
ctionIntrodu

Switching theory is concerned with the development of models and techniques

useful in the analysis and synthesis of circuits for which the information is represented
in discrete or digital form . This form is opposed to the analog form in

which information is represented in a continuous manner .

Insight into the fundamental difference between a~alog and digital representation
of information will be gained if we consider the representation of the independent

variable x over some closed interval . In an analog system this variable

would be represented by a physical quantity such as a voltage level that is continuously
variable over a range of values . In a digital system the interval for the

variable x would be partitioned into a finite number of subintervals each of

which is placed in correspondence with a discrete state that the system can assume
. An example of a discrete circuit device is provided by the ordinary two -

position switch that can assume either of two states- either open or closed . A

system in which n such switch es are interconnected could provide a total of 2n
different states that the circuit could assume.

Before proceeding with a study of switching theory it is desirable to have

first a brief look at some of the areas in which digital circuits have application

and at some subject areas a knowledge of which will prove useful later .

A rapid application of digital techniques is currently occurring over a wide

range of human endeavor and is likely to continue since their range of application
does not appear to be limited . One of the largest and most spectacular examples

of a digital system is still provided by the dial telephone system , where a

great many decisions are continuously made and taken for granted each moment

of the day , determining call destinations , available interconnecting linkages , call

dispositions such as the return of busy signals , call completions , cost allocations ,

and the provision of fault information should a system failure occur . However ,

as in the past , it is the use of digital data -processing machines that is stimulating

the greatest interest in research in and application of digital techniques . The

question might be asked : Why digital ?

The answer lies in the fact that digital data -processing techniques provide reliable

and accurate interpretation and processing of data combined with high rates

of processing . An important result is the capability of decision making in real

time while an activity is in actual progress , whether it be some industrial process

or a spacecraft in flight . The precision of digital processing techniques results

2 INTRODUCTION

from error -free interpretation and manipulation of digital data . The representation
of data in digital form requires the quantization of time -varying data ; this

is commonly achieved by assigning levels of quantization nearest the value of the

function at instants of time defined by a timing source or clock . If the data are

quantized in binary form , the possibility of error in data interpretation is reduced
to a minimum since it is necessary to distinguish only between two extreme

data values . Once data are in binary form they can be processed without

the compounding errors that occur in a nonquantized data system (such as those

due to calibration errors). The end result of a set of operations on binary data

will always be the same no matter how many times it is repeated . This is an important

factor , for example , in the processing of commercial data where results

are required not to within some tolerance of error but to a precise figure .

The need for reliability plays an important part in the choice of digital systems

as digital devices continue to improve . Examples are provided by current space

programs : reliability of space communication is mandatory where the mission

duration is measured in months or years , and reliability of control is mandatory

where human safety is involved . An example of the latter is provided by the use

of a digital data processing link to close the control loop in the Apolio Command
and Lunar flight control system . A variety of operating modes is required

for this system , such as a checkout mode , primary mode , backup mode , pilot -

control mode , and so on . With an analog system the mode switching would involve

the changing of connections with an increase in component cost and a decrease

in the reliability estimate , whereas with a digital system the mode switching

is accomplished by branching to another stored program . In the latter case

the high reliability of fixed memory does not decrease the reliability estimate

(Miller 1966) .

Digital processing of information requires that the information be numerically

coded . For this reason an introduction is included in this chapter on the fundamental

characteristics of number systems in general and on the binary number

system in particular . Since there are applications where the number of calculations

per data set is small but the number of data sets large, it is desirable to

facilitate the input and output of data rather than the calculations themselves .

This is accomplished by a binary coding of each decimal digit instead of a conversion
of the decimal number to its binary equivalent ; a discussion of binary -

coded -decimal numbers is therefore included . Finally since analog -digital conversion
forms a necessary adjunct to many digital applications , a discussion of

cyclic codes is included .

1.1 NUMBER REPRESENTATION3

1 . 1 Number Representation

An efficient number representation utilizes what is called positional notation .

The concept of positional notation was actually used in the ancient computing

device known as the abacus but was not fully appreciated until centuries later .

In positional notation the value of a numerical symbol depends not only on the

symbol itself but also upon its position . The advantage of this notation is that

new symbols do not have to be invented as numbers become progressively larger .

An example where positional notation is not used is provided by the Roman

numeral system . In this system large numbers must be represented by a large
- - .

number of repetitions of 9IVeii "symbols . -TJJ .e . system is cumbersome but has the

advantage of simple arithmetic - addition or subtraction requires no memorization

of addition tables and is not concerned with carry Q ! . borrow generation . A

historical account of the various number systems that have been used by mankind

is given by Gardner (1968) .

In our familiarity with decimal numbers we tend to forget that the digits have

positional characteristics . If we express the number (371 . 625) ' 0 as a polynomial

in powers of 10 ,

(371 . 625) 10 = 3 X 102 + 7 X 101 + 1 X 100 + 6 X 10 - 1 + 2 X 10 - 2 + 5 X 10 - 3 ,

then we see that each digit position has a weight associated with it . The position

of digit 3 , for example , has the weight 102 . The number 10 from which the

weights are derived is called the base or radix of the number system .

Numbers other than 10 can be used to determine the weights in positional no :

tation . In general a number (N) is expressed in a baser positional number system

as

(N) , = (bibi - 1 . . . bo . b - 1 . . . b - j) "

where r is an integer > 1 , and bi is an integer whose value is given by the relation

0 ~ bi ~ r - 1 . The symbol II . " IS called the radix point . The set of juxtaposed

symbols is a shorthand notation for the polynomial

(N) , = bi , i + bi - 1 , i - 1 + . . . + bo ' o + b _ 1 , - 1 + . . . + b - i , - i .

Two number systems useful in computing machines are the octal and binary

number systems . The octal number system has eight symbols , 0 through 7 , and

4 INTRODUCTION

Table 1.1 Binary and Octal Equivalents
of the Decimal Digits

Decimal Octal Binary

0 00 0000

1 Q1 0001

2 02 0010

3 03 0011

4 04 0100

5 05 0101

6 06 0110

7 07 0111

8 10 1000

9 11

Table 1.1 shows the octal

1.2 Number-System Conversion
It is frequently necessary to be able to convert a number from one base to another

. This can be achieved by expressing the number as a polynomial in the

given number system and then evaluating this polynomial using the arithmetic
of the desired number system. For example, the decimal equivalent of the octal
number 563.5 is given by the summation

�

1001

the binary number system has two symbols , 0 and 1.

and binary representations of the decimal digits .

The decimal number (371.625) 10 is represented in the octal number system as
(563.5)81 and in the binary number system as (101110011.101)2'

'(N)10 = 5 X 82 + 6 X 81 + 3 X 80 + 5 X 8-1
= 320 + 48 + 3 + .625
= (371.625)10'

and that of the binary number 101110011.101 by the summation

(N)10 = 1 X 28 + 0 X 27 + 1 X 26 + 1 X 25 + 1 X 24 + 0 X 23 +.0 X 22
+ 1 X 21 + 1 X 20 + 1 X 2- 1 + 0 X 2- 2 + 1 X 2- 3

= 256 + 64 + 32 + 16 + 2 + 1 + .5 + .125
= (371.625)10'

The fractional part of the new number representation is obtained by repeated
multiplication of the decimal fraction by the new base. The integral values
(0 ~ bo ~ r - 1) obtained for each product form the new digits, and the digits
are formed in the order of decreasing significance. The integral part of each
product is disregarded in the succeeding multiplication . Thus, the conversion of
(.625)10 to its octal and binary equivalents is performed as follows :

5 1.2 NUMBER-SYSTEM CONVERSION

The conversion of a number from one base to another can also be obtained by

an iterative algorithm involving repeated division and multiplication by the base

of the number system ta which we wish to convert. The arithmetic is performed
in the number system from which we wish to convert, and the integral and fractional

parts are obtained separately. The procedure is best illustrated by conversion
from the decimal system. We consider the integral part first .

The integral part of the new number representation is obtained by repeated
division of the decimal integral part by the base of the new number system; the

remainders resulting from each division form the new base digits. For example,
the decimal number 371 is converted to its equivalent octal representation as
follows :

37178 = .46 with remainder 3 [<563)80
4678= 5 with remainder 6
578 = 0 with remainder 5

The remainders form the coefficients of increasing powers of 8; the coefficient 3
represents the number of units (8); the coefficient 6 represe~ts the number of

eights (81); and so forth . The conversion of (371)10 to its equivalent binary
representation is as follows :

371 72 = 185 with remainder 1

18572 = 92 with remainder 1

9272 = 46 with remainder 0

4672 = 23 with remainder 0

237 2 = 11 with remainder 1

11 72 = 5 with remainder 1

572 = 2 with remainder 1

272 = 1 with remainder 0

172 =

6 INTRODUCTION

0.625

X 2

0.5000.625
X 8

(.5)8 . . - 5 .000

X 2

1.000

sentation using octal arithmetic :

61 with remainder 5 [(495)100

4 with remainder 11

0 with remainder 4

757-;' 12
61-;' 12
4 -;' 12

=

=

If we prefer to avoid arithmetic in unfamiliar number systems , we can first

convert the number to the decimal number system by evaluation of the polynomial

, and then to the desired number system using repeated division and / or

multiplication .

Conversion from one number system to another becomes very simple when the

base of one number system is an integral power n of the base of another since

each combination of the n digits of the latter corresponds to one digit of the

former . The conversion can be obtained by inspection : in the conversion from

binary to octal the binary digits are grouped in sets of three starting at the

binary point (in either direction), and each set is then replaced by its octal

equivalent ; in the conversion from octal to binary each octal digit is replaced by

its equivalent of three binary digits .

It should be noted that it is not in general possible to convert a terminating fraction
in one number system to a terminatinq fraction in another number svstem .

As an example of number-system conversion using nondecimal arithmetic con.

sider the conversion of the octal number 757 to its equivalent decimal repre-

- . .
' .3 Binary Arithmetic

In this section , we consider some elementary arithmetic operations using binary

arithmetic . More -detailed treatments of the arithmetic techniques used in computers

are given by Chu (1962) and Richards (1971).

Binary addition follows rules similar to those we are accustomed to using in

decimal addition ; these are shown below for single -digit binary numbers . We see

7 1.3 BINARY ARITHMETIC

1,
1

(carry)

0 0

+ 1

1
+ 0

0

+ 1

0

As an example of multiple digit binary addition consider the addition of

1~ 11~11~ 10
+ 0

A general rule for adding a column of digits (in any base) is to add the digits
The sum is given by the remainder anddecimally and then divide by the base.

the carry by the quotient .

(borrow) 1\
0 0 1 1

- 0

0

- 1

1

- 0

1

- 1

0

In multiple digit subtraction there can never be a borrow from the least-significant
digit position just as in addition there can never be a carry into the least-

significant digit position . The binary subtraction of (10)10 from (25)10 follows .
Notice that the borrow from the mid-digit position results in borrows from the
two remaining digit positions.

(15)10 and (10)10 shown next . The arrows indicate carries of 1 into the next

1 0 1�

1 1 0 0 1

that the sum digit is 1 whenever only one of the digits has the value 1 and that a
carry of 1 is formed whenever both digits have the value 1.

1
0

The rules for binary subtraction are now given . In subtracting 1 from 0, we

borrow from the next more significant digit position .

more significant digit or bit positions. Note that a carry of 1 is first formed only
when both the augend and addend digits have the value 1, but that once f ()rmed,

additional carries continue to be generated so long as either the augend or addend
digit , or both , has the value 1.

+ 0-
1

8 INTRODUCTION

- 1 \ - 1 " , - 1 " , \

1 1 0 0 1

- 0 1 0 1 0

ations.

1
-

The five-digit negative representation is then 10110. In the complement number

system the leftmost bit , called the sign-bit , is 1 for negative numbers and 0 for
positive numbers. The 2's complement representation of a binary number is
conveniently obtained by complementing each binary digit (1's are replaced by
O's and vice versa) and then adding 1 in the least-significant digit position . The

subtraction of (10)10 from (15)10 can now be obtained by the addition of

- (1 0)10 to yield (00101)2 or (5)10; the most significant 1-bit is disregarded.

1
1

1
1

1
0

a
1

1
0

Another complement number system, called the diminished-radix or 1's com-

0 1 1 1 1

0 1 0 1 1 0

+
�

1 0 0 1 0 1

Since the number of digit positions in any machine con: putation is finite , we
can obtain a negative number representation from the fact that the sum of a
number and its negative must be zero. If we subtract an n-digit binary number,:
from 2n we obtain what is called the true or 2's complement of the number. For

example, if we represent the number (10) 10 by the five-digit binary number
01010, then the 2's complement representation of - (1 0) 10 is obtained by subtracting

01010 from 25 as follows :

0
1

a
a

0

1

0
0

0
0

 A problem arises in subtraction when the subtrahend is larger than the minu -

end . In longhand calculation this situation is dealt with by subtracting the

smaller number from the larger and affixing a negative sign to the difference .

The representation of negative numbers by sign and magnitude , however , may
not be the most convenient form for computing machines . A number system

using complement representation of negative numbers permits the implementation
of both addition and subtraction using only one or the other of these oper -

9 1.3 BINARY ARITHMETIC

piement system , is obtained if we subtract the binary number from 2n - 1. Thus ,

1
- 0

In this case the subtraction of (10)10 from (15)10 is obtained as follows :

0
+ 1

A disadvantage of the 1's complement system is that an end -around carry , generated
out of the sign-bit position , may be necessary . A further disadvantage is

that there are two representations for zero : a111's if it is obtained as a result of

addition , and all O's if it is obtained as a result of subtraction . An advantage is

that the complement is obtained by simply complementing each binary digit .

We see then that the complement representation of negative numbers enables

us to subtract using addition and to add using subtraction .

Multiplication in the binary system also follows the same rules as used in the

decimal system , but since the digits can only have the value 0 or 1, it is much

simpler . The process is illustrated here for the multiplication of (12.5)10 by

(5.0) 10' The location of the binary point is determined in the usual manner by

adding the number of digits to the right of the binary point in the multiplicand

and multiplier .

~

~

~

~

a

~

a a ~

~

oo ~ o ~

~

~ oo
o

~ ~

a

00
00

0

.

~

a ~

a

~

. .

a

a a ~

Note that the product can be obtained in iterative fashion by successive shift -

the 1's complement of - (10)10 is obtained as

�

0 0 1

qJ 0 1 o ~�

0 0 1 0 1

1
1

1
0

1

1

1
0

1
0

1
1

1
0

1
1

INTRODUCTION10

and-add operations. The multiplication of negative numbers is commonly obtained
by forming the product of the magnitudes with the sign determined separately
.

Division is similar to multiplication in that both operations involve three numbers
, one of which is the product of the other two . In binary multiplication we

saw that the product could be obtained by the iterated addition of the multiplicand
and zero corresponding to 1's and D's in the multiplier . It would appear

to follow that the quotient in division could be obtained in similar fashion by
iterated subtraction of the divisor or zero from the dividend . However, a difficulty

arises in knowing which should be subtracted. In longhand division , this

knowledge is obtained through trial and error or simply by inspection where
binary arithmetic is used. An algorithmic approach to the problem is to first
subtract the divisor and then note whether the remainder is positive or negative.
A positive remainder implies a quotient digit of 1 and a negative remainder a
quotient digit of O. In the latter case the subtraction can be nullified by adding
the divisor back into the remainder. The divisor is then shifted one position to

the right and the procedure repeated.
In another and shorter procedure, called nonrestoring division , a negative remainder

is followed by a right shift and addition . The result is the same either

way, since in the first procedure a negative remainder is followed by the operations
+D and - D/2 (where D is the divisor and a shift right of one position corresponds

to division by two) and in the second by the operationD /2. The technique

is illustrated by the binary division of (35)10 by (10)10.

Before proceeding with the foregoing technique, let us first , for comparative
purposes, divide by hand as shown here:

011 . 1

1010 V1 00011.0

In nonrestoring division the first subtraction is performed with the leftmost

digits of the dividend and divisor aligned as shown:

1010

1111
1010

1010
1010

0000

CODES11 1.4 BINARY

1.4 Binary Codes

A code may be regarded as a system of symbols arbitrarily used to represental -

phabetical , numerical , or other symbols . In this section , we will consider only

binary codes and will limit our discussion of these to include only computational

and cyclic codes .

The term computational codes here refers to the binary codes used in the coding
of individual decimal digits when it is desired to facilitate machine input and

output of data rather than the calculations on the data . The conversion of decimal
numbers to binary -coded representations is performed much more readily

than is their conversion to equivalent binary numbers . It is necessary to use a

minimum of 4 binary digits to code the 10 decimal digits since there are only

23 = 8 different combinations of 3 binary digits . The 4 binary digits provide

24 = 16 different combinations of which only 10 are used; the 16 combinations

provide 16 !/ 6 ! ~ 2 .9 X 1010 different code sets. Only a few of these code sets

have actually been used and for special reasons. It is desirable that the decimal

digit represented can be determined directly from the binary code digits . Such

codes are generally weighted , each digit position in the group carrying an assigned

weight . The decimal digit represented is then given by the summation

011 .1

1010 V100011 .0

Subtract 1010

Negative remainder (-) 0001010 qo = 0
Shift and add 1010

Positive remainder 011110 q1 = 1
Shift and subtract 1010

Positive remainder 01010 q2 = 1

Shift and subtract 1010

Positive remainder 0000 q3 = 1

We see that a negative remainder is followed by a shift -and -add operation ,

whereas a positive remainder is followed by a shift -and -subtact operation . Note

that the remainders corresponding to each quotient digit of qi = 1 are the same

as those obtained in the longhand division . I n the interest of clarity , negative

numbers have been represented by sign and magnitude in this example . In machine

computation , the 2 's complement representation is commonly used (Richards

1971)- see problem 1.15.

12 INTRODUCTION

Table 1.2 Binary-Coded-Decimal Representations

Dec. No. 8421 2421 735-6 Excess-3 2 Out of 5

0 0000 0000 0000 0011 00011

1 0001 0001 1001 0100 00101

2 0010 0010 0111 0101 00110

3 0011 0011 0010 0110 01001

4 0100 0100 1011 0111 01010

5 0101 1011 0100 1000 01100

6 0110 1100 1101 1001 10001

7 0111 1101 1000 1010 10010

8 1000 1110 0110 1011 10100

9 1001 1111 1111 1100 11000

bw , where the b 1 are the binary digits and the w 1 are the assigned weights.
A weighted code may use all positive weights, or it may use a combination of
both positive and negative weights. A number of weighted and unweighted bi-
nary codes is shown in table 1 .2.

In the 8421 code each decimal digit is represented by its exact binary equiva-

lent�the four weights are derived from 2 , 22, 21, and 20. For this particular
code each decimal digit is uniquely represented. All other positive-weighted
codes provide a choice of coding for some decimal digits. The 2421 code pro-
vides a choice of coding for the digits 2 through 7; the digit 3, for example, can

be coded eigher as 0011 or as 1001.

The choice of code groups shown in table 1 .2 for the 2421 code has the useful
computational property (in subtraction) that the code for the 9�s complement
of a decimal digit is obtained by simply complementing each binary digit of the
decimal digit representation. For example the binary code for decimal 6 (9�s
complement of decimal 3) is given as 1100 and this is obtained by complementa-
tion of the binary code 0011 for decimal 3. If the code for decimal 3 has been
chosen as 1001 then its complement (0110) would not be the binary code for
decimal 6. Codes for which the representation of the 9�s complement of a deci-

mal digit can be obtained by complementation of each binary digit are called
self-complementing codes. The 753-6 code is an example of a code employing
both positive and negative weights that is self-complementing. A necessary re-

quirement for a weighted code to be self-complementing is that the algebraic
sum of the weights is 9.

1.4 BINARY CODES13

The excess-3 code is a nonweighted code which is self -complementing . It is

formed by adding 3 to each of the 8421 code groups , and has the advantage of

providing immediate carry information .

The last code uses five binary bits and has the advantage that a single digit error

produces an invalid code that is easily detected . More complex codes can be

constructed for multiple error detection , error correction , or both (Peterson and

Weldon 1972) .

In the conversion of continuous data into binary form it is desirable to use

what are called cyclic codes . These codes have the characteristic that successive

code groups differ in only one digit position . The advantage of such codes lies in

the avoidance of spurious Incorrect coding . Consider , for example , the encoding

of the angular position of a shaft by means of 4 binary bits . It is not possible to

build sensing devices such that changes in each bit position always occur simultaneously
. As a result large errors could occur . Suppose that successive angular

positions of the shaft are to be coded in the binary number system and that the

shaft position is such that the binary code should change from 0111 to 1000 .

Then a momentary change of only the most significant bit would result in the

generation of the 1111 binary code , which would indicate a change in shaft position
of half a revolution ! If only one bit position is ever required to change

from one code to the next , then such errors cannot occur .

A particularly useful cyclic code is the Gray or reflected binary code shown in

table 1 .3 .

This code can be converted to the binary code , or vice versa, by means of single -

digit binary addition . For example , the conversion of the binary code to the

Gray code proceeds as follows : Starting in the least -significant position each digit

000
001

011
010
110
111
101
100

000

001

010
011
100
101
110
111

0
1
2

3
4

5
6

~

Table 1 .3 The Gray Code

Decimal Binary Gray

14 INTRODUCTION

1 0 1 1 1 0 0 1 1 Binary

1 1 1 0 0 1 0 1 0 Gray

Figure 1.1 Conversion of binary code to Gray code.

of the binary code is added to the next more significant digit to form the corresponding

Gray -code digits ; the most -significant digit remains unchanged . The

process is illustrated in figure 1.1.

It will be noted that the first and last code members of the Gray -code group

shown in table 1.3 also differ in only one digit position . Cyclic codes with this

characteristic are said to be closed . A complete cyclic code is one that utilizes all

possible combinations of the digit values .

References

Chu, Y. 1962. Digital computer design fundamentals. New York : McGraw-Hill .

Problems

1 . 1

Convert the following binary numbers to both their octal and decimal equivalents
:

a . 11010110

b . 01010101

c . 1101 .0110

d . 0101 .0101

' . 2

Convert the following decimal numbers to both their binary and octal equivalents
:

a . 137 .81 25

b . 13 .28

Gardner, M. 1968. Counting systems and the relationship between numbers and
the real world . Sci. Amer. 219 :218- 230.

Miller , J. E., ed. 1966. Space navigation guidance and control . Maiden head, England
: Technivision.

Peterson, W. W., and Weldon, E. J., Jr . 1972. Error -correcting codes. 2d ed. Cambridge
, Mass.: MIT Press.

Richards, R. K. 1971. Digital design. New York : Wiley.

15 PROBLEMS

1.3
Convert the following numbers to both their binary and decimal equivalents:

1.4

1.5
Convert the number (371) 10 to its equivalent quinary and octal number by ap-

c. inspection, forming first the equivalent binary number and then the quaternary
number.

1.8
Convert the decimal number 0.625 to its equivalent octal number by octal eval-

Perform the arithmetic operations shown below using binary addition only and

a. (765.24)8
b. (2120.12)3

Perform the following binary - arithmetic operations :

a . 011 . 01 + 101 . 10 + 001 . 11 + 100 . 01

b . 11011 . 101 - 1101 . 011 - 1001 . 101

propriate evaluations of the decimal polynomial .

1 . 6

Convert the number (0 . 1101) 2 to its equivalent decimal fraction using repeated

multiplication by the binary equivalent of decimal ten .

1 . 7

Convert the octal number 563 to its equivalent quaternary number by -

a . quaternary evaluation of the octal polynomial .

b . repeated division by the base four .

uation of the decimal polynomial .

1 . 9

assuming -

a . a 6 - bit 2 ' s complement number representation .

b . a 6 - bit 1 ' s complement number representation .

+ 22 - 22 - 22

- 8 + 8 - 8
- - -

1 . 10

Subtract (3 / 32) ' 0 from - (3 / 16) ' 0 assuming -

a . a 6 - bit 2 ' s complement representation .

b . a 6 - bit 1 ' s complement representation .

INTRODUCTION16

17 PROBLEMS

1 . 19

Construct addition and subtraction tables for a radix -3 number system .

1 .20

Can you derive an algorithm for converting Gray code to the ordinary binary
code ?

