

T . For most combinations of parameters, there are two solutions
but only one of them is stable. Thus the neuron has to fire at a certain
phase ' with respect to the external signal. The value of ' depends on the
level of the constant stimulation h0. In other words, the strength h0 of the
stimulation is encoded in the phase of the spike. In (1.26) we have moved �
to the left-hand side in order to suggest a dynamic threshold interpretation.
A graphical illustration of equation (1.26) is given in Figure 1.13.

Correlation coding
Let us consider two identical uncoupled neurons. Both receive the same
constant external stimulus hext(t) = h0. As a result, they fire regularly with
period T given by �(T ) = h0 as can be seen directly from (1.26) with h1 = 0.
Since the neurons are not coupled, they need not fire simultaneously. Let
us assume that the firings of neuron 2 are shifted by an amount � with
respect to neuron 1.

Suppose that, at a given moment tpre, both neurons receive input from
a common presynaptic neuron j. This causes an additional contribution
�(t � tpre) to the membrane potential. If the synapse is excitatory, the two
neurons will fire slightly sooner. More importantly, the spikes will also
be closer together. In the situation sketched in Figure 1.14 the new firing
time difference ~� is reduced, ~� < �. In later chapters, we will analyze this
phenomenon in more detail. Here we just note that this effect allows us to
encode information using the time interval between the firings of two or
more neurons. The reader who is interested in the computational aspects
of coding by firing time differences may move directly to Chapter 2. The
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Figure 1.14. The firing time difference � between two independent neurons is de-
creased to ~� < �, after both neurons receive a common excitatory input at time
tpre.

above argument also plays a major role in chapters 10 and 11 in the context
of neuronal locking.

The remainder of Chapter 1 continues with a discussion of neuron models.
Before turning to conductance-based neuron models, we want to put our
simple neuron model into a larger context.

1.2.3 Threshold-Fire Models

The simple spiking neuron model introduced in Section 1.2.1 is an instance
of a ‘threshold-fire model’. The firing occurs at the moment when the state
variable u crosses the threshold. A famous example in this model class is
the ‘integrate-and-fire’ model.

In this section we review the arguments that motivate our simple model of
a spiking neuron the Spike Response Model introduced in Section 1.2.1. We
show the relation of the model to the integrate-and-fire model and discuss
several variants. Finally we discuss several noisy versions of the model.

1.2.3.1 Spike Response Model - Further Details

In this paragraph we want to motivate the simple model of a spiking neu-
ron introduced in Section 1.2.1., give further details, and discuss it in a
more general context. Let us start and review the arguments for the simple
neuron model.

We aim for a simple model which captures some generic properties of
neural activity without going into too much detail. The neuronal output
should consist of pulses. In real spike trains, all action potentials of a given
neuron look alike. The pulses of our model can therefore be treated as
stereotyped events that occur at certain firing times t(f)i . The lower index i
denotes the neuron, the upper index is the spike number. A spike train is
fully characterized by the set of firing times

Fi = ft(1)i ; : : : ; t
(n)
i g (1.27)

already introduced in Equation (1.1).
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Figure 1.15. The Spike Response Model as a generic framework to describe the
spike process. Spikes are generated by a threshold process whenever the mem-
brane potential u crosses the threshold #. The threshold crossing triggers the spike
followed by a spike afterpotential (SAP), summarized in the function �j(t � t

(f)
j ).

The spike evokes a response of the postsynaptic neuron described by the kernel
�ij(t� t

(f)
j ). The voltage response to an input at an excitatory synapse is called the

excitatory postsynaptic potential (EPSP) and can be measured with an electrode
(schematically). Spike arrival at an inhibitory would cause an inhibitory postsy-
naptic potential (IPSP) which as a negative effect (dashed line).

The internal state of a model neuron is described by a single variable u. We
will refer to ui as the membrane potential of neuron i. Spikes are generated
when the membrane potential crosses a threshold # from below. The mo-
ment of threshold crossing can be used to formally define the firing times.
If ui(t) = # and u0i(t) > 0, then t = t

(f)
i . As always, the prime denotes a

derivative. The set of firing times therefore is

Fi = ft jui(t) = # ^ u0i(t) > 0g : (1.28)

In contrast to (1.10) we have included here explicitly that the threshold
must be reached from below (u0i > 0). In the simple model of Section 1.2.1,
this condition was automatically fulfilled, since the state variable could
never pass threshold: as soon as ui reached #, the state variable was reset
to a value below threshold. In the following we want to be slightly more
general.

After a spike is triggered by the threshold process, a whole sequence of
events is initiated. Ion channels open and close, some ions flow through
the cell membrane into the neuron, others flow out. The result of these
ionic processes is the action potential, a sharp peak of the voltage followed
by a long lasting negative afterpotential. As mentioned before, the forms
of the spike and its afterpotential are always roughly the same. Their
generic time course will be described in our model by a function �i(s),
where s = t � t

(f)
i > 0 is the time since the threshold crossing at t(f)i . A

typical form of �i(:) is sketched in Figures 1.15 and 1.16a. Also, informa-
tion about the spike event is transmitted to other postsynaptic neurons; see



1.2 Neuron Models 25

Figure 1.15. The response of these neurons is described by another func-
tion �ij(s) which will be discussed further below. Let us concentrate on the
function �i first.

Since the form of the pulse itself does not carry any information, the ex-
act time course during the positive part of the spike is irrelevant. Notice,
however, that while the action potential is quickly rising or steeply falling,
emission of a further spike is impossible. This effect is called absolute re-
fractoriness. Important for refractoriness is also the spike afterpotential
(SAP). A negative spike afterpotential means that the emission of a sec-
ond spike immediately after the first pulse is more difficult. The time of
reduced sensitivity after a spike is called the relative refractory period.

In an attempt to simplify the neuron model, we may therefore replace the
initial segment of �i by an absolute refractory period and concentrate on
the negative spike after potential only. This is shown in Figure 1.16b. Here
the positive part of the spike is reduced to a pulse of negligible width.
Its sole purpose is to mark the firing time s = 0. Absolute and negative
refractoriness may be modeled by

�i(s) = ��0 exp

�
�s� �abs

�

�
H(s� �abs)�KH(s)H(�abs � s) (1.29)

with a constant K ! 1 in order to ensure absolute refractoriness during
the time �abs after the firing. The Heaviside step function H(s) is unity for
s > 0 and vanishes for s � 0. The constant �0 is a parameter which scales
the amplitude of relative refractoriness. If we are interested in a question
of spike timing (but not in the form of the action potential), then a model
description with such a simplified kernel may be fully sufficient.

Let us now consider two neurons connected via a synapse. If the presynap-
tic neuron j fires at time t(f)j , a pulse travels along the axon to the synapse
where it evokes some response of the postsynaptic neuron i. In our model,
we disregard all details of the transmission process and concentrate on the
effect that the pulse has on the membrane potential at the soma of neuron
i. This response is a measurable function called the postsynaptic potential
(PSP) and can be positive (excitatory) or negative (inhibitory). The typical
time course of an excitatory postsynaptic potential (EPSP) is sketched in
Figure 1.15. In our model, the time course is described by a function �ij(s)
where s = t � t

(f)
j is the time which has passed since the emission of the

presynaptic pulse. The kernel �ij(s) vanishes for s � �ax. We refer to �ax

as the axonal transmission delay. We often approximate the time course for
t�t(f)j > �ax by a so-called �-function/ x e�x where x = (t�t(f)j ��ax)=�s
and �s some time constant. Another possibility is to describe the form of
the response by the double exponential introduced in (1.14).

So far we have restricted our discussion to a pair of neurons. In reality,
each postsynaptic neuron i will receive input from many different presy-
naptic neurons j 2 �i. All inputs cause some postsynaptic response and
contribute to the membrane potential of i. In our model, we assume that
the total membrane potential ui of neuron i is the linear superposition of
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Figure 1.16. a) Action potential and spike after potential (schematic). The peak of
the pulse is out of scale; cf. Fig.1.25. During the time �abs, emission of a further
action potential is practically impossible. b) A simplified kernel �i which includes
an absolute refractory period of �abs followed by an exponential decay. The form
of the action potential is not described explicitly. The firing time t(f)i is marked by
a vertical bar. c) As a further simplification of �i, absolute refractoriness may be
neglected.

all contributions

ui(t) =
X

t
(f)
i
2Fi

�i(t� t
(f)
i ) +

X
j2�i

X
t
(f)
j
2Fj

wij�ij(t� t
(f)
j ) : (1.30)

As above, the kernel �i describes the neuron’s response to its own firing.
(In the following we often omit the subscript i.) The kernel �ij describes
the generic response of neuron i to spikes from each presynaptic neurons
j 2 �i. The weight wij gives the amplitude of the response. It corresponds
to the synaptic efficacy of the connection from j to i. For the sake of sim-
plicity, we often assume that the response has the same form for any pair
ij of neurons, except for an amplitude factor wij . This means that we may
suppress the index ij of �ij in (1.30) and write � instead of �ij . Since the
membrane potential in (1.30) is expressed in terms of response kernels, we
will refer to the above description of neuronal activity as the Spike Re-
sponse Model [Gerstner, 1991; Gerstner and van Hemmen, 1992; Gerstner
et al., 1996]. Equation (1.30) is exactly the simplified neuron model intro-
duced already in Section 1.2.1.
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Figure 1.17. Integrate-and-fire neuron. The basic module is the RC circuit shown
inside the circle on the right-hand side of the diagram. The circuit is charged by an
input current I . If the voltage across the capacitator reaches a threshold# the circuit
is shunted and a �-pulse is transmitted to other neurons (lower right). A �-pulse
sent out by a presynaptic neuron and travelling on the presynaptic axon (left), is
low-pass filtered first (middle) before it is fed as a current pulse I(t� t

(f)
j ) into the

integrate-and-fire circuit. The voltage response of the RC circuit to the presynaptic
pulse is the postsynaptic potential �(t� t

(f)
j )

Equation (1.30) is a linear equation for the membrane potential. All con-
tributions to ui are caused by the firing events t(f)i and t

(f)
j . The essential

nonlinearity of the neuronal dynamics is given by the threshold condition
(1.28) which defines the firing times. The Spike Response Model is defined
by the combination of (1.28) and (1.30) and is the starting point for the anal-
ysis of spike based computation in Chapter 2. It is also used in some other
chapters, e.g., Chapters 9 and 10.

1.2.3.2 Integrate-and-Fire Model

An important example in the class of ‘threshold-fire models’ is the integrate-
and-fire neuron. The basic circuit of an integrate-and-fire model consists of
a capacitor C in parallel with a resistor R driven by a current I(t); see Fig-
ure 1.17. The driving current splits into two components, one charging
the capacitor, the other going through the resistor. Conservation of charge
yields the equation

I(t) =
u(t)

R
+ C

du

dt
(1.31)

where u is the voltage across the capacitor C. We introduce the time con-
stant �m = RC of the ‘leaky integrator’ and write (1.31) in the standard
form

�m
du

dt
= �u(t) +RI(t) : (1.32)

We refer to u as the membrane potential and to �m as the membrane time
constant of the neuron.

Equation (1.32) is a first-order linear differential equation and cannot de-
scribe full neuronal spiking behavior. To incorporate the essence of pulse
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emission, (1.32) is supplemented by a threshold condition. A threshold
crossing u(t(f)) = # is used to define the firing time t(f). The form of the
spike is not described explicitly. Immediately after t(f), the potential is
reset to a new value ur,

lim
�!0

u(t(f) + �) = ur : (1.33)

For t > t(f) the dynamics is again given by (1.32), until the next threshold
crossing occurs. The combination of leaky integration (1.32) and reset (1.33)
defines the basic integrate-and-fire model.

To see how the model works, let us consider a model neuron with constant
input current I0 and reset potential ur = 0. We assume that a first spike
has occurred at t = t(0). The trajectory of the membrane potential can be
found by integrating (1.32) with the initial condition u(t(0)) = ur = 0. The
solution is

u(t) = RI0

�
1� exp

�
� t� t(0)

�m

��
: (1.34)

For R I0 < # no further spike can occur. For RI0 > #, the membrane
potential reaches the threshold # at time t(1), which can be found from the
threshold condition

# = RI0

�
1� exp

�
� t

(1) � t(0)

�m

��
: (1.35)

Solving (1.35) for the time interval T = t(1) � t(0) yields

T = �mln
R I0

R I0 � #
: (1.36)

After the spike at t(1) the membrane potential is again reset to ur = 0 and
the integration process starts again. We conclude that for a constant input
current I0, the integrate-and-fire neuron fires regularly with period T given
by (1.36).

Refractoriness
It is straightforward to include an absolute refractory period. After a spike
at t(f), we force the membrane potential to a value u = �K < 0 and keep
it there during a time �abs. At t(f) + �abs we restart the integration (1.32)
with the initial value u = ur.

As before, we can solve the dynamics for a constant input current I0. If
R I0 > #, the neuron will fire regularly. Due to the absolute refractory
period the interval between firings is now longer by an amount �abs com-
pared to the value in (1.36). Instead of giving the interval T between two
spikes, the result is often stated in terms of the mean firing rate � = 1=T ,
viz.,

� =

�
�abs + �mln

RI0
RI0 � #

��1
: (1.37)

The firing rate of the integrate-and-fire neuron as a function of the constant
input current is plotted in Figure 1.18.
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Figure 1.18. Gain function of an integrate-and-fire neuron with absolute refractori-
ness.

Synaptic currents
If the integrate-and-fire model is part of a network of spiking neurons, then
the input current I(t) must be generated somehow from the pulses of other
neurons. A simple possibility is to describe the spikes of a presynaptic
neuron j as Dirac �-pulses and feed them directly into the postsynaptic
neuron i. The input current to unit i is then

Ii(t) =
X
j2�i

cij
X

t
(f)
j
2Fj

�(t� t
(f)
j ) : (1.38)

The factor cij is a measure of the strength of the connection from j to i and
corresponds directly to the charge deposited on the capacitorC by a single
presynaptic pulse of neuron j. The parameter cij is, of course, proportional
to the synaptic efficacy wij as we will see later on.

More generally, we can say that each presynaptic spike generates a current
pulse of finite width and with time course �(t � t

(f)
j ) for t > t

(f)
j . In this

case, the input current to neuron i should be written as

Ii(t) =
X
j2�i

cij
X

t
(f)
j
2Fj

�(t� t
(f)
j ) : (1.39)

This is not too far from reality, since an input spike arriving at a synapse
from j to i indeed evokes a current through the membrane of the post-
synaptic neuron i. From measurements it is known that the form of the
postsynaptic current (PSC) can often be approximated by

�(s) =
s��ax

�2s
exp

�
�s��ax

�s

�
H(s��ax) (1.40)

where �s is a synaptic time constant in the millisecond range and �ax is
the axonal transmission delay. As usual, H(x) denotes the Heaviside step
function which vanishes for x � 0 and has a value of one for x > 0. For
a yet more realistic description of the synaptic input current the reader
should consult the Section 1.2.4 on conductance-based neuron models in
this chapter. In passing we remark that in the literature, a function of the
form x exp(�x) is often called an �-function. While this has motivated our
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choice of the symbol � for the synaptic input current, �(:) in (1.39) could in
fact stand for any form of an input current pulse.

In Figure 1.17 we have sketched the situation where �(s) consists of a sim-
ple exponentially decaying pulse

�(s) =
1

�s
exp(� s

�s
)H(s) : (1.41)

(1.41) is a first approximation to the low-pass characteristics of a synapse.
Since the analytic expressions are simpler, (1.41) is often used instead of
the more complicated expression (1.40). In simulations, it is convenient
to generate the exponential pulse (1.41) by a differential equation for the
current. The total postsynaptic current Ii into neuron i can be described by

�s
d

dt
Ii(t) = �Ii +

X
j2�i

cij
X

t
(f)
j
2Fj

�(t� t
(f)
j ) : (1.42)

The differential equation (1.42) replaces then the input current (1.39). In
order to see the relation between (1.42) and (1.39) more clearly, we integrate
(1.42), which yields

Ii(t) =
X
j2�i

cij
X

t
(f)
j
2Fj

1

�s
exp

 
� t� t

(f)
j

�s

!
H(t� t

(f)
j ) : (1.43)

Comparison of (1.43) with (1.39) and a current pulse according to (1.41)
shows that the two formulations for the input current, the differential for-
mulation (1.42) or the ‘integrated’ formulation (1.39) are indeed equivalent.
In both cases, the resulting current is then put into (1.32) to get the voltage
of the integrate-and-fire neuron.

Relation to the Spike Response Model
In this paragraph we show that the integrate-and-fire model discussed so
far is in fact a special case of the Spike Response Model. To see this, we
have to note two facts. First, (1.32) is a linear differential equation and can
therefore easily be integrated. Second, the reset of the membrane poten-
tial after firing at time t(f)i is equivalent to an outgoing current pulse of
negligible width

Iouti (t) = �C (#� ur)
X

t
(f)
i
2Fi

�(t� t
(f)
i ) (1.44)

where �(:) denotes the Dirac �-function. We add the current (1.44) on the
right-hand side of (1.32)

�m
dui
dt

= �ui(t) +RIi(t) +RIouti (t) : (1.45)

Let us check the effect of the last term. Integration of �mdu=dt = RIouti

yields at time t(f)i indeed a reset of the potential from # to ur, as it should
be.
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Equation (1.45) may be integrated and yields

ui(t) =
X

t
(f)
i
2Fi

�(t� t
(f)
i ) +

X
j2�i

wij
X

t
(f)
j
2Fj

�(t� t
(f)
j ) (1.46)

with weights wij = R cij=�m and

�(s) = �(#� ur) exp

�
� s

�m

�
H(s) (1.47)

�(s) =

Z 1

0

exp

�
� s0

�m

�
�(s� s0) ds0 : (1.48)

If �(s) is given by (1.41), then the integral on the right-hand side of (1.48)
can be done and yields

�(s) =
1

1� (�s=�m)

�
exp

�
� s

�m

�
� exp

�
� s

�s

��
H(s) : (1.49)

Note that (1.46) is exactly the equation (1.12) or (1.30) of the Spike Response
Model [except for the trivial replacement �ij(s) �! �(s)]. We remark that
the Spike Response Model is slightly more general than the integrate-and-
fire model, because kernels in the Spike Response Model can be chosen
quite arbitrarily whereas for the integrate-and-fire model they are fixed by
(1.47) and (1.48).

In section 1.2.1 where we introduced a simple version of the Spike Re-
sponse Model, we suggested a specific choice of response kernels, viz.
(1.13) and (1.14). Except for a different normalization, these are exactly
the kernels (1.47) and (1.49) that we have found now for the the integrate-
and-fire model. Thus, we can view the basic model of section 1.2.1 as an
alternative formulation of the integrate-and-fire model. Instead of defin-
ing the model by a differential equation (1.31), it is defined by its response
kernels (1.47) and (1.49).

1.2.3.3 Models of Noise

Noise is omnipresent in biological systems due to nonzero temperature
and finite numbers of molecules and ion channels. The effects of noise
include failures in the synaptic transmission and different responses of a
neuron to the same input current.

There are various ways to introduce noise into threshold-fire models. Here
we briefly mention three possibilities: a noisy threshold, a noisy reset, or
a noisy integration. In all cases, we are interested in the effect of the noise
on the firing period. More precisely, let us assume that the last firing has
occurred at a time t(0). In the simple version (1.21) of the Spike Response
Model with short-term memory, the membrane potential for t > t(0) would
be given by u(t) = �(t� t(0)) + h(t) and the next spike would occur at t(1)

given by the threshold condition u(t(1)) = #. In the presence of noise, we
can no longer predict the exact time of firing. Instead we ask the following
question. What is the probability that the next spike occurs between t and
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t+�t, given that the last spike occurred at t(0) and that the total input po-
tential in the noiseless case is h(t)? For �t ! 0, this defines the probability
density for firing

Ph(t j t(0)) (1.50)

which we would like to calculate for each of the three noise models. We
can interpret interpret Ph(t j t(0)) as the distribution of interspike intervals
in the presence of an input potential h. The lower index h is intended to
remind the reader that the distribution depends on the time course of h(t0)
for t(0) < t0 < t. We now discuss each of the three models of noise in turn.

B)   Noisy reset

A) Noisy threshold
u
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t
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C)   Noisy integration

t

ϑ

{

t

u- ϑ

σ
σ

ρ

δ

(0)

(0)

(0)

t
(1)

(1)

Figure 1.19. Noise in threshold neurons. a) Noisy threshold; a neuron may fire
[with probability density �(u� #)] even though the membrane potential u has not
yet reached the threshold #. b) Noisy reset; a stochastic change in the absolute re-
fractory period shifts the trajectory horizontally. c) Noisy integration; a stochastic
contribution in the input current of an integrate-and-fire neuron causes the mem-
brane potential to drift away from the reference trajectory.

Noisy threshold
In this first noise model, we assume the neuron can fire even though the
formal threshold # has not been reached yet. To do this consistently, we
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introduce an ‘escape rate’ � which depends on the distance between the
momentary value of the membrane potential and the threshold,

� = f(u� #) : (1.51)

In the mathematical literature, the quantity � would be called a ‘stochastic
intensity’. The choice of the function f is arbitrary. A plausible assumption
is an exponential dependence

� =
1

�0
exp[� (u� #)] (1.52)

which can be motivated by the Arrhenius formula for chemical reaction
rates. � and �0 are parameters. Note that the escape rate � is implicitly
time-dependent, since the membrane potential u(t) = �(t � t(0)) + h(t)
varies over time. In addition, we may also include an explicit time depen-
dence, e.g., to account for a reduced spiking probability immediately after
the spike at t(0).

Let us now calculate Ph(t(1) j t(0)), the probability density of having a spike
at t(1) given that the last spike occurred at t(0), and in the presence of an
input potential h(t) for t > t(0). At each moment of time, the value u(t) of
the membrane potential determines the escape rate �(t) = f [u(t) � #]. In
order to emit the next spike at t(1), the neuron has to ‘survive’ the interval
(t(0); t(1)) without firing and then fire at t(1). Given the escape rate �(t), the
probability of survival from t(0) to t(1) without a firing is

S�(t
(1) j t(0)) = exp

 
�
Z t(1)

t(0)
�(t) dt

!
: (1.53)

The probability density of firing at time t(1) is �(t(1)), thus with (1.53) we
have

Ph(t
(1) j t(0)) = �(t(1)) exp

 
�
Z t(1)

t(0)
�(t) dt

!
(1.54)

which is the desired result. A more detailed derivation of (1.54) can be
found in [Gerstner and van Hemmen, 1994].

Noisy Reset
In this noise model, firing is given by the exact threshold condition u(t(f)) =
#. Noise is included into the formulation of reset and refractoriness.

Let us consider the integrate-and-fire model with absolute refractoriness.
The duration of refractoriness �abs is not fixed, but chosen stochastically
from a distribution p(�abs) with mean �. Naturally we have to require that
p(x) vanishes for x < 0. In the formulation of the Spike Response Model,
this procedure is equivalent to replacing the term �(t� t̂) in (1.21) by �(t�
t̂� �abs).

As with the preceding noise model, we are interested in calculating the
firing density Ph(t(1) j t(0)) given some input potential h(t). For the sake of
simplicity, let us assume that the input is constant h(t) = h0. The first spike
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has occurred at t(0). The firing time t(1) of the next spike can now be found
from the threshold condition

# = �(t(1) � t(0) � �abs) + h0 : (1.55)

In the absence of noise and for a refractory period � the next firing would
occur at t(1) = t(0) + T where T is the interspike interval. If, due to the
noise, the value of the refractory period is �abs 6= �, then the interval is
t(1) � t(0) = T + �abs � �. The firing density in the presence of noise is
therefore

Ph(t
(1) j t(0)) = p(t(1) � t(0) � T + �) (1.56)

where p(:) is the distribution of the refractory period introduced above.
Graphically, the result (1.56) is easy to understand. A change in the abso-
lute refractory period shifts the trajectory horizontally. A stochastic com-
ponent in the refractory period generates a stochastic shift of the firing
time. Although a stochastic component in the refractoriness probably is
not very realistic, it is a convenient way to introduce noise in a system. As
shown in (1.56), noise can be treated analytically without causing too much
problems.

Noisy integration
The final and most popular way of introducing noise into an integrate-and-
fire model is by adding on the right-hand side of (1.32) a stochastic noise
current Inoise

�m
du

dt
= �u+R I(t) +R Inoise (1.57)

with vanishing mean and finite variance. This choice of a noise term could
be motivated either by spontaneous openings of ion channels, or else by
stochastic arrival of excitatory and inhibitory inputs on dendrites of corti-
cal neurons.

The noise causes the actual membrane trajectory to drift away from the
noiseless reference trajectory. To get the distribution Ph(t(1) j t(0)) we have
to solve the first passage time problem of (1.57) with initial value ur and
absorbing boundary condition at #. Although (1.57) looks simple, it turns
out that the first passage time problem for arbitrary input current I(t) is
rather difficult to solve analytically. Discussions of the first passage time
problem for constant input I(t) = I0 can be found in many textbooks; see,
e.g., [Tuckwell, 1988].

1.2.4 Conductance-Based Models

In this section we briefly discuss a class of rather detailed neuron mod-
els which are known as conductance based models. At the origin of these
models are the equations of Hodgkin and Huxley which we describe first.
We then discuss the relation of the Hodgkin-Huxley model to the Spike Re-
sponse Model introduced in the previous subsection. Finally, we mention
the detailed compartmental models which focus on the spatial structure of
the neuron as well as on the dynamics of various ion currents.
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Figure 1.20. Schematic diagram for the Hodgkin-Huxley model.

1.2.4.1 Hodgkin-Huxley Model

The classic description of neuronal spiking dates back to Hodgkin and
Huxley [1952] who summarized their extensive experimental studies on
the giant axon of the squid with four differential equations. The first de-
scribes the conservation of electric charge on a piece of membrane of ca-
pacitance C under the influence of some charging currents

C
du

dt
= �

X
k

Ik + I(t) (1.58)

where u is the voltage, I(t) is an external driving current and
P

k Ik is
the sum of the ionic currents through the cell membrane. In the case of
the Hodgkin-Huxley model, there are three types of ion current indexed
respectively by Na, K, and L,X

k

Ik = gNam
3h(u� VNa) + gKn

4(u� VK) + gL(u� VL): (1.59)

The parameters g are conductances and m;n; h are additional variables to
be discussed below. Further parameters are the constants VNa, VK, and
VL. They are called reversal potentials since the direction of a current Ik
changes when u crosses Vk.

To understand the two equations (1.58) and (1.59) consider the diagram in
Figure 1.20. The semipermeable cell membrane separates the interior of the
cell from the extracellular liquid. Due to the membrane’s selective perme-
ability and also because of active ion transport through the cell membrane,
the ion concentrations inside and outside the cell are quite different. As a
result, in the absence of external input the interior of the cell has a slightly
negative potential with respect to the outside. The cell membrane acts like
a capacitor which has been charged by a battery.

If an input current I(t) is injected into the cell, it both charges the capacitor,
and leaks through the channels in the cell membrane. This is the essence
of (1.58). In the Hodgkin-Huxley model, three types of ion channels are
accounted for. There is a sodium channel with subscript Na, a potassium
channel with subscript K and an unspecific leakage channel with lower
index L. The leakage channel is described by a voltage-independent con-
ductance gL; the conductances of the other other ion channels are voltage
dependent. If the channels are fully open, they transmit currents with a
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Figure 1.21. Equilibrium function (a) and time constant (b) for the three variables
m;n; h in the Hodgkin-Huxley model.

maximum conductance gNa or gK, respectively. Normally, however, the
channels are partially blocked. The removal of the block is voltage de-
pendent and is described by the additional variables m;n, and h. The
combined action of m and h controls the Na channels. The K gates are
controlled by n.

The three variables m, n, and h evolve according to the differential equa-
tions

_m = �m(u)(1�m)� �m(u)m
_n = �n(u)(1� n)� �n(u)n
_h = �h(u)(1� h)� �h(u)h (1.60)

with _m = dm=dt, and so on. The � and � are empirical functions of u that
have been adjusted to fit the data of the giant axon of the squid. Reversal
potentials and conductances are also empirical parameters. In the appro-
priate units (of mS/cm2), the factors are gNa = 120, gK = 36, and gL = 0:3.
The reversal potentials are VNa = 115 mV, VK = �12 mV, and VL = 10:6
mV and the membrane capacity isC = 1 �F/cm2. Eqs. (1.58) - (1.60) define
the Hodgkin-Huxley model.

To get an idea of how the model works it is more convenient to write (1.60)
in the form

_x = � 1

�(u)
[x� x0(u)] (1.61)

where x stands for m, n, or h. If we force the voltage to a constant value u,
the variable xwould approach the value x0(u)with time constant �(u). The
asymptotic value x0(u) and the time constant �(u) are given by the trans-
formation x0(u) = �x(u)=[�x(u) + �x(u)] and �(u) = [�x(u) + �x(u)]

�1.
Using the parameters given by Hodgkin and Huxley [1952], we have plot-
ted the functions x0(u) and �(u) in Figure 1.21. The function x0(u) has
a sigmoidal shape with maximum slope at some ‘threshold’ �x; the time
constant � is significant only in a limited range around �x. Note that m
and n increase with u whereas h decreases. Thus, if some external input
causes the membrane voltage to rise, the ion conductance of sodium (Na)
increases due to increasing m and sodium flows into the cell. This raises
the membrane potential further and further and an action potential is initi-
ated. At high values of u the sodium conductance is shut off due to the fac-
tor h. Also potassium (K) outflow sets in which lowers the potential. Due
to the longer time constant �n(u), the potassium concentration reaches its
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Figure 1.22. Spike train for constant input current (a) and gain function (b) of the
Hodgkin-Huxley model.

equilibrium potential only slowly. The overall effect is a short action poten-
tial followed by a negative overshoot which decays slowly back to zero as
shown in Figure 1.22a. Numerical integration of Eqs. (1.58)-(1.60) shows
that a constant input I(t) = I0 larger than a critical value I� results in a
regular spike train. If the number of spikes during a large interval T is
counted and divided by T , a firing rate results. The firing rate as a function
of the input I0 is called the gain function of the Hodgkin-Huxley model. It
is plotted in Figure 1.22b.

Using the above equations and an appropriate set of parameters, Hodgkin
and Huxley were able to describe an enormous amount of data from ex-
periments on the giant axon of the squid. Due to its success in this special
system, there have subsequently been several attempts to generalize the
model in order to describe other experimental situations as well (for a re-
view see, e.g., [Jack et al., 1975].

Whereas the model had originally been designed to describe the form and
temporal change of an action potential during axonal transmission, a set of
equations completely analogous to Eqs. (1.58) to (1.60) has been also used
to describe spike generation at the soma of the neuron [Bernander et al.,
1991; Bush and Douglas, 1991 Ekeberg et al., 1991; Rapp et al., 1992; Traub
et al., 1991; Wilson et al. 1989; Yamada et al., 1989]. The main difference
is that additional ion channels have to be included, in particular those that
account for Ca2+ and the slow components of the potassium current. For
each type of ion channel i, a current Ii = gix

ni
i (u� Vi) is added. Here x is

yet another variable with dynamics (1.61). The conductance parameters gi,
the exponents ni, as well as the functions x0(u) and �(u) are adjusted to fit
experimental data. This approach leads to detailed compartmental models
briefly discussed at the end of this section.

Signal transmission and integration on dendrites have traditionally been
described by passive electric processes, most prominently in the dendritic
cable theory of Rall; see e.g. [Rall, 1964]. Such an approach can even ac-
count for some nonlinear dendritic phenomena [Abbott, 1991; Bernander
et al., 1991; Rapp et al., 1992]. A different approach to dendritic integra-
tion is based again on Hodgkin-Huxley type equations. The only change
with respect to the theory of axonal signal transmission is that a different
set of parameters for the conductivity of various channels are used on the
dendrites. If a few spatial compartments of the neuron are put together,
a set of more than 20 coupled nonlinear differential equations results (see
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e.g. [Traub et al., 1991]). Numerical solution of the system of equations
shows good agreement with experiments. This is an important indication
that a Hodgkin-Huxley type analysis is a useful tool in understanding the
properties of single neurons. It is however obvious that such an approach
is too detailed, if we want to describe large network of neurons.

1.2.4.2 Relation to the Spike Response Model

The system of equations proposed by Hodgkin and Huxley is rather com-
plicated. It consists of four coupled nonlinear differential equations and as
such is difficult to analyze mathematically. For this reason, several simpli-
fications of the Hodgkin-Huxley equations have been proposed. The most
common reduces the set of four differential equations to a system of two
equations [FitzHugh, 1961; Nagumo, 1962; Rinzel and Ermentrout, 1989;
Abbott and Kepler, 1990]. Two important approximations are made. First,
them dynamics which has a faster time course than the other variables (see
the plot for �m in Figure 1.21b) is considered to be instantaneous, so that
m can be replaced by its equilibrium value m0(u). Second, the equations
for n and h which have according to Figure 1.21b roughly the same time
constants are replaced by a single effective variable. [Rinzel and Ermen-
trout, 1989] and [Abbott and Kepler, 1990] have shown how to make such
a reduction systematically. The resulting two-dimensional model is often
called the Morris LeCar model or the FitzHugh-Nagumo Model. More
generally, the two-dimensional set of equations is also called a Bonho-
effer/Van der Pol oscillator. The advantage of a two-dimensional set of
equations is that it allows a systematic phase plane analysis. For a review
of the methods and results see the article of [Rinzel and Ermentrout, 1989]
in the review collection [Koch and Segev, 1989]. For a further reduction
of the two-dimensional model to an integrate-and-fire model, see [Abbott
and Kepler, 1990].

In this section, we will follow a somewhat different approach. We would
like to relate the Hodgkin-Huxley equations to our generic threshold model,
the Spike Response Model [Kistler et al., 1997]. To do so, we have to deter-
mine the following three terms which appear in the equations of the Spike
Response Model (1.28) and (1.30): (i) the kernel � which describes the re-
sponse to incoming pulses, (ii) the kernel � which describes the response
to spike emission, and (iii) the value of the threshold #.

We start with the kernel �. In the absence of input the membrane potential
u is at some resting value urest. To find the kernel �we perform a simulation
with a short square current pulse as the input

I(t) =
q

�
for 0 < t < � (1.62)

and zero otherwise. Here q is some small unit charge and �� 1 ms is the
duration of the pulse. (Formally, we consider the limit �! 0.) The voltage
response of the Hodgkin-Huxley model to this sub-threshold current pulse
defines the kernel �,

q �(t) = u(t)� urest : (1.63)



1.2 Neuron Models 39

0 5 10 15 20
-0.2

0

0.2

0.4

0.6

0.8

1

Figure 1.23. The voltage response of the Hodgkin-Huxley model to a short sub-
threshold current pulse defines the kernel � (solid line). If the same input current
pulse occurs a few milliseconds after an output action potential, the duration of the
response is reduced due to refractoriness (dashed line, input spike �t = 10.5 ms
after the output spike; dotted line �t = 6.5 ms) x-axis, time in ms; y-axis voltage in
mV ; taken from [Kistler et al., 1997].
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Figure 1.24. Threshold behavior of the Hodgkin-Huxley model. An input current
pulse of 1 ms duration (thick bar) can evoke either an action potential (solid line)
with amplitude 100 mV (out of scale) or a small response of about 10 mV (dashed)
depending on the precise value of the input current. x-axis, time in ms; y-axis
potential in mV. Solid line, input current 6.9 �Acm�2; dashed line, input current
7.0 �Acm�2 ; taken from [Kistler et al., 1997].

Here t > 0 is the time since the initiation of the pulse. The result is shown
in Figure 1.23. Since the input current pulse delivers a unit charge during
a very short amount of time � < 0:1ms, the �-kernel jumps almost instan-
taneously at time t = 0 to a value of 1 mV. For synaptic input currents of
finite width, the �-kernel would have a finite rise time.

The kernel � is found by a similar procedure. We take a square current
pulse as in (1.62) but with a charge q large enough to evoke a spike. The
principle is indicated in Fig 1.24. We consider a series of current pulses of
increasing q but the same duration of 1 ms. At a critical value of q the re-
sponses show an abrupt change from a response amplitude of about 10 mV
to an amplitude of nearly 100 mV. If q is increased even further, the form
of the pulse remains nearly the same. The kernel � allows us to describe
the standard form of the spike and the spike afterpotential in a convenient
manner. In order to define the kernel �, we set

�(s) = u(s)� urest (1.64)

where u(s) is the voltage trajectory after the supra-threshold current pulse.
The kernel �(s) is shown in Figure 1.25. The time s = 0 denotes the moment
of spike initiation.
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figure shows an excitatory postsynaptic potential (EPSP). In case of an inhibitory
postsynaptic potential (IPSP) the response would be negative. Note that the re-
sponse occurs only after some delay.

The third term to be determined is the threshold #. Even though Figure
1.24 suggests, that the Hodgkin-Huxley equation exhibits some type of
threshold behavior, the threshold is not well-defined [Koch et al., 1995]
and it is fairly difficult to estimate a voltage threshold directly from a sin-
gle series of simulations. We therefore take the threshold as a parameter
which will be adjusted by a procedure discussed below.

In Spike Response Model (SRM) approximation, we replace the full Hodgkin-
Huxley model by the equation

uSRM (t) = �(t� t̂) +

Z 1

0

�(s) I(t� s)ds (1.65)

where t̂ is the most recent firing time and the kernels � and � are defined
by (1.63) and (1.64), respectively. The next output spike occurs when the
threshold # is approached from below, i.e,. uSRM (t) = # and d

dtu
SRM (t) >

0.

To test the quality of the approximation (1.65) we compare the performance
of the reduced model (1.65) with that of the full Hodgkin-Huxley model
(1.58) - (1.60). Since it is our general assumption that timing is important,
we study the difficult case of a time-dependent input current I(t). The
same current is applied to both models and we compare the firing times of
the full Hodgkin-Huxley model with the spike times generated by (1.65).
Whenever the firing times differ by more than 2 ms, we record an error in
the performance of the SRM. Details may be found in [Kistler et al., 1997].

A time-dependent input current was generated stochastically by the fol-
lowing procedure. Every 2 ms a new target value for the input was drawn
from a Gaussian distribution with zero mean and variance � = 3�A/cm2.
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Figure 1.26. Spike train of the Hodgkin-Huxley model driven by a time dependent
input current. The action potentials ocurr irregularly. x-axis, time in ms; y-axis,
voltage in mV. Taken from [Kistler et al., 1997].

To get a continuous input current, a linear interpolation was used between
the target values. The resulting time-dependent input current was then
applied to the Hodgkin-Huxley model (1.58); a sample of the response is
shown in Figure 1.26. The spike train looks irregular with a broad distri-
bution of interspike intervals as is commonly found for cortical neurons.

The same input was then applied to the Spike Response Model (1.65). The
value of the threshold # was optimized so that the total number of spikes
generated by (1.65) was roughly that of the Hodgkin-Huxley model; see
[Kistler et al., 1997] for details. The spike times were then compared. About
70 per cent of the spikes of the Spike Response Model occurred within 2
ms of the action potentials of the Hodgkin-Huxley model. Moreover, the
voltage trace is generally well approximated by (1.65) except just after a
spike; see Figure 1.27. The inset in the lower left of Figure 1.27 shows that
in an interval where there is no spike, the voltage of the Spike Response
Model (dashed) closely follows that of the Hodgkin-Huxley model (solid
line). Immediately after a spike, the approximation is poor (inset lower
right).

Is there a simple way to improve the approximation? Obviously the prob-
lem is that (1.65) provides an incomplete description of refractoriness. In
(1.65) refractoriness appears only in form of the spike afterpotential de-
scribed by the kernel �. But refractoriness also has some other effects. Dur-
ing and immediately after a spike, the response to incoming current pulses
is reduced. This is shown in Figure 1.23 by the dashed lines. To take this
effect into account, we allow the kernel � to depend on the time since the
last output spike and replace (1.65) by

uSRM (t) = �(t� t̂) +

Z 1

0

�(t� t̂; s) I(t� s) ds : (1.66)

As before, t̂ denotes the firing time of the most recent output spike. In
order to find the kernel �(t � t̂; s) we determine numerically the response
to a short input current pulse (1.62) under the condition that the last output
spike was at t̂. The original kernel � in (1.65) corresponds to �(1; s), that
is, to the case in which the most recent output spike was long ago.

To test the performance of the improved approximation (1.66), we repeat
the simulations with the same stochastic input current I(t) as before and
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Figure 1.27. A segment of the spike train of the previous figure. The inset in the
lower left corner shows the voltage of the Hodgkin-Huxley model (solid) together
with the approximation of the Spike Response Model (dashed) during a period
where no spike occurs. The inset on the lower right shows the situation during and
after a spike. The approximation by the dashed line is not perfect, but the improved
approximation (dotted) defined by (1.66) yields a very good fit; taken from [Kistler
et al., 1997].

readjust the value of #. The approximation (1.66) increased the percentage
of firing times that coincided with the Hodgkin-Huxley action potentials
from 70 to 90 percent. This shows that threshold-fire models like the (im-
proved) Spike Response Model can indeed provide a simple and yet useful
description of neuronal dynamics.

1.2.4.3 Compartmental Models

The neuron models described so far did not include any spatial structure.
A neuron has been considered to be a point-like element and the main
focus has been on the process of spike generation. Compartmental mod-
els provide a more detailed description of neuronal dynamics by explicitly
taking into account the spatial structure of the dendritic tree and by model-
ing the synaptic transmission at a greater level of detail. Additionally, other
ion currents beyond the Na and K currents incorporated in the Hodgkin-
Huxley model are included in the description. Of particular interest have
been slow currents like Ca2+ and Ca-mediated K currents which are re-
lated to neuronal adaptation [Yamada et al., 1989]. The basic idea of a
compartmental model is indicated in Figure 1.28. Each small segment of
the dendritic tree is characterized by ionic and electrical properties, de-
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Figure 1.28. In a compartmental neuron model, each small segment of the dendritic
tree is modelled by an equivalent electrical circuit. Many more ionic conductances
gx could be present. For the sake of simplicity, the batteries representing the rever-
sal potentials have been suppressed in the drawing.

scribed by a capacitance C and a set of ionic conductances gx with reversal
potential Vx. Neighboring compartments are connected by a longitudinal
resistance r. For details, we refer the reader to the vast literature on com-
partmental models [Bernander et al., 1991; Busch et al., 1991; Ekeberg et al.,
1991; Rapp et al., 1992; Traub et al., 1991; Wilson et al., 1989; Yamada et al.,
1989], in particular to the reviews in [Koch and Segev, 1989] and [Bower
and Beeman, 1995].

Here we discuss a simplified linear model of dendritic structure as intro-
duced by Rall [Rall, 1964, 1989]. The dendritic tree is described by a chain
of compartments. In principle, we can allow for branching points, but for
the sake of simplicity we focus on a single chain. Each compartment con-
sists of a capacitor C in parallel with a resistor R which describe the linear
properties of a patch of membrane. As we have seen above, a more de-
tailed model would also contain non-linear conductances for various ionic
currents – these are neglected in our simplified linear model. Each com-
partment is connected via the axial resistor r to adjacent compartments.
The compartment with index n = 1 will be referred to as the somatic com-
partment.

In a chain of N neurons, conservation of current at each compartment
yields the equations

un+1 � un
r

� un � un�1
r

= C
dun
dt

+
un
R

(1.67)

for the interior compartments 2 � n � N � 1 and similar equations for
n = 1 and n = N . The terms on the left-hand side are the longitudinal
currents in and in�1 leading into and out of the compartment; see Fig 1.29.
The difference between the two currents branches off into compartment n
and either leaks through the membrane resistor R or charges the capacitor
C. We introduce the membrane time constant �m = RC and reorder the
terms yielding

�m
dun
dt

= �
�
1 + 2

R

r

�
un +

R

r
(un+1 + un�1) (1.68)
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Figure 1.29. A linear compartmental model of the dendritic tree. A current input
at compartment 2 at time s = 0 gives a strong and quickly rising voltage response
�2 at the somatic compartment 1 (solid line); the same current injected at comparte-
ment N � 1 gives a weaker and broader response at the soma (�N�1, dashed line).
Schematic drawing.

for the interior compartments 2 � n � N � 1. At the two ends we have

�m
du1
dt

= �
�
1 +

R

r

�
u1 +

R

r
u2 (1.69)

�m
duN
dt

= �
�
1 +

R

r

�
uN +

R

r
uN�1 (1.70)

Since (1.68) - (1.70) are linear equations, they can be solved exactly [Rall,
1989; Tuckwell, 1988; Abbott et al., 1991; Bressloff and Taylor, 1993]. For
example we can ask the following important question. What is the voltage
response of compartment number n = 1 (the soma) to a short input current
pulse into compartment number n (somewhere on the dendritic tree)? If
the input is close to the soma, e.g., n = 2, then the response is a fast rising
function with a well pronounced maximum; see Figure 1.29. If the input is
far away from the soma, the voltage at the soma rises more slowly. Thus
the main effect of a linear dendritic tree is that the shape of the postsy-
naptic potential (as measured at the soma) depends on the location of the
input. We can account for this effect in the generic Spike Response Model
by making the form of the response kernel � depend on the label of the
compartment where the synapse is located.

The situation becomes more complicated if the synaptic currents are mod-
eled at a greater level of detail. First, synaptic currents are not infinitely
short but are pulses of finite width. If the dendrite were linear and de-
scribed by (1.68) - (1.70) then the only difference would be that the post-
synaptic potential �(s) is somewhat broader. If the form and amplitude of
the synaptic current were always identical, then we could simply add the
individual postsynaptic potentials to get the total effect of the input as it is
seen at the soma.

Reality is somewhat more difficult, however, since the amplitude of the
synaptic input current itself depends on the voltage at the compartment
where the synapse is located. In detailed models, each presynaptic action
potential evokes a change in the synaptic conductance with standard time
course g(t�t(f)) where t(f) is the arrival time of the presynaptic pulse. The
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synaptic input current is modeled as

I(t� t(f)) = g(t� t(f)) [usyn(t)� urev] (1.71)

where usyn(t) is the voltage at the location of the synapse and urev is called
the reversal potential of the synapse.

The level of the reversal potential depends on the type of synapse. For
excitatory synapses, urev is larger than the resting potential. The synaptic
current then shows saturation. The higher the voltage usyn at the synaptic
compartment, the smaller the amplitude of the input current. A smaller
input current, however, evokes a postsynaptic potential of reduced ampli-
tude. The total postsynaptic potential is therefore not simply the sum of
independent contributions. Nevertheless, since the reversal potential of
excitatory synapses is usually significantly above the firing threshold, the
factor [usyn � urev] is nearly constant and saturation can be neglected.

For inhibitory synapses, the reversal potential is close to the resting poten-
tial and saturation plays an important role. This is sometimes described as
the ‘shunting’ phenomenon of inhibition. An action potential arriving at
an inhibitory synapse pulls the membrane potential towards the reversal
potential urev which is close to urest. Thus, if the neuron is at rest, in-
hibitory input hardly has any effect. If the membrane potential is instead
considerably above the resting potential, then the same input has a strong
inhibitory effect.

1.2.5 Rate Models

Before we end the chapter, we want to mention the formal neuron model
that is most widely used for the analysis of learning and memory in ar-
tificial neural networks - the sigmoidal unit. In standard neural network
theory, neural activity is described in terms of rates. The rate �i of neuron i
is an analog variable which depends nonlinearly upon the excitation ui of
the neuron,

�i = g(ui) (1.72)

where g(:) is usually taken as a sigmoidal function with g(u) ! 0 for u !
�1 and g(u) ! 1 for u ! 1; see Figure 1.30. The excitation is given by a
linear sum over all input connections

ui =
X
j2�i

wij�j (1.73)

where �j is the output rate of a presynaptic neuron j. The sum runs over
all neurons which send signals to neuron i. The paprameter wij , called
synaptic efficacy, is the weight attributed to the connection from j to i.

Equations (1.72) and (1.73) can be summarized in a single equation

�i = g

0
@X
j2�i

wij �j

1
A (1.74)
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Figure 1.30. The rate model used in standard neural network theory.

which is the starting point of standard neural network theory [Hertz et al.,
1991; Rojas, 1996; Haykin, 1994; Bishop, 1995].

Equation (1.74) is a static equation. It applies to situations where a station-
ary input (a set of firing rates �j) is mapped to a stationary output (the rate
�i). Is it possible to make the equation time-dependent? A straightforward
way to introduce dynamics into the rate equation (1.74) is to replace (1.74)
by a differential equation [Cowan, 1968]

�
d�i
dt

= ��i + g

0
@X
j2�i

wij�j

1
A (1.75)

with some time constant � . For stationary input and output, the left-hand
side of (1.75) vanishes and (1.75) reduces to (1.74). In other words, the
fixed-point solutions of (1.75) are given by (1.74).

Equation (1.75) provides a convenient way to introduce some time depen-
dence in the rate model (1.74), but can it be considered a realistic descrip-
tion of neuronal activity? As we have discussed in Section 1.1.2, an analog
variable defined by a spike count measure requires a long temporal aver-
aging window. It can therefore be used only if the input and the output
change on a slow time scale. Considering the fact that, for example, the
visual input changes due to saccades every 200-500 ms, a slowly changing
input can not always be assumed.

It has therefore been argued that the rate equation (1.75) refers to a popu-
lation average rather than to a temporal average. To make this clear in our
notation, we rewrite (1.75) as

�
dAk
dt

= �Ak + g

 X
l

Jkl Al

!
(1.76)

where Ak is the activity of a population k and the sum in the brackets
runs over all other populations l which send signals to k. Again we may
ask the question, whether (1.76) can be considered a realistic description
of the population dynamics. More specifically, what determines the time
constant � which limits the response time of the system? Is it given by
the membrane time constant of a neuron? It � really a constant or does it
depend on the input or activity of the system?

We will see later in the Chapter 10 on population dynamics that the popula-
tion activity of a group of spiking model neurons can react instantaneously
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to changes in the input. This suggests that the ‘time constant’ � in (1.76) is,
at least in some cases, extremely short. The theory of population dynam-
ics in Chapter 10 does not make use of the differential equation (1.76), but
works in a more general setting.

We are now at the end of our review of neuron models. We will return
to conductance based models and compartmental models in the context of
hardware implementations in Chapters 5 and 6. Most of the other chapters
will take one of the simple threshold-fire neurons as the computational
unit of the neural network using either the integrate-and-fire neuron or
the Spike Response Model. As we have seen, the two formulations are
roughly equivalent. In the following chapter, we will study the computa-
tional capabilities of simple networks of spiking neurons. For this purpose
a formulation with response kernels turns out to be most appropriate.

1.3 Conclusions

How do neurons encode information in a sequence of pulses? Even though
it is a fundamental question the problem of neural coding is still not fully
resolved. In this chapter, we have reviewed three concepts of rate codes,
viz. spike count over some time window, spike density in a histogram,
and population activity in an ensemble of neurons. All three concepts have
been successfully used in experimental data analysis, but may be criticized
on principal grounds. A constructive critic of rate codes may come from
a presentation of some candidate pulse codes, if their usefulness in terms
of computational power or ease of implementation can be shown. This
endeavor is the program of the book.

We have seen that it is often difficult to draw a clear border line between
pulse and rate codes. Whatever the name of the code, it should offer a
neural system the possibility to react quickly to changes in the input. This
seems to be a minimum requirement if fast behavioral reaction times are to
be accounted for.

If pulse coding is relevant, neural network theory must be based on spik-
ing neurons. Several pulsed neuron models have been reviewed in this
chapter. Conductance based neurons models operate on a detailed level of
description. If we want to investigate nonlinear interactions on the den-
drite, conductance based neuron models are a suitable level of description.

The classic example of a conductance based neuron model is the Hodgkin-
Huxley model. We have seen that the Hodgkin-Huxley model can be ap-
proximated by the Spike Response Model, if we use a suitable set of re-
sponse kernels. This suggests that models in the class of threshold-fire
models probably capture some important features of spiking neurons. Most
of the theoretical investigations in chapters 10-14 will make use of this
model class and use either the integrate-and-fire formulation or the for-
malism of the Spike Response Model.
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[Bernander et al., 1991] Bernander, Ö., Douglas, R. J., Martin, K. A. C., and
Koch C. (1991). Synaptic background activity influences spatiotem-
poral integration in single pyramidal cells. Proc. Natl. Acad. Sci. USA,
88:11569–11573.

[Bialek et al., 1991] Bialek, W., Rieke, F., de Ruyter van Stevenick, R. R.,
and Warland, D. (1991). Reading a neural code. Science, 252:1854–
1857.

[Bialek and Rieke, 1992] Bialek, W., and Rieke, F. (1992). Reliability and
information transmission in spiking neurons. Trends in Neurosciences,
15(11):428–433.

[Bishop, 1995] Bishop, C. M. (1995). Neural Networks for Pattern Recogni-
tion. Clarendon Press, Oxford.

[Bower, 1995] Bower, J. M., and Beeman, D. (1995). The Book of Genesis.
Springer, New York.

[Bressloff and Taylor, 1993] Bressloff, P. C., and Taylor, J. G. (1993).
Compartmental-model response function for dendritic trees. Biol. Cy-
bern., 70:199–207.

[Bush and Douglas, 1991] Bush, R. C., and Douglas, R. J. (1991). Synchro-
nization of bursting action potential discharge in a model network of
neocortical neurons. Neural Computation, 3:19–30.

[Cowan, 1968] Cowan, J. D. (1968). Statistical Mechanics of Nervous Nets.
Proc. 1967 NATO conference on Neural Networks, Springer, Berlin.



References 49

[de Ruyter van Stevenick and Bialek, 1988] de Ruyter van Stevenick, R. R.,
and Bialek, W. (1988). Real-time performance of a movement-
sensitive neuron in the blowfly visual system: coding and information
transfer in short spike sequences. Proc. R. Soc. B, 234:379–414.

[deCharms and Merzenich, 1996] deCharms, R. C., and Merzenich, M. M.
(1996). Primary cortical representation of sounds by the coordination
of action-potential timing. Nature, 381:610–613.

[DeAngelis et al., 1995] DeAngelis, G. C., Ohzwaw I., and Freeman, R. D.
(1995). Receptive-field dynamics in the central visual pathways.
Trends in Neurosci., 18:451–458.

[Eckhorn et al., 1988] Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse,
W., Munk, M., and Reitboeck, H. J. (1988). Coherent oscillations:
A mechanism of feature linking in the visual cortex? Biol. Cybern.,
60:121–130.

[Eckhorn et al., 1993] Eckhorn, R., Krause, F., and Nelson, J. L. (1993). The
rf-cinematogram: a cross-correlation technique for mapping several
visual fields at once. Biol. Cybern., 69:37–55.

[Eckhorn et al., 1990] Eckhorn, R., Reitboeck, H. J., Arndt, M., and Dicke,
P. (1990). Feature linking via synchronization among distributed as-
semblies: Simulations of results from cat visual cortex. Neural Compu-
tation, 2:293–307.

[Ekeberg et al., 1991] Ekeberg, O., Wallen, O., Lansner, A., Traven H.,
Brodin, L., and Grillner, S. (1991). A computer based model for re-
alistic simulations of neural networks. Biol. Cybern., 65:81–90.

[Engel et al., 1991a] Engel, A. K., König, P., and Singer, W. (1991). Direct
physiological evidence for scene segmentation by temporal coding.
Proc. Natl. Acad. Sci. USA, 88:9136–9140.

[Engel et al., 1991b] Engel, A. K., König, P., Kreiter, A. K., and Singer,
W. (1991). Interhemispheric synchronization of oscillatory neural re-
sponses in cat visual cortex. Science, 252:1177–1179.

[FitzHugh, 1961] FitzHugh, R. (1961). Impulses and physiological states
in models of nerve membrane. Biophys. J., 1:445–466.

[Georgopoulos et al., 1986] Georgopoulos, A. P., Schwartz, A., and Ket-
tner, R. E. (1986). Neuronal population coding of movement direction.
Science, 233:1416–1419.

[Gerstner, 1991] Gerstner, W. (1991) Associative memory in a network of
’biological’ neurons. Advances in Neural Information Processing Systems,
vol. 3, Morgan Kaufmann Publishers, San Mateo, CA, 84–90.

[Gerstner and van Hemmen, 1992] Gerstner, W., and van Hemmen, J. L.
(1992). Associative memory in a network of ‘spiking’ neurons. Net-
work, 3:139–164.

[Gerstner et al., 1993] Gerstner, W., Ritz, R., and van Hemmen, J. L. (1993).
A biologically motivated and analytically soluble model of collective
oscillations in the cortex: I. theory of weak locking. Biol. Cybern.,
68:363–374.


