
1 Introduction

1.1 Uncertainty in Robotics

Robotics is the science of perceiving and manipulating the physical world
through computer-controlled devices. Examples of successful robotic sys-
tems include mobile platforms for planetary exploration, industrial robotics
arms in assembly lines, cars that travel by themselves, and manipulators that
assist surgeons. Robotics systems are situated in the physical world, perceive
information on their environments through sensors, and manipulate through
physical forces.

While much of robotics is still in its infancy, the idea of “intelligent” manip-
ulating devices has an enormous potential to change society. Wouldn’t it be
great if all our cars were able to safely steer themselves, making car accidents
a notion of the past? Wouldn’t it be great if robots, and not people, would
clean up nuclear disaster sites like Chernobyl? Wouldn’t it be great if our
homes were populated by intelligent assistants that take care of all domestic
repair and maintenance tasks?

To do these tasks, robots have to be able to accommodate the enormous
uncertainty that exists in the physical world. There is a number of factors
that contribute to a robot’s uncertainty.

First and foremost, robot environments are inherently unpredictable. While
the degree of uncertainty in well-structured environments such as assembly
lines is small, environments such as highways and private homes are highly
dynamic and in many ways highly unpredictable. The uncertainty is partic-
ularly high for robots operating in the proximity of people.

Sensors are limited in what they can perceive. Limitations arise from sev-
eral factors. The range and resolution of a sensor is subject to physical limi-
tations. For example, cameras cannot see through walls, and the spatial res-
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olution of a camera image is limited. Sensors are also subject to noise, which
perturbs sensor measurements in unpredictable ways and hence limits the
information that can be extracted. And finally, sensors can break. Detecting
a faulty sensor can be extremely difficult.

Robot actuation involves motors that are, at least to some extent, unpre-
dictable. Uncertainty arises from effects like control noise, wear-and-tear,
and mechanical failure. Some actuators, such as heavy-duty industrial robot
arms, are quite accurate and reliable. Others, like low-cost mobile robots, can
be extremely flaky.

Some uncertainty is caused by the robot’s software. All internal models
of the world are approximate. Models are abstractions of the real world.
As such, they only partially model the underlying physical processes of the
robot and its environment. Model errors are a source of uncertainty that has
often been ignored in robotics, despite the fact that most robotic models used
in state-of-the-art robotics systems are rather crude.

Uncertainty is further created through algorithmic approximations. Robots
are real-time systems. This limits the amount of computation that can be
carried out. Many popular algorithms are approximate, achieving timely
response through sacrificing accuracy.

The level of uncertainty depends on the application domain. In some
robotic applications, such as assembly lines, humans can cleverly engineer
the system so that uncertainly is only a marginal factor. In contrast, robots
operating in residential homes or on other planets will have to cope with sub-
stantial uncertainty. Such robots are forced to act even though neither their
sensors, nor their internal models, will provide it with sufficient informa-
tion to make the right decisions with absolute certainty. As robotics is now
moving into the open world, the issue of uncertainty has become a major
stumbling block for the design of capable robot systems. Managing uncer-
tainty is possibly the most important step towards robust real-world robot
systems.

Hence this book.

1.2 Probabilistic Robotics

This book provides a comprehensive overview of probabilistic robotics. Prob-
abilistic robotics is a relatively new approach to robotics that pays tribute to
the uncertainty in robot perception and action. The key idea in probabilistic
robotics is to represent uncertainty explicitly using the calculus of probability
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theory. Put differently, instead of relying on a single “best guess” as to what
might be the case, probabilistic algorithms represent information by prob-
ability distributions over a whole space of guesses. By doing so, they can
represent ambiguity and degree of belief in a mathematically sound way.
Control choices can be made robust relative the uncertainty that remains,
and probabilistic robotics can even actively chose to reduce their uncertainty
when this appears to be the superior choice. Thus, probabilistic algorithms
degrade gracefully in the face of uncertainty. As a result, they outperform
alternative techniques in many real-world applications.

We shall illustrate probabilistic robotics with two motivating examples:
one pertaining to robot perception, and another to planning and control.

Our first example is mobile robot localization. Robot localization is theMOBILE ROBOT

LOCALIZATION problem of estimating a robot’s coordinates relative to an external reference
frame. The robot is given a map of its environment, but to localize itself rela-
tive to this map it needs to consult its sensor data. Figure 1.1 illustrates such
a situation. The environment is known to possess three indistinguishable
doors. The task of the robot is to find out where it is, through sensing and
motion.

This specific localization problem is known as global localization. In global
localization, a robot is placed somewhere in a known environment and has to
localize itself from scratch. The probabilistic paradigm represents the robot’s
momentary belief by a probability density function over the space of all lo-
cations. This is illustrated in diagram (a) in Figure 1.1. This diagram shows
a uniform distribution over all locations. Now suppose the robot takes a
first sensor measurement and observes that it is next to a door. Probabilis-
tic techniques exploit this information to update the belief. The ‘posterior’
belief is shown in diagram (b) in Figure 1.1. It places an increased proba-
bility at places near doors, and lower probability near walls. Notice that this
distribution possesses three peaks, each corresponding to one of the indistin-
guishable doors in the environment. Thus, by no means does the robot know
where it is. Instead, it now has three, distinct hypotheses which are each
equally plausible given the sensor data. We also note that the robot assigns
positive probability to places not next to a door. This is the natural result
of the inherent uncertainty in sensing: With a small, non-zero probability,
the robot might have erred in its assessment of seeing a door. The ability to
maintain low-probability hypotheses is essential for attaining robustness.

Now suppose the robot moves. Diagram (c) in Figure 1.1 shows the effect
on a robot’s belief. The belief has been shifted in the direction of motion.
It also possesses a larger spread, which reflects the uncertainty that is intro-
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Figure 1.1 The basic idea of Markov localization: A mobile robot during global local-
ization. Markov localization techniques will be investigated in Chapters 7 and 8.
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Figure 1.2 Top image: a robot navigating through open, featureless space may lose
track of where it is. Bottom: This can be avoided by staying near known obstacles.
These figures are results of an algorithm called coastal navigation, which will be dis-
cussed in Chapter 16. Images courtesy of Nicholas Roy, MIT.
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duced by robot motion. Diagram (d) in Figure 1.1 depicts the belief after
observing another door. This observation leads our algorithm to place most
of the probability mass on a location near one of the doors, and the robot is
now quite confident as to where it is. Finally, Diagram (e) shows a belief as
the robot travels further down the corridor.

This example illustrates many aspects of the probabilistic paradigm.
Stated probabilistically, the robot perception problem is a state estimation
problem, and our localization example uses an algorithm known as BayesBAYES FILTER

filter for posterior estimation over the space of robot locations. The repre-
sentation of information is a probability density function. The update of this
function represents the information gained through sensor measurements,
or the information lost through processes in the world that increase a robot’s
uncertainty.

Our second example brings us into the realm of robotic planning and con-
trol. As just argued, probabilistic algorithms can compute a robot’s momen-
tary uncertainty. But they can also anticipate future uncertainty, and take
such uncertainty into consideration when determining the right choice of
control. One such algorithm is called coastal navigation. An example of coastalCOASTAL NAVIGATION

navigation is shown in Figure 1.2. This figure shows a 2-D map of an actual
building. The top diagram compares an estimated path with an actual path:
The divergence is the result of the uncertainty in robot motion that we just
discussed. The interesting insight is: not all trajectories induce the same level
of uncertainty. The path in Figure 1.2a leads through relatively open space,
deprived of features that could help the robot to remain localized. Figure 1.2b
shows an alternative path. This trajectory seeks a distinct corner, and then
“hugs” the wall so as to stay localized. Not surprisingly, the uncertainty will
be reduced for the latter path, hence chances of arriving at the goal location
are actually higher.

This example illustrates one of the many ways proper consideration of
uncertainty affects the robot’s controls. In our example, the anticipation of
possible uncertainty along one trajectory makes the robot prefer a second,
longer path, just so as to reduce the uncertainty. The new path is better, in
the sense that the robot has a much higher chance of actually being at the
goal when believing that it is. In fact, the second path is an example of active
information gathering. The robot has, through its probabilistic considera-
tion, determined that the best choice of action is to seek information along
its path, in its pursuit to reach a target location. Probabilistic planning tech-
niques anticipate uncertainty and can plan for information gathering, and
probabilistic control techniques realize the results of such plans.
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1.3 Implications

Probabilistic robotics seamlessly integrates models with sensor data, over-
coming the limitations of both at the same time. These ideas are not just a
matter of low-level control. They cut across all levels of robotic software,
from the lowest to the highest.

In contrast with traditional programming techniques in robotics—such
as model-based motion planning techniques or reactive behavior-based
approaches—probabilistic approaches tend to be more robust in the face of
sensor limitations and model limitations. This enables them to scale much
better to complex real-world environments than previous paradigms, where
uncertainty is of even greater importance. In fact, certain probabilistic al-
gorithms are currently the only known working solutions to hard robotic
estimation problems, such as the localization problem discussed a few pages
ago, or the problem of building accurate maps of very large environments.

In comparison to traditional model-based robotic techniques, probabilistic
algorithms have weaker requirements on the accuracy of the robot’s models,
thereby relieving the programmer from the insurmountable burden to come
up with accurate models. Probabilistic algorithms have weaker requirements
on the accuracy of robotic sensors than those made by many reactive tech-
niques, whose sole control input is the momentary sensor input. Viewed
probabilistically, the robot learning problem is a long-term estimation problem.
Thus, probabilistic algorithms provide a sound methodology for many fla-
vors of robot learning.

However, these advantages come at a price. The two most frequently cited
limitations of probabilistic algorithms are computational complexity, and a need
to approximate. Probabilistic algorithms are inherently less efficient than their
non-probabilistic counterparts. This is due to the fact that they consider en-
tire probability densities instead of a single guess. The need to approximate
arises from the fact that most robot worlds are continuous. Computing exact
posterior distributions tends to be computationally intractable. Sometimes,
one is fortunate in that the uncertainty can be approximated tightly with a
compact parametric model (e.g., Gaussians). In other cases, such approxima-
tions are too crude to be of use, and more complicated representations must
be employed.

Recent developments in computer hardware has made an unprecedented
number of FLOPS available at bargain prices. This development has cer-
tainly aided the field of probabilistic robotics. Further, recent research has
successfully increased the computational efficiency of probabilistic algo-
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rithms, for a range of hard robotics problems—many of which are described
in depth in this book. Nevertheless, computational challenges remain. We
shall revisit this discussion at numerous places, where we investigate the
strengths and weaknesses of specific probabilistic solutions.

1.4 Road Map

This book is organized in four major parts.

• Chapters 2 through 4 introduce the basic mathematical framework that
underlies all of the algorithms described in this book, along with key al-
gorithms. These chapters are the mathematical foundation of this book.

• Chapters 5 and 6 present probabilistic models of mobile robots. In
many ways, these chapters are the probabilistic generalization of classi-
cal robotics models. They form the robotic foundation for the material
that follows.

• The mobile robot localization problem is discussed in Chapters 7 and 8.
These chapters combine the basic estimation algorithms with the proba-
bilistic models discussed in the previous two chapters.

• Chapters 9 through 13 discuss the much richer problem of robotic map-
ping. As before, they are all based on the algorithms discussed in the
foundational chapters, but many of them utilize tricks to accommodate
the enormous complexity of this problem.

• Problems of probabilistic planning and control are discussed in Chap-
ters 14 through 17. Here we begin by introducing a number of fundamen-
tal techniques, and then branch into practical algorithms for controlling a
robot probabilistically. The final chapter, Chapter 17, discusses the prob-
lem of robot exploration from a probabilistic perspective.

The book is best read in order, from the beginning to the end. However, we
have attempted to make each individual chapter self-explanatory. Frequent
sections called “Mathematical Derivation of . . . ” can safely be skipped on first
reading without compromising the coherence of the overall material in this
book.
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1.5 Teaching Probabilistic Robotics

When used in the classroom, we do not recommend to teach the chapters
in order—unless the students have an unusually strong appreciation of ab-
stract mathematical concepts. Particle filters are easier to teach than Gaussian
filters, and students tend to get more excited by mobile robot localization
problems than abstract filter algorithms. In our own teachings, we usually
begin with Chapter 2, and move directly to Chapters 7 and 8. While teaching
localization, we go back to the material in Chapters 3 through 6 as needed.
We also teach Chapter 14 early, to expose students to the problems related to
planning and control early on in a course.

As a teacher, feel free to use slides and animations from the book’s Web site
www.probabilistic-robotics.org

to illustrate the various algorithms in this book. And feel free to send us, the
authors, pointers to your class Web sites and any material that could help
others in teaching Probabilistic Robotics.

The material in this book is best taught with hands-on implementation
assignments. There is nothing more educational in robotics than program-
ming an actual robot. And nobody can explain the pitfalls and challenges in
robotics better than Nature!

1.6 Bibliographical Remarks

The field of robotics has gone through a series of paradigms for software design. The first major
paradigm emerged in the mid-1970s, and is known as the model-based paradigm. The model-MODEL-BASED

PARADIGM based paradigm began with a number of studies showing the hardness of controlling a high-
DOF robotic manipulator in continuous spaces (Reif 1979). It culminated in text like Schwartz
et al.’s (1987) analysis of the complexity of robot motion, a first singly exponential general mo-
tion planning algorithm by Canny (1987), and Latombe’s (1991) seminal introductory text into
the field of model-based motion planning (additional milestone contributions will be discussed
in Chapter 14). This early work largely ignored the problem of uncertainty—even though it
extensively began using randomization as a technique for solving hard motion planning prob-
lems (Kavraki et al. 1996). Instead, the assumption was that a full and accurate model of the
robot and the environment be given, and the robot be deterministic. The model had to be suf-
ficiently accurate that the residual uncertainty was managed by a low-level motion controller.
Most motion planning techniques simply produced a single reference trajectory for the control
of a manipulator, although ideas such as potential fields (Khatib 1986) and navigation functions
(Koditschek 1987) provided mechanisms for reacting to the unforeseen—as long as it could be
sensed. Applications of these early techniques, if any, were confined to environments where
every little bit of uncertainty could be engineered away, or sensed with sufficient accuracy.

The field took a radical shift in the mid-1980s, when the lack of sensory feedback became the
focus of an entire community of researchers within robotics. With strong convictions, the field
of behavior-based robotics rejected the idea of any internal model. Instead, it was the interactionBEHAVIOR-BASED

ROBOTICS
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with a physical environment of a situated agent (Kaelbling and Rosenschein 1991) that created
the complexity in robot motion (a phenomena often called emergent behavior (Steels 1991)). Con-
sequently, sensing played a paramount role, and internal models were rejected (Brooks 1990).

The enthusiasm in this field was fueled by some early successes that were far beyond the
reach of traditional model-based motion planning algorithms. One of them was “Genghis,”
a hexapod robot developed by Brooks (1986). A relatively simple finite state automaton was
able to control the gait of this robot even in rugged terrain. The key to success of such tech-
niques lay in sensing: the control was entirely driven by environment interaction, as perceived
through the robot’s sensors. Some of the early work impressed by creating a seemingly complex
robot through clever exploitation of environment feedback (Connell 1990). More recently, the
paradigm enjoyed commercial success through a robotic vacuum cleaning robot (IRobots Inc.
2004), whose software follows the behavior-based paradigm.

Due to the lack of internal models and a focus on simple control mechanism, most robot sys-
tems were confined to relatively simple tasks, where the momentary sensor information was
sufficient to determine the right choice of control. Recognizing this limitation, more recent
work in this field embraced hybrid control architectures (Arkin 1998), in which behavior-based
technique provided low-level control, whereas a model-based planner coordinated the robot’s
actions at a high, abstract level. Such hybrid architectures are commonplace in robotics today.
They are not dissimilar to the seminal work on three-layered architectures by Gat (1998), which
took its origins in “Shakey the Robot” (Nilsson 1984).

Modern probabilistic robotics has emerged since the mid-1990s, although its roots can be
traced back to the invention of the Kalman filter (Kalman 1960). In many ways, probabilistic
robotics falls in between model-based and behavior-based techniques. In probabilistic robotics,
there are models, but they are assumed to be incomplete and insufficient for control. There are
also sensor measurements, but they too are assumed to be incomplete and insufficient for con-
trol. Through the integration of both, models and sensor measurements, a control action can
be devised. Statistics provides the mathematical glue to integrate models and sensor measure-
ments.

Many of the key advances in the field of probabilistic robotics will be discussed in future
chapters. Some of the cornerstones in this field include the advent of Kalman filter techniques
for high-dimensional perception problems by Smith and Cheeseman (1986), the invention of
occupancy grid maps by (Elfes 1987; Moravec 1988), and the re-introduction of partially observ-
able planning techniques due to Kaelbling et al. (1998). The past decade has seen an explosion
of techniques: Particle filters have become vastly popular (Dellaert et al. 1999), and researchers
have developed new programming methodologies focused on Bayesian information processing
(Thrun 2000b; Lebeltel et al. 2004; Park et al. 2005). This development went hand in hand with
the deployment of physical robot systems driven by probabilistic algorithms, such as industrial
machines for cargo handling by Durrant-Whyte (1996), entertainment robots in museums (Bur-
gard et al. 1999a; Thrun et al. 2000a; Siegwart et al. 2003), and robots in nursing and health care
(Pineau et al. 2003d). An open-source software package for mobile robot control that heavily
utilizes probabilistic techniques is described in Montemerlo et al. (2003a).

The field of commercial robotics is also at a turning point. In its annual World Robotics Sur-
vey, the United Nations and the International Federation of Robotics 2004 finds a 19% annual increase
in the size of the robotic market worldwide. Even more spectacular is the change of market seg-
ments, which indicates a solid transition from industrial applications to service robotics and
consumer products.


