Introduction

SOME OF the most significant challenges confronting autonomous robotics lie in the
area of automatic motion planning. The goal is to be able to specify a task in a high-
level language and have the robot automatically compile this specification into a set of
low-level motion primitives, or feedback controllers, to accomplish the task. The pro-
totypical task is to find a path for a robot, whether it is a robot arm, a mobile robot, or a
magically free-flying piano, from one configuration to another while avoiding obsta-
cles. From this early piano mover’s problem, motion planning has evolved to address
a huge number of variations on the problem, allowing applications in areas such as
animation of digital characters, surgical planning, automatic verification of factory
layouts, mapping of unexplored environments, navigation of changing environments,
assembly sequencing, and drug design. New applications bring new considerations
that must be addressed in the design of motion planning algorithms.

Since actions in the physical world are subject to physical laws, uncertainty, and
geometric constraints, the design and analysis of motion planning algorithms raises a
unique combination of questions in mechanics, control theory, computational and dif-
ferential geometry, and computer science. The impact of automatic motion planning,
therefore, goes beyond its obvious utility in applications. The possibility of building
computer-controlled mechanical systems that can sense, plan their own motions, and
execute them has contributed to the development of our math and science base by
asking fundamental theoretical questions that otherwise might never have been posed.

This book addresses the theory and practice of robot motion planning, with an eye
toward applications. To focus the discussion, and to point out some of the important
concepts in motion planning, let’s first look at a few motivating examples.



1 Introduction

Piano Mover’s Problem

The classic path planning problem is the piano mover’s problem [373]. Given a three-
dimensional rigid body, for example a polyhedron, and a known set of obstacles, the
problem is to find a collision-free path for the omnidirectional free-flying body from a
start configuration to a goal configuration. The obstacles are assumed to be stationary
and perfectly known, and execution of the planned path is exact. This is called offline
planning, because planning is finished in advance of execution. Variations on this
problem are the sofa mover’s problem, where the body moves in a plane among
planar obstacles, and the generalized mover’s problem, where the robot may consist
of a set of rigid bodies linked at joints, e.g., a robot arm.

The key problem is to make sure no point on the robot hits an obstacle, so we need
a way to represent the location of all the points on the robot. This representation is
the configuration of the robot, and the configuration space is the space of all con-
figurations the robot can achieve. An example of a configuration is the set of joint
angles for a robot arm or the one orientation and two position variables for a sofa in
the plane. The configuration space is generally non-Euclidean, meaning that it does
not look like an n-dimensional Euclidean space R”. The dimension of the configu-
ration space is equal to the number of independent variables in the representation of
the configuration, also known as the degrees of freedom (DOF). The piano has six
degrees of freedom: three to represent the position (x-y-z) and three to represent the
orientation (roll-pitch-yaw). The problem is to find a curve in the configuration space
that connects the start and goal points and avoids all configuration space obstacles
that arise due to obstacles in the space.

The Mini AERCam

NASA’s Johnson Space Center is developing the Mini AERCam, or Autonomous
Extravehicular Robotic Camera, for visual inspection tasks in space (figure 1.1). It
is a free-flying robot equipped with twelve cold gas thrusters, allowing it to generate
a force and torque in any direction. When operating in autonomous mode, it must
be able to navigate in a potentially complex three-dimensional environment. In this
respect the problem is similar to the piano mover’s problem. Since we have to apply
thrusts to cause motion, however, we need to plan not only the path the robot is to
follow, but also the speed along the path. This is called a trajectory, and the thruster
inputs are determined by the dynamics of the robot. In the piano mover’s problem,
we only worried about geometric or kinematic issues.



1 Introduction 3

Figure 1.1 NASA’s Mini AERCam free-flying video inspection robot.

(@) (b)

Figure 1.2 (a) The CyCab. (b) The Segway Human Transporter.

Personal Transport Vehicles

Small personal transport vehicles may become a primary means of transportation in
pedestrian-filled urban environments where the size, speed, noise, and pollution of
automobiles is undesirable. One concept is the CyCab [355], a small vehicle designed
by a consortium of institutions in France to transport up to two people at speeds up to
30 km/h (figure 1.2a). Another concept is the Segway HT, designed to carry a single
rider at speeds up to 20 km/h (figure 1.2b).



1 Introduction

To simplify control of vehicles in crowded environments, one capability under
study is automatic parallel parking. The rider would initiate the parallel-parking pro-
cedure, and the onboard computer would take over from there. Such systems will
soon be commercially available in automobiles. On the surface, this problem sounds
like the sofa mover’s problem, since both involve a body moving in the plane among
obstacles. The difference is that cars and the vehicles in figure 1.2 cannot instanta-
neously slide sideways like the sofa. The velocity constraint preventing instantaneous
sideways motion is called a nonholonomic constraint, and the motion planner must
take this constraint into account. Systems without velocity constraints, such as the
sofa, are omnidirectional in the configuration space.

Museum Tour Guides

In 1997, a mobile robot named RHINO served as a fully autonomous tour-guide at the
Deutsches Museum Bonn (figure 1.3). RHINO was able to lead museum visitors from
one exhibit to the next by calculating a path using a stored map of the museum. Because
the perfect execution model of the piano mover’s problem is unrealistic in this setting,
RHINO had to be able to localize itself by comparing its sensor readings to its stored

Figure 1.3 RHINO, the interactive mobile tour-guide robot.



1 Introduction 5

Figure 1.4 The Mars rover Sojourner. http://mars.jpl.nasa.gov/MPF/rover/sojourner.html.

map. To deal with uncertainty and changes in the environment, RHINO employed a
sensor-based planning approach, interleaving sensing, planning, and action.

Planetary Exploration

One of the most exciting successes in robot deployment was a mobile robot, called
Sojourner (figure 1.4), which landed on Mars on July 4, 1997. Sojourner provided up-
close images of Martian terrain surrounding the lander. Sojourner did not move very
far from the lander and was able to rely on motion plans generated offline on Earth
and uploaded. Sojourner was followed by its fantastically successful cousins, Spirit
and Opportunity, rovers that landed on Mars in January 2004 and have provided a
treasure trove of scientific data. In the future, robots will explore larger areas and thus
will require significantly more autonomy. Beyond navigation capability, such robots
will have to be able to generate a map of the environment using sensor information.
Mapping an unknown space with a robot that experiences positioning error is an
especially challenging “chicken and egg” problem—without a map the robot cannot
determine its own position, and without knowledge about its own position the robot
cannot compute the map. This problem is often called simultaneous localization and
mapping or simply SLAM.

Demining

Mine fields stifle economic development and result in tragic injuries and deaths each
year. As recently as 1994, 2.5 million mines were placed worldwide while only
100,000 were removed.



1 Introduction

Robots can play a key role in quickly and safely demining an area. The crucial first
step is finding the mines. In demining, a robot must pass a mine-detecting sensor over
all points in the region that might conceal a mine. To do this, the robot must traverse a
carefully planned path through the target region. The robot requires a coverage path
planner to find a motion that passes the sensor over every point in the field. If the
planner is guaranteed to find a path that covers every point in the field when such
a path exists, then we call the planner complete. Completeness is obviously a crucial
requirement for this task.

Coverage has other applications including floor cleaning [116], lawn mowing [198],
unexploded ordnance hunting [260], and harvesting [341]. In all of these applications,
the robot must simultaneously localize itself to ensure complete coverage.

Fixed-base Robot Arms in Industry

In highly structured spaces, fixed-base robot arms perform a variety of tasks, including
assembly, welding, and painting. In painting, for example, the robot must deposit a
uniform coating over all points on a target surface (figure 1.5). This coverage problem
presents new challenges because (1) ensuring equal paint deposition is a more severe
requirement than mere coverage, (2) the surface is not usually flat, and (3) the robot
must properly coordinate its internal degrees of freedom to drive the paint atomizer
over the surface.

Industrial robot installations are clearly driven by economic factors, so there is a
high priority on minimizing task execution time. This motivates motion planners that
return time-optimal motion plans. Other kinds of tasks may benefit from other kinds
of optimality, such as energy- or fuel-optimality for mobile robots.

.

Figure 1.5 ABB painting robot named Tobe.



1 Introduction 7

Figure 1.7 The Carnegie Mellon snake robot Holt mounted on a mobile base.

Snake Robots for Urban Search and Rescue

When a robot has more degrees of freedom than required to complete its task, the
robot is called redundant. When a robot has many extra degrees of freedom, then it is
called hyper-redundant. These robots have multidimensional non-Euclidean configu-
ration spaces. Hyper-redundant serial mechanisms look like elephant trunks or snakes
(figures 1.6 and 1.7), and they can use their extra degrees of freedom to thread through
tightly packed volumes to reach locations inaccessible to humans and conventional
machines. These robots may be particularly well-suited to urban search and rescue,
where it is of paramount importance to locate survivors in densely packed rubble as
quickly and safely as possible.

Robots in Surgery

Robots are increasingly used in surgery applications. In noninvasive stereotactic radio-
surgery, high-energy radiation beams are cross-fired at brain tumors. In certain cases,



1 Introduction

Figure 1.8 The motions of a digital actor are computed automatically. (Courtesy of J.C.
Latombe)

these beams are delivered with high accuracy, using six degrees of freedom robotic
arms (e.g., the CyberKnife system [1] ). Robots are also used in invasive procedures.
They often enhance the surgeon’s ability to perform technically precise maneuvers.
For example, the da Vinci Surgical System [2] can assist in advanced surgical tech-
niques such as cutting and suturing. The ZEUS System [3] can assist in the control
of blunt retractors, graspers, and stabilizers. Clearly, as robotics advances, more and
more of these systems will be developed to improve our healthcare.

Digital Actors

Algorithms developed for motion planning or sensor interpretation are not just for
robots anymore. In the entertainment industry, motion planning has found a wide
variety of applications in the generation of motion for digital actors, opening the way
to exciting scenarios in video games, animation, and virtual environments (figure 1.8).

Drug Design

An important problem in drug design and the study of disease is understanding how a
protein folds to its native or most stable configuration. By considering the protein as
an articulated linkage (figure 1.9), researchers are using motion planning to identify
likely folding pathways from a long straight chain to a tightly folded configuration. In
pharmaceutical drug design, proteins are combined with smaller molecules to form
complexes that are vital for the prevention and cure of disease. Motion planning



1.1

1.1  Overview of Concepts in Motion Planning 9

Figure 1.9 A molecule represented as an articulated linkage.

methods are used to analyze molecular binding motions, allowing the automated
testing of drugs before they are synthesized in the laboratory.

Overview of Concepts in Motion Planning

The previous examples touched on a number of ways to characterize the motion
planning problem and the algorithm used to address it. Here we summarize some
of the important concepts. Our characterization of a motion planner is according to
the task it addresses, properties of the robot solving the task, and properties of the
algorithm.! We focus on topics that are covered in this book (table 1.1).

Task

The most important characterization of a motion planner is according to the problem
it solves. This book considers four tasks: navigation, coverage, localization, and
mapping. Navigation is the problem of finding a collision-free motion for the robot
system from one configuration (or state) to another. The robot could be a robot arm,
a mobile robot, or something else. Coverage is the problem of passing a sensor or
tool over all points in a space, such as in demining or painting. Localization is the
problem of using a map to interpret sensor data to determine the configuration of the
robot. Mapping is the problem of exploring and sensing an unknown environment

1. This classification into three categories is somewhat arbitrary but will be convenient for introduction.



10

1 Introduction

Task Robot Algorithm

Navigate | Configuration space, degree of freedom | Optimal/nonoptimal motions

Map Kinematic/dynamic Computational complexity

Cover Omnidirectional or Completeness

Localize motion constraints (resolution, probabilistic)
Online/offline

Sensor-based/world model

Table 1.1 Some of the concepts covered in this book.

to construct a representation that is useful for navigation, coverage, or localization.
Localization and mapping can be combined, as in SLAM.

There are a number of interesting motion planning tasks not covered in detail in this
book, such as navigation among moving obstacles, manipulation and grasp planning,
assembly planning, and coordination of multiple robots. Nonetheless, algorithms in
this book can be adapted to those problems.

Properties of the Robot

The form of an effective motion planner depends heavily on properties of the robot
solving the task. For example, the robot and the environment determine the number
of degrees of freedom of the system and the shape of the configuration space. Once
we understand the robot’s configuration space, we can ask if the robot is free to
move instantaneously in any direction in its configuration space (in the absence of
obstacles). If so, we call the robot omnidirectional. If the robot is subject to velocity
constraints, such as a car that cannot translate sideways, both the constraint and the
robot are called nonholonomic. Finally, the robot could be modeled using kinematic
equations, with velocities as controls, or using dynamic equations of motion, with
forces as controls.

Properties of the Algorithm

Once the task and the robot system is defined, we can choose between algorithms
based on how they solve the problem. For example, does the planner find motions that
are optimal in some way, such as in length, execution time, or energy consumption?
Or does it simply find a solution satisfying the constraints? In addition to the quality of
the output of the planner, we can ask questions about the computational complexity of



1.1  Overview of Concepts in Motion Planning 11

the planner. Are the memory requirements and running time of the algorithm constant,
polynomial, or exponential in the “size” of the problem description? The size of the
input could be the number of degrees of freedom of the robot system, the amount of
memory needed to describe the robot and the obstacles in the environment, etc., and
the complexity can be defined in terms of the worst case or the average case. If we
expect to scale up the size of the inputs, a planner is often only considered practical if
it runs in time polynomial or better in the inputs. When a polynomial time algorithm
has been found for a problem that previously could only be solved in exponential
time, some key insight into the problem has typically been gained.

Some planners are complete, meaning that they will always find a solution to the
motion planning problem when one exists or indicate failure in finite time. This is a
very powerful and desirable property. For the motion planning problem, as the number
of degrees of freedom increases, complete solutions may become computationally
intractable. Therefore, we can seek weaker forms of completeness. One such form
is resolution completeness. It means that if a solution exists at a given resolution
of discretization, the planner will find it. Another weaker form of completeness is
probabilistic completeness. It means that the probability of finding a solution (if one
exists) converges to 1 as time goes to infinity.

Optimality, completeness, and computational complexity naturally trade off with
each other. We must be willing to accept increased computational complexity if we
demand optimal motion plans or completeness from our planner.

We say a planner is offline if it constructs the plan in advance, based on a known
model of the environment, and then hands the plan off to an executor. The planner is
online if it incrementally constructs the plan while the robot is executing. In this case,
the planner can be sensor-based, meaning that it interleaves sensing, computation, and
action. The distinction between offline algorithms and online sensor-based algorithms
can be somewhat murky; if an offline planner runs quickly enough, for example,
then it can be used in a feedback loop to continually replan when new sensor data
updates the environment model. The primary distinction is computation time, and
practically speaking, algorithms are often designed and discussed with this distinction
in mind. A similar issue arises in control theory when attempting to distinguish
between feedforward control (commands based on a reference trajectory and dynamic
model) and feedback control (commands based on error from the desired trajectory),
as techniques like model predictive control essentially use fast feedforward control
generation in a closed loop. In this book we will not discuss the low-level feedback
controllers needed to actually implement robot motions, but we will assume they are
available.



12

1.2

1 Introduction

Overview of the Book

Chapter 2 dives right into a class of simple and intuitive “Bug” algorithms requiring
a minimum of mathematical background to implement and analyze. The task is to
navigate a point mobile robot to a known goal location in a plane filled with unknown
static obstacles. The Bug algorithms are sensor-based—the robot uses a contact sensor
or arange sensor to determine when it is touching or approaching an obstacle, as well
as odometry or other sensing to know its current position in the plane. It has two basic
motion primitives, moving in a straight line and following a boundary, and it switches
between these based on sensor data. These simple algorithms guarantee that the robot
will arrive at the goal if it is reachable.

To move beyond simple point robots, in chapter 3 we study the configuration space
of more general robot systems, including rigid bodies and robot arms. The mathe-
matical foundations in this chapter allow us to view general path planning problems
as finding paths through configuration space. We study the dimension (degrees of
freedom), topology, and parameterizations of non-Euclidean configuration spaces, as
well as representations of these configuration spaces as surfaces embedded in higher-
dimensional Euclidean spaces. The forward kinematic map is introduced to relate one
choice of configuration variables to another. The differential of this map, often called
the Jacobian, is used to relate the velocites in the two coordinate systems. Material in
this chapter is referenced throughout the remainder of the book.

Chapter 4 describes a class of navigation algorithms based on artificial potential
functions. In this approach we set up a virtual potential field in the configuration
space to make obstacles repulsive and the goal configuration attractive to the robot.
The robot then simply follows the downhill gradient of the artificial potential. For
some navigation problems, it is possible to design the potential field to ensure that
following the gradient will always take the robot to the goal. If calculating such
a potential field is difficult or impossible, we can instead use one that is easy to
caclulate but may have the undesirable property of local minima, locations where
the robot gets “stuck.” In this case, we can simply use the potential field to guide a
search-based planner. Potential fields can be generated offline, using a model of the
environment, or calculated in real-time using current sensor readings. Purely reactive
gradient-following potential field approaches always run the risk of getting stuck in
local minima, however.

In chapter 5, we introduce more concise representations of the robot’s free space
that a planner can use to plan paths between two configurations. These structures are
called roadmaps. A planner can also use a roadmap to explore an unknown space. By
using sensors to incrementally construct the roadmap, the robot can then use the
roadmap for future navigation problems. This chapter describes several roadmaps



1.3

1.3 Mathematical Style 13

including the visibility graph, the generalized Voronoi diagram, and Canny’s original
roadmap. Chapter 6 describes an alternative representation of the free space called
a cell decomposition which consists of a set of cells of the free space and a graph
of cells with connections between adjacent cells. A cell decomposition is useful for
coverage tasks, and it can be computed offline or incrementally using sensor data.

Constructing complete and exact roadmaps of an environment is generally quite
computationally complex. Therefore, chapter 7 develops sampling-based algorithms
that trade completeness guarantees for a reduction of the running time of the planner.
This chapter highlights recent work in probabilistic roadmaps, expansive-spaces trees,
and rapidly-exploring random trees and the broad range of motion planning problems
to which they are applicable.

Probabilistic reasoning can also address the problems of sensor uncertainty and
positioning error that plague mobile robot deployment. We can model these uncer-
tainties and errors as probability distributions and use Kalman filtering (chapter 8)
and Bayesian estimation (chapter 9) to address localization, mapping, and SLAM
problems.

Just as the description of configuration space in chapter 3 provides many of the
kinematic and geometric tools used in path planning, the description of second-order
robot dynamics in chapter 10 is necessary for feasible trajectory planning, i.e., finding
motions parameterized by time. We can then pose time- and energy-optimal trajectory
planning problems for dynamic systems subject to actuator limits, as described in
chapter 11.

Chapter 11 assumes that the robot has an actuator for each degree of freedom.
In chapter 12 we remove that assumption and consider robot systems subject to
nonholonomic (velocity) constraints and/or acceleration constraints due to missing
actuators, or underactuation. We study the reachable states for such systems, i.e.,
controllability, using tools from differential geometry. The chapter ends by describing
planners that find motions for systems such as cars, cars pulling trailers, and spacecraft
or robot arms with missing actuators.

Mathematical Style

Our goal is to present topics in an intuitive manner while helping the reader appreciate
the deeper mathematical concepts. Often we suppress mathematical rigor, however,
when intuition is sufficient. In many places proofs of theorems are omitted, and the
reader is referred to the original papers. For the most part, mathematical concepts are
introduced as they are needed. Supplementary mathematical material is deferred to
the appendices to allow the reader to focus on the main concepts of the chapter.



14

(1.1

1 Introduction

Figure 1.10 A path is a curve in the free configuration space Qp.. connecting c(0) to c(1).

Throughout this book, robots are assumed to operate in a planar (R?) or three-
dimensional (R?) ambient space, sometimes called the workspace V. This workspace
will often contain obstacles; let WQ; be the ith obstacle. The free workspace is the
set of points Wiee = W\ |J; WO, where the \ is a subtraction operator.

Motion planning, however, does not usually occur in the workspace. Instead, it
occurs in the configuration space Q (also called C-space), the set of all robot con-
figurations. We will use the notation R(g) to denote the set of points of the ambient
space occupied by the robot at configuration g. An obstacle in the configuration space
corresponds to configurations of the robot that intersect an obstacle in the workspace,
ie., QO; ={q | R(q) WO, # #}. Now we can define the free configuration space
as Qpee = Q\ |J; QO;. We sometimes simply refer to “free space” when the meaning
is unambiguous.

In this book we make a distinction between path planning and motion planning. A
path is a continuous curve on the configuration space. It is represented by a continu-
ous function that maps some path parameter, usually taken to be in the unit interval
[0, 1], to a curve in Qg (figure 1.10). The choice of unit interval is arbitrary; any
parameterization would suffice. The solution to the path planning problem is a contin-
uous function ¢ € C° (see appendix C for a definition of continuous functions) such
that

c:[0,1] — Q where c(0) =gy, c(1) =¢ggoa and c(s) € Qfree Vs € [0, 1].

When the path is parameterized by time ¢, then c(¢) is a trajectory, and velocities
and accelerations can be computed by taking the first and second derivatives with



1.3 Mathematical Style 15

respect to time. This means that ¢ should be at least twice-differentiable, i.e., in the
class C?. Finding a feasible trajectory is called trajectory planning or motion planning.

In this book, configuration, velocity, and force vectors will be written as column
vectors when they are involved in any matrix algebra. For example, a configuration
g € R" will be written in coordinates as ¢ = [q1, g2, . . -, g.]* . When the vector will
not be used in any computation, we may simply refer to it as a tuple of coordinates,
e.g..q =(q1, g2, - - -, qn), without bothering to make it a column vector.



