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φ2(q0, q1, q2, q3) =
(

q0

|q2| ,
q1

|q2| ,
q3

|q2|
)

φ3(q0, q1, q2, q3) =
(

q0

|q3| ,
q1

|q3| ,
q2

|q3|
)

As we have seen above, Ri ∈ SO(3) represents a rotation, and the composition of
successive rotations, say R1 and R2, is represented by the rotation matrix R = R1 R2.
Likewise, multiplication of quaternions corresponds to the composition of successive
rotations. In particular, if Q1 and Q2 are two quaternions representing a rotation by
θ1 about axis n1 and a rotation by θ2 about axis n2, respectively, then the result of
performing these two rotations in succession is represented by the quaternion Q =
Q1 Q2. Using (E.22) through (E.25) it is straightforward to determine the quaternion
product. In particular, for two quaternions, X and Y , we compute their product,
Z = XY , as

z0 + i z1 + j z2 + kz3 = (x0 + i x1 + j x2 + kx3)(y0 + iy1 + yx2 + yx3)

= x0 y0 − x1 y1 − x2 y2 − x3 y3

+ i(x0 y1 + x1 y0 + x2 y3 − x3 y2)

+ j (x0 y2 + x2 y0 + x3 y1 − x1 y3)

+ k(x0 y3 + x3 y0 + x1 y2 − x2 y1).

By equating the real parts on both sides of the final equality, and by equating the
coefficients of i , j , and k on both sides of the final equality, we obtain

z0 = x0 y0 − x1 y1 − x2 y2 − x3 y3

z1 = x0 y1 + x1 y0 + x2 y3 − x3 y2

z2 = x0 y2 + x2 y0 + x3 y1 − x1 y3

z3 = x0 y3 + x3 y0 + x1 y2 − x2 y1.

The quaternion Q = (q0, q1, q2, q3) can be thought of as having the scalar compo-
nent q0 and the vector component q = [q1, q2, q3]T . Therefore, one often represents
a quaternion by a pair, Q = (q0, q). Using this notation, q0 represents the real part
of Q, and q represents the imaginary part of Q. Using this notation, the quaternion
product Z = XY can be represented more compactly as

z0 = x0 y0 − x T y

z = x0 y + y0x + x × y,

in which × denotes the vector cross product operator.
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For complex numbers, the conjugate of a + ib is defined by a − ib. Similarly, for
quaternions we denote by Q∗ the conjugate of the quaternion Q, and define

Q∗ = (q0, −q1, −q2, −q3).(E.31)

With regard to rotation, if the quaternion Q represents a rotation by θ about the axis
n, then its conjugate Q∗ represents a rotation by θ about the axis −n. It is easy to see
that

Q Q∗ = (
q2

0 + ||q||2, 0, 0, 0
)

(E.32)

and that

||Q Q∗|| = ∣∣∣∣(q2
0 + q2

1 + q2
2 + q2

3 , 0, 0, 0
)∣∣∣∣ =

∑
q2

i = ||Q||2.(E.33)

A quaternion, Q, with its conjugate, Q∗, can be used to perform coordinate trans-
formations. Let the point p be rigidly attached to a coordinate frame F , with local
coordinates (x , y, z). If Q specifies the orientation ofF with respect to the base frame,
and T is the vector from the world frame to the origin of F , then the coordinates of
p with respect to the world frame are given by

Q(0, x , y, z)Q∗ + T ,(E.34)

in which (0, x , y, z) is a quaternion with zero as its real component. Quaternions can
also be used to transform vectors. For example, if n = (nx , ny , nz) is the normal
vector to the face of a polyhedron, then if the polyhedron is rotated by Q, the new
direction of the normal is given by

Q(0, nx , ny , nz)Q∗.(E.35)
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LINEAR REPRESENTATIONS are concise. In this appendix we consider the special
case in which both the robot and all obstacles in the workspace are polygons (for
two-dimensional worlds) or polyhedra (for three-dimensional worlds). Since poly-
hedra are three-dimensional solids whose faces are polygons, we begin by developing
representations and computational methods for dealing with polygons. Although the
restriction to polygonal obstacle may seem to be unrealistic, nearly all modern motion
planning systems use polygonal models to represent obstacles (e.g., facet models that
are common in computer graphics and so-called polygon soup models that are used
in many CAD applications).

We begin the appendix by describing the representation of polygons in two dimen-
sions. Following this, we describe an algorithm for determining whether two polygons
intersect. This is the fundamental operation used by collision detection algorithms.
We then describe an efficient algorithm that constructs a boundary representation for
the configuration space obstacle region for the special case of Q = R

2 and discuss
configuration space obstacles for the case of Q = SE(2).

F.1 Representing Polygons in Two Dimensions

A straight line in the plane divides the plane into three disjoint regions: the line itself,
and the two regions that lie on either side of the line. To make this more precise,
consider the line given by

h(x , y) = ax + by − c = 0.(F.1)
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h(x,y) = x + y – 1 = 0

x + y – 1< 0

x + y – 1 > 0

x

y

Figure F.1 Half-planes defined by h(x , y) = x + y − 1.

This equation implicitly defines a line to be the set of points whose projection onto
the vector (a, b) is given by c. Thus, the vector (a, b) defines the normal to the line
and c gives the signed perpendicular distance from the origin to the line. We can
evaluate h for any point in the plane. Those points such that h(x , y) ≥ 0 are said to
lie in the positive half plane, represented by h+. Points in h+ are those points whose
projection onto the normal is greater than the signed distance to the line. Those points
such that h(x , y) ≤ 0 are said to lie in the negative half plane, represented by h−.
The line itself is the intersection h− ∩ h+. Figure F.1 shows an example for which
the points (0, 5), (3, 5) lie in the negative half plane, while points (0, 0), (2, 2) lie in
the positive half plane. Note that we can easily change the sense of the half planes by
multiplying h by −1.

We can use half planes to construct polygons. In particular, we define a convex
polygonal region in R

2 to be the intersection of a finite number of half planes. For
example, the three lines

h1(x , y) = −x + y − 3

h2(x , y) = −y

h3(x , y) = x

can be used to construct a convex polygonal region by taking the intersection of the
three half planes h−

1 , h−
2 , and h−

3 , as shown in figure F.2. For consistency, we will
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x

y

x = 0

–x + y = 3

–y = 0

Figure F.2 A convex polygonal region constructed from the half planes h−
1 , h−

2 , and h−
3 .

always define convex polygonal regions as the intersection of negative half planes.
If hi (x , y) ≤ 0 for each line that defines the convex polygonal region, then the point
(x , y) lies inside the corresponding polygonal region. If hi (x , y) > 0 for any line
that defines the convex polygonal region, then the point lies outside the corresponding
polygonal region. Note that a convex polygonal region need not be finite. For example,
by our definition, the half space x + y−1 ≤ 0 is a valid convex polygonal region, even
though it is unbounded (recall that a region is said to be convex if for all pairs of points
in the region, the line segment connecting those points lies entirely within the region).

We define a polygonal region (possibly nonconvex) to be any subset of R
2 obtained

by taking the union of a finite number of convex polygonal regions. Polygonal regions
need not be bounded or connected, and connected polygonal regions need not be
simply connected (e.g., the union of two disjoint convex polygons is a polygonal
region, but it is not connected). Finally, a polygon is any closed, simply connected
polygonal region (alternatively, a polygonal region that is homeomorphic to a closed
unit disk in the plane).
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It is often convenient to represent a polygon by listing its vertices, e.g., in counter-
clockwise order (it is straightforward to determine the hi given the set of vertices).
This approach is used in sections F.2 and F.3, where we discuss how to construct the
configuration space obstacle and then how to determine if a robot intersects it.

F.2 Intersection Tests for Polygons

In this section, we develop an algorithm for determining whether two polygons have
a nonempty intersection. Such intersection tests are the essential primitive operations
for collision detection algorithms used by most all modern path planners. Furthermore,
for the specific case of Q = R

2 with polygonal obstacles, the intersection test that
we develop here provides useful insight for developing an algorithm to explicitly
construct the configuration space obstacle region, as described below in section F.3.
We begin by considering the specific problem of testing for the intersection of a
convex, polygonal robot with a specific convex, polygonal obstacle.

We will assume that the configuration of the robot is specified by q = (x , y, θ )
and that the obstacle polygon is specified by a list of its vertices. It will also be
convenient to explicitly represent the normal vectors for each edge of both the robot
and the obstacle. We denote these normal vectors by nR

i for the normal to edge i of
the robot and nW

j for the normal to edge j of obstacle W . Note that the normals for
the robot edges depend on the orientation (but not the x , y-coordinates) of the robot;
we will often explicitly represent this dependence by the notation nR

i (θ ). We denote
the vertices of the robot by ri , and the edges by E R

i . Similarly, we will denote the
vertices of obstacle W by o j and edges EW

j . Figure F.3 illustrates the notation.
Under these conditions, the problem of determining whether the robot intersects the

obstacle is equivalent to determining whether the robot configuration lies within the
configuration space obstacle region. The approach that we develop here identifies
the defining half spaces for the configuration space obstacle region for a fixed robot
orientation, θ . If the robot configuration is contained in each of these half spaces,
then it lies in the configuration space obstacle polygon (since this polygon is merely
the intersection of the half spaces), and the robot and obstacle intersect.

The problem of identifying these defining half spaces is equivalent to determining
the boundary of the configuration space obstacle polygon. Recall that for a fixed value
of θ , the boundary of this polygon corresponds to the set of configurations in which the
robot and obstacle touch, but do not overlap. (If the robot and obstacle overlap, then
we can move the robot to any configuration in a neighborhood and remain within the
obstacle polygon.) For the kth obstacle, this condition can be expressed by

R(q) ∩ W �= ∅ and int (R(q)) ∩ int (W) = ∅.(F.2)



Choset-79066 book February 23, 2005 12:24

F.2 Intersection Tests for Polygons 503

nj

Ej

oj+1ri+1

ri

Ei
R

ni
R oj

Figure F.3 Notation used to define vertices, normals and edges of the robot and obstacle
polygon.

R

R

R

(a) (b) (c)

Figure F.4 (a) Type A contact, (b) Type B contact, (c) Both Type A and Type B contact.

For configurations that satisfy (F.2), there are only two possible kinds of contacts:

Type A Contact: an edge of R, say E R
i , contains a vertex, o j , of W .

Type B Contact: an edge of W , say EW
j , contains a vertex, ri , of R.

Each possible type A or type B contact defines one half space that defines the config-
uration space obstacle polygon. Type A and B contacts are illustrated in figure F.4.
Note that in figure F.4(c), both type A and B contacts occur simultaneously.
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We begin with the case of type A contact. Type A contact between edge E R
i and

vertex o j is possible only for certain orientations θ . In particular, such contact can
occur only when θ satisfies

(o j−1 − o j ) · nR
i (θ ) ≥ 0 and (o j+1 − o j ) · nR

i (θ ) ≥ 0.(F.3)

This condition is sometimes referred to as an applicability condition. Note that the
normals for the edges of R are a function of configuration, but only of θ , and not of
the x , y coordinates. The condition in (F.3) can also be expressed as the condition that
a negated edge normal of the robot lies between the normals of an adjacent obstacle
edge. This latter formulation of the condition is used below in section F.3. Note that
(F.3) is satisfied with equality when an edge of the obstacle is coincident with an edge
of the robot.

Each pair, E R
i and o j , that satisfies (F.3), defines a half space that contains the

configuration space obstacle polygon. This half space is defined by

f R
i j (x , y, θ ) = nR

i (q) · (o j − ri (x , y, θ )) ≤ 0.(F.4)

This is illustrated in figure F.5.

R

y

x

Figure F.5 The half space defined by this contact is below the thick black line that passes
through the origin of the robot’s coordinate frame.
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E2
R

E1
R

E3
R

r3

r2

o4o3 E3

E1

E2 E4

o1o2

r1

Figure F.6 The obstacle is shown on the left, and the robot on the right.

Type B contact is analogous to type A contact, but the roles of robot and obstacle
are reversed. In particular, type B contact can occur between obstacle edge EW

j and
robot vertex ri when

(ri−1(θ ) − ri (θ )) · nW
j ≥ 0 AND (ri+1(θ ) − ri (θ )) · nW

j ≥ 0.(F.5)

The corresponding half space is defined by

f W
i j (x , y, θ ) = nW

j · (ri (x , y, θ ) − o j ) ≤ 0.(F.6)

Each type A or B contact defines one half space that contains the configuration
space obstacle polygon. The configuration (x , y, θ ) causes a collision only if it lies in
each of these half spaces. Therefore, determining collision amounts to determining
which i, j satisfy (F.3) or (F.5), and then verifying (F.4) or (F.6), respectively.

As an example, consider the robot and obstacle shown in figure F.6. Figure F.7(a)
shows a case in which the robot and obstacle have a nonempty intersection. The
following table shows the possible type A and B contacts (the first three entries of the
table are the type A contacts), the definitions of the corresponding half spaces, and
whether or not the half space constraints are satisfied. As can be seen, each applicable
half space constraint is satisfied, and thus it is determined that the robot and obstacle
are in collision.
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(a) (b)

r3

r2 r2

r3

r1 r1

o2

o3 o4

o1

o2

o3 o4

o1

Figure F.7 The applicability conditions and half spaces for these two cases are shown in the
table below.

Contact pair half space inequality satisfied?

E R
1 , ok

4 nR
1 (θ ) · (ok

4 − r1(x , y, θ ) ≤ 0 yes
E R

2 , ok
1 nR

2 (θ ) · (ok
1 − r2(x , y, θ ) ≤ 0 yes

E R
3 , ok

3 nR
3 (θ ) · (ok

3 − r3(x , y, θ ) ≤ 0 yes

EWk
1 , r3 nWk

1 · (r3(x , y, θ ) − ok
1 ≤ 0 yes

EWk
2 , r3 nWk

2 · (r3(x , y, θ ) − ok
2 ≤ 0 yes

EWk
3 , r1 nWk

3 · (r1(x , y, θ ) − ok
3 ≤ 0 yes

EWk
4 , r2 nWk

4 · (r2(x , y, θ ) − ok
4 ≤ 0 yes

Figure F.7(b) shows a case in which the robot and obstacle do not intersect. The
following table shows the possible type A and B contacts, the definitions of the
corresponding half spaces, and whether or not the half space constraints are satisfied.
As can be seen, one of the applicable half space constraints is not satisfied, and thus
it is determined that the robot and obstacle are not in collision.
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Contact pair half space inequality satisfied?

E R
1 , ok

4 nR
1 (θ ) · (

ok
4 − r1(x , y, θ )

) ≤ 0 no
E R

2 , ok
1 nR

2 (θ ) · (
ok

1 − r2(x , y, θ )
) ≤ 0 yes

E R
3 , ok

3 nR
3 (θ ) · (

ok
3 − r3(x , y, θ )

) ≤ 0 yes

EWk
1 , r3 nWk

1 · (
r3(x , y, θ ) − ok

1

) ≤ 0 yes
EWk

2 , r3 nWk
2 · (

r3(x , y, θ ) − ok
2

) ≤ 0 yes
EWk

3 , r1 nWk
3 · (

r1(x , y, θ ) − ok
3

) ≤ 0 yes
EWk

4 , r2 nWk
4 · (

r2(x , y, θ ) − ok
4

) ≤ 0 yes

Suppose the robot and obstacles are not convex (note, the case of a nonconvex
obstacle includes the case of multiple disconnected obstacle regions in the workspace).
In this case, one can always partition the robot and obstacle into collections of convex
polygons, {Rl} and {Wk}, respectively. To determine if the robot and obstacle are in
collision, we merely check to see if any pair Rl and Wk are in collision, using the
method described above.

F.3 Configuration Space Obstacles in Q = R
2: The Star Algorithm

It is sometimes convenient to explicitly represent the configuration space obstacle
region in the special case of Q = R

2 (e.g., when using the visibility graph approach
described in section 5.1). For a convex robot and obstacle, it is straightforward to
derive a boundary representation for the configuration space obstacle region using
the ideas developed in the preceding section.

As described above, for each satisfied applicability condition, (F.3) or (F.5), one half
space is defined by (F.4) or (F.6), respectively. To construct the representation of the
boundary of the configuration space obstacle region, we need only find the vertices
that are defined by the intersections of the lines that define these half spaces. The
algorithm that we develop here, sometimes called the star algorithm, is a particularly
efficient way to do so.

The heart of the algorithm lies in the following observations. When the applicability
condition

(o j−1 − o j ) · nR
i (θ ) ≥ 0 and (o j+1 − o j ) · nR

i (θ ) ≥ 0

is satisfied and there is a contact between E R
i and vertex o j , of W , this contact will

be maintained as the robot translates, maintaining contact with the vertex. At one
extreme of this motion, the vertices o j and ri coincide, while at the other extreme,
vertices o j and ri+1 coincide. These extremes define two vertices of the configuration
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space obstacle region

o j − ri (0, 0, θ ), and o j − ri+1(0, 0, θ ).

Analogously, when the applicability condition

(ri−1(θ ) − ri (θ )) · nW
j ≥ 0 and (ri+1(θ ) − ri (θ )) · nW

j ≥ 0

is satisfied and there is a contact between obstacle edge EW
j and robot vertex ri , this

contact will be maintained as the robot translates, maintaining contact with the edge.
At one extreme of this motion, the vertices o j and ri coincide, while at the other
extreme, vertices o j+1 and ri coincide. These extremes define two vertices of the
configuration space obstacle region

o j − ri (0, 0, θ ), and o j+1 − ri (0, 0, θ ).

The enumeration of satisfied applicability conditions can be made particularly
efficient by recalling that these conditions can be expressed in terms of the orientations
of the robot and obstacle edge normals. We first negate the edge normals of the robot,
then sort the merged list of obstacle and negated robot edge normals by orientation.
We then scan this sorted list, and construct the appropriate vertices each time a negated
robot edge normal lies between adjacent obstacle edge normals, or vice versa.

We note here that the algorithm described above is an implementation of the
Minkowski difference, a useful operation in many computational geometry applica-
tions. The Minkowski difference between the robot and a convex obstacle is defined by

WO � R(q) = {q ∈ Q : q = c − r where r ∈ R(q) and c ∈ WO}(F.7)

where � is the Minkowski difference operator [124].

F.4 Configuration Space Obstacles in Q = SE(2)

As we have seen in chapter 3, a polygon in the plane has three degrees of freedom,
two for translation and one for rotation, and its configuration space is Q = SE(2).
Consider a polygonal robot in a workspace that contains a single obstacle. For a fixed
orientation, the configuration space of the polygon is reduced to R

2. Thus, one way to
visualize this configuration space is to “stack” a set of two-dimensional configuration
spaces, where each slice in the stack corresponds to the (x , y) configurations of the
robot at a fixed orientation θ and the vertical axis represents the orientation of the
robot. An example is shown in figure F.8.
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x y

q

Figure F.8 The configuration space obstacle for a triangle-shaped robot in a workspace that
contains a single, five-sided obstacle [69, 70].

F.5 Computing Distances between Polytopes in R
2 and R

3

In many applications, it is useful to know the minimum distance between two objects
in addition to knowing whether or not they are in contact. We have seen in chapter 2
that knowledge of distance is essential for implementing the Bug family of algorithms.
Moreover, minimum distance calculations are essential for collision detection, which
is merely a special case of minimum distance calculations: if the minimum distance
between two objects is zero, then they are in contact. In this section, we present
an algorithm originally described by Gilbert, Johnson and Keerthi for computing
the distance between convex polytopes, commonly referred to as the GJK distance
computation algorithm [163].

We define the distance between polytopes A and B as

d( A, B) = min
a∈A,b∈B

‖a − b‖.(F.8)

We reformulate (F.8) in terms of the Minkowski difference of two polytopes, i.e.,

A � B = {z | z = a − b, a ∈ A, b ∈ B} = Z .(F.9)

Using (F.9) we can rewrite (F.8) as

d( A, B) = min
a∈A,b∈B

‖a − b‖ = min
z∈A�B

‖z‖,(F.10)
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and we have reduced the problem of computing the distance between two polytopes
to the problem of computing the minimum distance from one polytope to the origin.

In section F.3 we have seen an implementation of the Minkowski difference to
construct the configuration space obstacle region. From this, it is easy to see that
the Minkowski difference of two convex polytopes is itself a convex polytope. Since
Z = A � B is a convex set, and since the norm, ‖z‖, is a convex function, z∗ =
arg minz∈Z ‖z‖ is unique. Thus, there is a unique solution to (F.10). Note that the
values of a and b that achieve this minimum are not necessarily unique.

Although finding the distance from Z to the origin may seem simpler than comput-
ing the distance between A and B, it should be noted that this is actually the case only
if the necessary computations to determine minz∈Z ‖z‖ are simpler than the computa-
tions required to compute d( A, B) directly. This turns out to be the case for the GJK
algorithm. Before we examine how this algorithm can be applied to the Minkowski
difference of A and B, we first describe the algorithm for the case of computing the
distance from Z to the origin, for Z any convex polytope.

Suppose Z is a polytope in R
n (i.e., n = 2 for polygons, and n = 3 for polyhedra).

The GJK algorithm iteratively constructs a sequence of polytopes, each of which
is the convex hull of some subset of the vertices of Z , such that at each iteration
the distance from the origin to the new polytope decreases. Before describing the
algorithm more formally, we define some useful terminology and notation.

The convex hull of a set of points in R
n is the smallest convex set in 
n that

contains those points. Efficient algorithms exist for computing the convex hull of
general point sets, but for our purposes, we will not require such algorithms, since
the GJK algorithm only deals with point sets of size three for polygons and size four
for polyhedra. The convex hull of a set of three (noncollinear) points is the triangle
defined by those points, and the convex hull of a set of four (noncoplanar) points is
the tetrahedron defined by those points.

The GJK algorithm relies heavily on the notion of projection. In particular, for a
convex set Z and a point x , the GJK algorithm computes the point z ∈ Z with maximal
projection onto x . The value of this projection operation is defined by

hZ (x) = max{z · x | z ∈ Z}.(F.11)

and the point z∗ that achieves this maximum is defined by

sZ (x) = z∗ s.t. z∗ · x = hZ (x).(F.12)

The GJK algorithm for polygons is given as Algorithm 23 below. In the first step,
the working vertex set V0 is initialized to contain three arbitrarily selected vertices of
the polygon, Z . At iteration k, the point xk is determined as the point in the convex
hull of the vertices in Vk that is nearest to the origin. Once xk has been determined,
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Algorithm 23 GJK Algorithm

Input: A polytope, Z ⊂ 
2.
Output: Minimal ‖z‖, for z ∈ Z ⊂ 
2

1: V0 ← {y1, y2, y3} with yi vertices of Z
2: k ← 0
3: Compute xk , the point in the convex hull of Vk that is nearest the origin, i.e., xk =

arg minx∈hull(Vk ) ‖x‖.
4: Compute hZ (−xk), and terminate if ‖xk‖ = hZ (−xk).
5: zk ← sZ (−xk), i.e., the projection of zk onto xk is nearer the origin than the projection

onto xk of any other point in Z .
6: xk is contained in an edge of the convex hull of Vk . Let Vk+1 contain the two vertices

that bound this edge and the point zk .
7: k ← k + 1
8: Go to 3.

in step 5 a new vertex zk is chosen as the vertex of the original polygon, Z , whose
projection onto −xk is maximal. The point zk then replaces a vertex in the current
working vertex set to obtain a new working vertex set, Vk+1. The algorithm terminates
(step 4) when xk is itself the closest point in Z to the origin.

It is a fairly simple matter to extend the GJK algorithm (Algorithm 23) to the case
in which Z = A � B. Note that in the GJK algorithm, we never need an explicit
representation of Z . We only need to compute two functions of Z : hZ (x) and sZ (x).
Each of these can be computed without explicitly constructing Z . Let Z = A � B.
We can compute h A�B(x) as follows,

h A�B(x) = max{z · x | z ∈ Z}
= max{z · x | z ∈ A � B}
= max{(a − b) · x | a ∈ A, b ∈ B}
= max{a · x − b · x | a ∈ A, b ∈ B}
= max{a · x | a ∈ A} − min{b · x | b ∈ B}
= max{a · x | a ∈ A} + max{b · (−x) | b ∈ B}
= h A(x) + hB(−x).(F.13)

Now, suppose that a∗ achieves the value h A(x) and b∗ achieves the value hB(−x).
Then z∗ = a∗ − b∗, and therefore we have

sA�B(x) = sA(x) − sB(−x).(F.14)
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Thus, we see that the GJK algorithm is easily extended to the case of the Minkowski
difference of convex polygons. In steps 4 and 5, merely replace hz and sZ with the
expressions (F.13) and (F.14). To extend the algorithm to convex polyhedra, merely
replace step 1 of the algorithm by

1. V0 ← {y1, y2, y3, y4} with yi vertices of Z

and step 6 of the algorithm by

6. xk is contained in a face of the convex hull of Vk . Let Vk+1 contain the three vertices
that bound this face and the point zk .



Choset-79066 book February 23, 2005 12:26

G Analysis of Algorithms and Complexity Classes

G.1 Running Time

Yet another way to study an algorithm is to compute the running time of the algorithm
purely as a function of the length of the input. Worst-case analysis considers the longest
running time of all inputs of a particular length. Average-time analysis considers the
average of all the running times of inputs of a particular length. The worst-case
analysis is typically referred to as the running time of an algorithm.

Finding an expression for the exact running time is often difficult, but in most cases
close estimations are possible. Asymptotic analysis provides the means of analyzing
the running time of the algorithms for large inputs. As the lengths of the inputs become
large, the high-order terms dominate the value of the expression and the low-order
terms have little or no effect. Hence, a close approximation can be obtained only by
considering the highest-order term in an expression. For example, the highest-order
term of the function f (n) = 2n5 + 100n3 + 27n + 2003 is 2n5. As n becomes large,
disregarding the coefficient 2, the function f (n) behaves like n5 and it is said that
f (n) is asymptotically at most n5. The following are some common definitions that
are useful in analyzing the asymptotic behavior of functions and hence algorithms.

DEFINITION G.1.1 Let f and g be two functions f, g : N → R
+.

The function g is an asymptotically upper bound for f , denoted f (n) ∈ O (g(n))
and read f is big-O of g, if there exists a constant c > 0 and n0 ∈ N such
that ∀n ≥ n0,

f (n) ≤ cg(n).
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The function g is an asymptotically strict upper bound for f , denoted f (n) ∈
o (g(n)) and read f is small-o of g, if for every constant c > 0 and n0 ∈ N such
that ∀n ≥ n0,

f (n) < cg(n).

The function g is an asymptotically lower bound for f , denoted f (n) ∈ � (g(n))
and read f is big-Omega of g, if there exists a constant c > 0 and n0 ∈ N such
that ∀n ≥ n0,

c f (n) ≥ g(n).

The function g is an asymptotically strict lower bound for f , denoted f (n) ∈
ω (g(n)) and read f is small-omega of g, if for every constant c > 0 and n0 ∈ N

such that ∀n ≥ n0,

f (n) > cg(n).

The function g is asymptotically equal to f , denoted f (n) ∈ � (g(n)) and read
f is theta of g, if

f (n) ∈ O (g(n)) and f (n) ∈ � (g(n)) .

Considering only the highest terms and disregarding constant factors, the
big-O notation says that the function f is no more than the function g. The big-O
notation is thought of as suppressing a constant factor. For example, f (n) =
5n4 + 7n3 − 4n2 ∈ O

(
n4

)
, f (n) = nlog n + n100 ∈ O

(
nlog n

)
, etc. When f is strictly

less than g, the small-o notation is used. The small o-notation indicates that the
function g grows much faster than the function f . For example, f (n) = log100 n ∈
o

(
n1/100

)
, f (n) = n40 ∈ o (2n), etc. The notations � and ω express the opposite of

O and o notations, respectively. Thus, the big-Omega notation indicates that f grows
no slower than g, and the small-omega notation indicates that f grows faster than
g. When the functions f and g grow at the same rate, the � notation is used. For
example, f (n) = 3n5 + n4 ∈ �

(
n5

)
.

When describing the running time of different algorithms, certain terms come
up frequently. The running times of common algorithms such as matrix multipli-
cation, sorting, shortest path, etc., are O(nc), where c is some positive constant.
In such cases, it is said that the running time is polynomial in the length of the
input n. Other algorithms, such as satisfiability of Boolean expressions, Hamiltonian
paths, decomposition of integers into prime factors, etc., are O(2nc

), where c is some
positive constant. Such algorithms are said to be running in exponential time. The
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following table summarizes some of the common characterizations of the running
time of algorithms (c is some positive constant).

Running time

constant O (1)

logarithmic O (log n)

polylogarithmic O (logc n)

linear O (n)

polynomial O (nc)

quasipolynomial O
(
nlogc n

)

exponential O
(
2nc)

doubly expnonential O
(

22nc
)

G.2 Complexity Theory

The goal of complexity theory is to characterize the amount of resources needed for
the computation of specific problems. Common resources include sequential time,
sequential space, number of gates in Boolean circuits, parallel time in a multiprocessor
machine, etc. The exact complexity of a problem is determined by the amount of
resources that is both sufficient and necessary for its solution. Sufficiency implies
an upper bound on the amount of resources needed to solve the problem for every
instance of the input. Necessity implies a lower bound, i.e., for some instance of the
input, at least a certain amount of resources is required to solve the problem.

The amount of resources that is needed to solve a problem allows for an elegant
classification of problems according to their computational complexity. Researchers
have developed the notion of complexity classes, where a complexity class is defined
by specifying (a) the type of computation model M, (b) the resource R which is
measured in this model, and (c) an upper bound U on this resource. A complexity
class, then, consists of all problems requiring at most an amount U of resource R for
their solution in the model M. Thus, the complexity of a problem is determined by
finding to which complexity classes it belongs (by providing upper bounds on the
resource) and to which complexity classes it does not belong (by providing lower
bounds). To define complexity classes more precisely, we will need to make use of
definitions of alphabets, strings, and languages.
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Input Representation

The amount of the resource used in a complexity class is expressed in terms of the
length of the input. It is not clear, however, how to define the length of the input since
it can be of different types and values, i.e., integers, names, graphs, matrices, etc. It is
convenient to have a unique and clear definition of the length of the input. To this end,
researchers have proposed the encoding of inputs as strings over a set of symbols and
have defined the length of the input as the number of symbols of the encoding string.

DEFINITION G.2.1 An alphabet, usually denoted by �, is any finite set of symbols.

DEFINITION G.2.2 A string s over an alphabet � is a sequence of symbols from �.
The length of a string s, denoted |s|, is equal to the number of its symbols. The set of
all strings over the alphabet � is denoted by �∗.

The encoding of an input a is denoted by enc(a). To illustrate, let � = {0, 1}. Then,
integers can be encoded in standard binary form, e.g., the encodings of 5 and 35 are
101 and 100001 of lengths 3 and 6, respectively. The encoding of a graph G = (V , E),
where V = {v1, . . . , vn} ⊂ N and E = {(v′

1, v′′
1 ), . . . , (v′

m , v′′
m)} ⊆ V × V , can be

obtained by concatenating the encodings of its vertex set and its edge set. The vertex set
and the edge set can be encoded by concatenating the encodings of the vertices and of
the edges, respectively. Special markers can be used to indicate the ending of a vertex
and edge encoding. Thus, enc(G) = enc(v1)◦enc(∗)◦· · ·◦enc(vn)◦enc(∗)◦enc(+)◦
enc(v′

1) ◦ enc(∗) ◦ enc(v′′
1 ) ◦ enc(∗) ◦ · · · ◦ enc(v′

m) ◦ enc(∗) ◦ enc(v′′
m) ◦ enc(∗), where

enc(∗) and enc(+) are the encodings of special markers used to separate vertices and
indicate the start of the edge encodings, respectively, and ◦ denotes concatenation.

Problem Abstraction

A problem can be thought of as mapping an input instance to a solution. In many
cases, we are interested in problems whose solution is either “yes” or “no.” Such
problems are known as decision problems. For example, the graph-coloring problem
asks whether it is possible to color the vertices of a graph G = (V , E) using k different
colors such that no two vertices connected by an edge have the same color. In many
other cases, we are interested in finding the best solution according to some criteria.
Such problems are known as optimization problems. To continue our example, we
may be interested in determining the minimum number of colors needed to color
a graph. Generally, an optimization problem can be cast as a decision problem by
imposing an upper bound. In our example, we can determine the minimum number of
colors needed to color a graph G = (V , E) by invoking the corresponding decision
problem with k = 1, . . . , |V | until the answer to the decision problem is “yes.”
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In the rest of the section, we restrict our attention to decision problems since their
definition is more amendable to complexity analysis and since other problems can be
cast as decision problems.

Languages

Languages provide a convenient framework for expressing decision problems.

DEFINITION G.2.3 A language L over an alphabet � is a set of strings over the
alphabet �, i.e., L ⊆ �∗.

The language defined by a decision problem includes all the input instances whose
solution is “yes.” For example, the graph-coloring problem defines the language whose
elements are all the encodings of graphs that can be colored using k colors.

Acceptance of Languages

An algorithm A accepts a string s ∈ �∗ if the output of the algorithm A(s) is “yes.”
The string s is rejected by the algorithm if its output A(s) is “no.” The language L
accepted by an algorithm A is the set of strings accepted by the algorithm, i.e.,

L = {s : s ∈ �∗ and A(s) = “yes”}.
Note that even if L is the language accepted by the algorithm A, given some input
string s �∈ L , the algorithm will not necessarily reject s. It may never be able to
determine that s �∈ L and thus loop forever. Language L is decided by an algorithm
A if for every string s ∈ �∗, A accepts s if s ∈ L and A rejects s if s �∈ L . If L is
decided by A, it guarantees that on any input string the algorithm will terminate.

DEFINITION G.2.4 Let t : N → N be a function. An algorithm A decides a language
L over some alphabet � in time O(t (n)) if for every string s of length n over �, the
algorithm A in O(t (n)) steps accepts s if s ∈ L or rejects s if s �∈ L. Language L is
decided in time O(t (n)).

Complexity Classes

We are now ready to define some of the most important complexity classes. We start
with the definition of the polynomial-time complexity class.

DEFINITION G.2.5 A language L is in P if there exists a polynomial-time algorithm
A that decides L.
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The complexity class P encompasses a wide variety of problems such as sorting,
shortest path, Fourier transform, etc. Roughly speaking, P corresponds to all the
problems that admit an efficient algorithm. Generally, we think of problems that are
solvable by polynomial time algorithms as being tractable, or easy, and problems that
require superpolynomial time as being intractable, or hard.

Indeed, for many problems there are no polynomial-time algorithms. For example,
deciding whether or not a graph G = (V , E) can be colored with three colors is
not known to be in P. These problems can be solved by brute-force algorithms in
exponential time.

DEFINITION G.2.6 A language L is in EXPTIME if there exists an exponential-time
algorithm A that decides L.

Interestingly enough, many of these hard problems have a feature that is called
polynomial-time verifiability. That is, although currently it is not possible to solve
these problems in polynomial time, if a candidate solution to the problem, called a
certificate, is given, the correctness of the solution can be verified in polynomial time.
For example, a certificate for the graph-coloring problem with three colors would be a
mapping that for each vertex indicates its color. The correctness can be verified in poly-
nomial time by examining all the edges and checking for each edge that the colors of
its two vertices are different. This observation is captured by the following definition.

DEFINITION G.2.7 A language L is in NP if there exists a polynomial-time verifier
algorithm A and a constant c such that for every string s there exists a certificate y
of length O(|s|c) such that A(s, y) = “yes” if s ∈ L and A(s, y) = “no” if s �∈ L.

It is clear that P ⊆ NP since any language that can be decided in polynomial
time can also be decided without the need of a certificate. The most fundamental
question in complexity theory is whether P ⊂ NP or P = NP. After many years of
extensive research the question remains unanswered. An important step was made
in the 70s when Cook and Levin related the complexity of certain NP problems to
the complexity of all NP problems. They were able to prove that if a polynomial-
time algorithm existed for one of these problems, then a polynomial-time algorithm
could be constructed for any NP problem. These special problems form an important
complexity class known as NP-complete.

DEFINITION G.2.8 A language L1 is polynomial time reducible to a language L2,
denoted L1 ≤p L2, if there exists a polynomial time computable function f : �∗ →
�∗, such that for every s ∈ �∗,

s ∈ L1 ⇐⇒ f (s) ∈ L2.
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f is called the reduction function and the algorithm F that computes f is called the
reduction algorithm.

If a language L1 is reducible to a language L2 via some polynomial-time computable
function f , and if L2 has a polynomial-time algorithm A2, then we can construct a
polynomial-time algorithm A1 for L1. Given some input string s, algorithm A1 invokes
F to compute f (s) and then invokes A2 on f (s) and gives the same answer as A2.
Thus, via reductions, the solution of one problem can be used to solve other problems.

DEFINITION G.2.9 A language L is in NP-complete if

1. L ∈ NP, and

2. if L ′ ∈ NP, then L ′ ≤p L.

If L satisfies the second condition, but not necessarily the first condition, then L is
NP-hard.

It is clear now that if an NP-complete problem has a polynomial-time algorithm,
then via reductions it is possible to construct a polynomial-time algorithm for any
problem in NP. This would imply that P = NP.

In addition to time, another common resource of interest is space. Using the same
framework, complexity classes can be defined based on the amount of space the
algorithms use to solve problems.

DEFINITION G.2.10 Let t : N → N be a function. An algorithm A decides a language
L over some alphabet � in space O(t (n)) if for every string s of length n over �,
the algorithm A using at most O(t (n)) space accepts s if s ∈ L or rejects s if s �∈ L.
The language L is decided in space O(t (n)).

DEFINITION G.2.11 A language L is in PSPACE if there exists a polynomial-space
algorithm A that decides L.

DEFINITION G.2.12 A language L is in PSPACE-complete if

1. L ∈ PSPACE, and

2. if L ′ ∈ PSPACE, then L ′ ≤p L.

If L satisfies the second condition, but not necessarily the first condition, then L is
PSPACE-hard.
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It can be easily shown that the relationship between the different complexity classes
that have been defined in this section is as follows:

P ⊆ NP ⊆ PSPACE ⊆ EXPTIME.

G.3 Completeness

When describing robotics algorithms in this book, several notions of “completeness”
are used.

DEFINITION G.3.1 An algorithm A is complete if in a finite amount of time, A always
finds a solution if a solution exists or otherwise A determines that a solution does not
exist.

DEFINITION G.3.2 An algorithm A is resolution complete if in a finite amount of time
and for some small resolution step ε > 0, A always finds a solution if a solution exists
or otherwise A determines that a solution does not exist.

DEFINITION G.3.3 An algorithm A is probabilistically complete if the probability
of finding a solution, if a solution exists, converges to 1, when the running time
approaches infinity.

Complete algorithms include many common algorithms such as A∗, shortest-path,
scheduling problems, etc. Resolution complete algorithms have to approximate a con-
tinuous measure by discretizing it at small steps. Ray tracing from graphics algorithms
and sampling-based planning algorithms that use a grid representation of the configu-
ration space are examples of resolution complete algorithms. Probabilistic complete-
ness guarantees that given enough time, a solution will be found (if a solution exists).
If a solution does not exist, the algorithm may not be able to necessarily detect this
fact and thus runs forever. In practice, probabilistic algorithms terminate and declare
failure if an upper bound on the amount of time the algorithm could use has passed and
a solution has not been found. The basic Probabilistic RoadMap planner (PRM) is an
example of a probabilistically complete algorithm. Such an algorithm trades complete-
ness for efficiency; in many cases, for the same problem, a probabilistically complete
algorithm will find a solution faster (if a solution exists) than a complete algorithm.
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H.1 Graphs

A graph is a collection of nodes and edges, i.e., G = (V , E). See figure H.1. Some-
times, another term for a node is vertex, and this chapter uses the two terms inter-
changeably. We use G for graph, V for vertex (or node), and E for edge. Typically
in motion planning, a node represents a salient location, and an edge connects two
nodes that correspond to locations that have an important relationship. This relation-
ship could be that the nodes are mutually accessible from each other, two nodes are
within line of sight of each other, two pixels are next to each other in a grid, etc. This
relationship does not have to be mutual: if the robot can traverse from nodes V1 to
V2, but not from V2 to V1, we say that the edge E12 connecting V1 and V2 is directed.
Such a collection of nodes and edges is called a directed graph. If the robot can travel
from V1 to V2 and vice versa, then we connect V1 and V2 with two directed edges E12

and E21. If for each vertex Vi that is connected to Vj , both Ei j and Eji exist, then
instead of connecting Vi and Vj with two directed edges, we connect them with a
single undirected edge. Such a graph is called an undirected graph. Sometimes, edges
are annotated with a non-negative numerical value reflective of the costs of traversing
this edge. Such values are called weights.

A path or walk in a graph is a sequence of nodes {Vi } such that for adjacent nodes
Vi and Vi+1, Ei i+1 exists (and thus connects Vi and Vi+1). A graph is connected if for
all nodes Vi and Vj in the graph, there exists a path connecting Vi and Vj . A cycle is a



Choset-79066 book February 23, 2005 13:10

522 H Graph Representation and Basic Search

V1

V2

V3

V4

V5

V7

V8

E3 E4

E6
E2

E1
E5

E7

V6

V1

V2

V3

V4

V5

V7

V8

E3

E6
E2

E5

E7

V6

E4

E8
E1

Figure H.1 A graph is a collection of nodes and edges. Edges are either directed (left) or
undirected (right).
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Figure H.2 A tree is a type of directed acyclic graph with a special node called the root. A
cycle in a graph is a path through the graph that starts and ends at the same node.

path of n vertices such that first and last nodes are the same, i.e., V1 = Vn (figure H.2).
Note that the “direction” of the cycle is ambiguous for undirected graphs, which in
many situations is sufficient. For example, a graph embedded in the plane can have
an undirected cycle which could be both clockwise and counterclockwise, whereas a
directed cycle can have one orientation.

A tree is a connected directed graph without any cycles (figure H.2). The tree has
a special node called the root, which is the only node that possesses no incoming arc.
Using a parent-child analogy, a parent node has nodes below it called children; the
root is a parent node but cannot be a child node. A node with no children is called a
leaf . The removal of any nonleaf node breaks the connectivity of the tree.

Typically, one searches a tree for a node with some desired properties such as the
goal location for the robot. A depth-first search starts at the root, chooses a child,
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then that node’s child, and so on until finding either the desired node or a leaf. If the
search encounters a leaf, the search then backs up a level and then searches through
an unvisited child until finding the desired node or a leaf, repeating this process until
the desired node is found or all nodes are visited in the graph (figure H.3).

Breadth-first search is the opposite; the search starts at the root and then visits all
of the children of the root first. Next, the search then visits all of the grandchildren,
and so forth. The belief here is that the target node is near the root, so this search
would require less time (figure H.3).

A grid induces a graph where each node corresponds to a pixel and an edge connects
nodes of pixels that neighbor each other. Four-point connectivity will only have
edges to the north, south, east, and west, whereas eight-point connectivity will have
edges to all pixels surrounding the current pixel. See figure H.4.
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Figure H.3 Depth-first search vs. breadth-first search. The numbers on each node reflect the
order in which nodes are expanded in the search.

n1 n2 n3

n6n5n4

n7 n8 n9

n1 n2 n3

n6n5n4

n7 n8 n9

n1 n2 n3

n6n5n4

n7 n8 n9

n1 n2 n3

n4

n7

n6n5

n8 n9

Figure H.4 Four-point connectivity assumes only four neighbors, whereas eight-point
connectivity has eight.



Choset-79066 book February 23, 2005 13:10

524 H Graph Representation and Basic Search

StackQueue

Push here Pop here Push and pop here

Figure H.5 Queue vs. stack.

As can be seen, the graph that represents the grid is not a tree. However, the breadth-
first and depth-first search techniques still apply. Let the link length be the number
of edges in a path of a graph. Sometimes, this is referred to as edge depth. Link
length differs from path length in that the weights of the edges are ignored; only the
number of edges count. For a general graph, breadth-first search considers each of
the nodes that are the same link length from the start node before going onto child
nodes. In contrast, depth-first search considers a child first and then continues through
the children successively considering nodes of increasing link length away from the
start node until it reaches a childless or already visited node (i.e., a cycle). In other
words, termination of one iteration of the depth-first search occurs when a node has
no unvisited children.

The wave-front planner (chapter 4, section 4.5) is an implementation of a breadth-
first search. Breadth-first search, in general, is implemented with a list where the
children of the current node are placed into the list in a first-in, first-out (FIFO)
manner. This construction is commonly called a queue and forces all nodes of the
same linklength from the start to be visited first (figure H.5). The breadth-first search
starts with placing the start node in the queue. This node is then expanded by it being
popped off (i.e., removed from the front) the queue and all of its children being placed
onto it. This procedure is then repeated until the goal node is found or until there are
no more nodes to expand, at which time the queue is empty. Here, we expand all
nodes of the same level (i.e., link length from the start) first before expanding more
deeply into the graph.

Figure H.6 displays the resulting path of breadth-first search. Note that all paths
produced by breadth-first search in a grid with eight-point connectivity are optimal
with respect to the “eight-point connectivity metric.” Figure H.7 displays the link
lengths for all shortest paths between each pixel and the start pixel in the free space
in Figure H.6. A path can then be determined using this information via a gradient
descent of link length from the goal pixel to the start through the graph as similarly
done with the wavefront algorithm.

Depth-first search contrasts breadth-first search in that nodes are placed in a list
in a last-in, first-out (LIFO) manner. This construction is commonly called a stack
and forces nodes that are of greater and greater link length from the start node to be
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Figure H.6 White pixels denote the path that was determined with breadth-first search.

Figure H.7 A plot of linklength values from the start (upper left corner) node where colored
pixels correspond to link length (where the lighter the pixel the greater the linklength in the
graph) and black pixels correspond to obstacles.

visited first. Now the expansion procedure sounds the same but is a little bit different;
here, we pop the stack and push all of its children onto the stack, except popping
and pushing occur on the same side of the list (figure H.5). Again, this procedure is
repeated until the goal node is found or there are no more nodes to expand. Here, we
expand nodes in a path as deep as possible before going onto a different path.

Figure H.8 displays the resulting path of depth-first search. In this example, depth-
first search did not return an optimal path but it afforded a more efficient search
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Figure H.8 White pixels denote the path that was determined with depth-first search.

Figure H.9 A plot of linklength values from the start (upper left corner) node where colored
pixels correspond to link lengths of paths defined by the depth-first search. The lighter the pixel
the greater the linklengths in the graph; black pixels correspond to obstacles.

in that the goal was found more quickly than breadth-first search. Figure H.9 is
similar to figure H.7, except the link lengths here do not correspond to the shortest
path to the start; instead, the link lengths correspond to the paths derived by the depth-
first search. Again, we can use a depth-first search algorithm to fill up such a map and
then determine a path via gradient descent from the goal pixel to the start.

Another common search is called a greedy search which expands nodes that are
closest to the goal. Here, the data structure is called a priority queue in that nodes are
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placed into a sorted list based on a priority value. This priority value is a heuristic
that measures distance to the goal node.

H.2 A∗ Algorithm

Breadth-first search produces the shortest path to the start node in terms of link lengths.
Since the wave-front planner is a breadth-first search, a four-point connectivity wave-
front algorithm produces the shortest path with respect to the Manhattan distance
function. This is because it implicitly has an underlying graph where each node
corresponds to a pixel and neighboring pixels have an edge length of one. However,
shortest-path length is not the only metric we may want to optimize. We can tune our
graph search to find optimal paths with respect to other metrics such as energy, time,
traversability, safety, etc., as well as combinations of them.

When speaking of graph search, there is another opportunity for optimization:
minimize the number of nodes that have to be visited to locate the goal node subject
to our path-optimality criteria. To distinguish between these forms of optimality, let us
reserve the term optimality to measure the path and efficiency to measure the search,
i.e., the number of nodes visited to determine the path. There is no reason to expect
depth-first and breadth-first search to be efficient, even though breadth-first search
can produce an optimal path.

Depth-first and breadth-first search in a sense are uninformed, in that the search
just moves through the graph without any preference for or influence on where the
goal node is located. For example, if the coordinates of the goal node are known, then
a graph search can use this information to help decide which nodes in the graph to
visit (i.e., expand) to locate the goal node.

Alas, although we may have some information about the goal node, the best we can
do is define a heuristic which hypothesizes an expected, but not necessarily actual,
cost to the goal node. For example, a graph search may choose as its next node to
explore one that has the shortest Euclidean distance to the goal because such a node
has highest possibility, based on local information, of getting closest to the goal.
However, there is no guarantee that this node will lead to the (globally) shortest path
in the graph to the goal. This is just a good guess. However, these good guesses are
based on the best information available to the search.

The A∗ algorithm searches a graph efficiently, with respect to a chosen heuristic. If
the heuristic is “good,” then the search is efficient; if the heuristic is “bad,” although a
path will be found, its search will take more time than probably required and possibly
return a suboptimal path. A∗ will produce an optimal path if its heuristic is optimistic.
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Figure H.10 The heuristic between two nodes is the Euclidean distance, which is less than
the actual path length in the grid, making this heuristic optimistic.

An optimistic, or admissible, heuristic always returns a value less than or equal to the
cost of the shortest path from the current node to the goal node within the graph. For
example, if a graph represented a grid, an optimistic heuristic could be the Euclidean
distance to the goal because the L2 distance is always less than or equal to the L1

distance in the plane (figure H.10).
First, we will explain the A∗ search via example and then formally introduce the

algorithm. See figure H.11 for a sample graph. The A∗ search has a priority queue
which contains a list of nodes sorted by priority, which is determined by the sum of
the distance traveled in the graph thus far from the start node, and the heuristic.

The first node to be put into the priority queue is naturally the start node. Next,
we expand the start node by popping the start node and putting all adjacent nodes to
the start node into the priority queue sorted by their corresponding priorities. Since
node B has the greatest priority, it is expanded next, i.e., it is popped from the queue
and its neighbors are added (figure H.12). Note that only unvisited nodes are added
to the priority queue, i.e., do not re-add the start node.

Now, we expand node H because it has the highest priority. It is popped off of the
queue and all of its neighbors are added. However, H has no neighbors, so nothing
is added to the queue. Since no new nodes are added, no more action or expansion
will be associated with node H (figure H.12). Next, we pop off the node with greatest
priority, i.e., node A, and expand it, adding all of its adjacent neighbors to the priority
queue (figure H.12).

Next, node E is expanded which gives us a path to the goal of cost 5. Note that this
cost is the real cost, i.e., the sum of the edge costs to the goal. At this point, there are
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Figure H.11 Sample graph where each node is labeled by a letter and has an associated
heuristic value which is contained inside the node icon. Edge costs are represented by numbers
adjacent to the edges and the start and goal nodes are labeled. We label the start node with a
zero to emphasize that it has the highest priority at first.

nodes in the priority queue which have a priority value greater than the cost to the
goal. Since these priority values are lower bounds on path cost to the goal, all paths
through these nodes will have a higher cost than the cost of the path already found.
Therefore, these nodes can be discarded (figure H.12).

The explicit path through the graph is represented by a series of back pointers. A
back pointer represents the immediate history of the expansion process. So, the back
pointers from nodes A, B, and C all point to the start. Likewise, the back pointers to
D, E, and F point to A. Finally, the back pointer of goal points to E. Therefore, the
path defined with the back pointers is start, A, E, and goal. The arrows in figure H.12
point in the reverse direction of the back pointers.

Even though a path to the goal has been determined, A∗ is not finished because
there could be a better path. A∗ knows this is possible because the priority queue
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GOAL(5)E (3)

C (4)

D (5)

I (5)
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G (7)

H (3)

A (4)

C (4)

I (5)

G (7)
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A (4)

C (4)
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G (7)

B (3)

A (4)

C (4)

B (3)

A (4)

C (4)

Figure H.12 (Left) Priority queue after the start is expanded. (Middle) Priority queue after
the second node, B, is expanded. (Right) Three iterations of the priority queue are displayed.
Each arrow points from the expanded node to the nodes that were added in each step. Since node
H had no unvisited adjacent cells, its arrow points to nothing. The middle queue corresponds
to two actions. Node E points to the goal which provides the first candidate path to the goal.
Note that nodes D, I, F, and G are shaded out because they were discarded.

No expansion
GOAL(5)

GOAL(4)
E (3)

C (4)

D (5)

I (5)

F (7)
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H (3)

A (4)

C (4)

I (5)

G (7)

B (3)

A (4)

C (4) K (4)

L (5)

J (5)

Figure H.13 Four displayed iterations of the priority queue with arrows representing the
history of individual expansions. Here, the path to the goal is start, C, K, goal.

still contains nodes whose value is smaller than that of the goal state. The priority
queue at this point just contains node C and is then expanded adding nodes J, K, and
L to the priority queue. We can immediately remove J and L because their priority
values are greater than or equal the cost of the shortest path found thus far. Node K
is then expanded finding the goal with a path cost shorter than the previously found
path through node E. This path becomes the current best path. Since at this point the
priority queue does not possess any elements whose value is smaller than that of the
goal node, this path results in the best path (figure H.13).

H.2.1 Basic Notation and Assumptions

Now, we can more formally define the A∗ algorithm. The input for A∗ is the graph
itself. These nodes can naturally be embedded into the robot’s free space and thus can
have coordinates. Edges correspond to adjacent nodes and have values corresponding
to the cost required to traverse between the adjacent nodes. The output of the A∗
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algorithm is a back-pointer path, which is a sequence of nodes starting from the goal
and going back to the start.

We will use two additional data structures, an open set O and a closed set C . The
open set O is the priority queue and the closed set C contains all processed nodes.
Other notation includes

Star(n) represents the set of nodes which are adjacent to n.

c(n1, n2) is the length of edge connecting n1 and n2.

g(n) is the total length of a backpointer path from n to qstart .

h(n) is the heuristic cost function, which returns the estimated cost of shortest
path from n to qgoal .

f (n) = g(n) +h(n) is the estimated cost of shortest path from qstart to qgoal via n.

The algorithm can be found in algorithm 24.

H.2.2 Discussion: Completeness, Efficiency, and Optimality

Here is an informal proof of completeness for A∗. A∗ generates a search tree, which
by definition, has no cycles. Furthermore, there are a finite number of acyclic paths
in the tree, assuming a bounded world. Since A∗ uses a tree, it only considers acyclic
paths. Since the number of acyclic paths is finite, the most work that can be done,

Algorithm 24 A∗ Algorithm
Input: A graph
Output: A path between start and goal nodes

1: repeat
2: Pick nbest from O such that f (nbest ) ≤ f (n), ∀n ∈ O .
3: Remove nbest from O and add to C .
4: If nbest = qgoal , EXIT.
5: Expand nbest : for all x ∈ Star(nbest ) that are not in C .
6: if x /∈ O then
7: add x to O .
8: else if g(nbest ) + c(nbest , x) < g(x) then
9: update x’s backpointer to point to nbest

10: end if
11: until O is empty
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searching all acyclic paths, is also finite. Therefore A∗ will always terminate, ensuring
completeness.

This is not to say A∗ will always search all acyclic paths since it can terminate
as soon as it explores all paths with greater cost than the minimum goal cost found.
Thanks to the priority queue, A∗ explores paths likely to reach the goal quickly first.
By doing so, it is efficient. If A∗ does search every acyclic path and does not find the
goal, the algorithm still terminates and simply returns that a path does not exist. Of
course, this also makes sense if every possible path is searched.

Now, there is no guarantee that the first path to the goal found is the cheapest/best
path. So, in quest for optimality (once again, with respect to the defined metric), all
branches must be explored to the extent that a branch’s terminating node cost (sum
of edge costs) is greater than the lowest goal cost. Effectively, all paths with overall
cost lower than the goal must be explored to guarantee that an even shorter one does
not exist. Therefore, A∗ is also optimal (with respect to the chosen metric).

H.2.3 Greedy-Search and Dijkstra’s Algorithm

There are variations or special cases of A∗. When f (n) = h(n), then the search
becomes a greedy search because the search is only considering what it “believes”
is the best path to the goal from the current node. When f (n) = g(n), the planner
is not using any heuristic information but rather growing a path that is shortest from
the start until it encounters the goal. This is a classic search called Dijkstra’s algo-
rithm. Figure H.14 contains a graph which demonstrates Dijkstra’s Algorithm. In this
example, we also show backpointers being updated (which can also occur with A∗).
The following lists the open and closed sets for the Dijkstra search in each step.

1. O = {S}

2. O = {2, 4, 1, 5}; C = {S} (1, 2, 4, 5 all point back to S)

3. O = {4, 1, 5}; C = {S, 2} (there are no adjacent nodes not in C)

1
1

1

2

22

2

3

33

4

4 5S

G

Figure H.14 Dijkstra graph search example.
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4. O = {1,5,3}; C = {S, 2, 4} (1, 2, 4 point to S; 5 points to 4)

5. O = {5,3}; C = {S, 2, 4, 1}

6. O = {3, G}; C = {S, 2, 4, 1} (goal points to 5 which points to 4 which points to S)

H.2.4 Example of A∗ on a Grid

Figure H.15 contains an example of a grid world with a start and a goal identified
accordingly. We will assume that the free space uses eight-point connectivity, and thus
cell (3, 2) is adjacent to cell (4, 3), i.e., the robot can travel from (3, 2) to (4, 3). Each
of the cells also has its heuristic distance to the goal where we use a modified metric
which is not the Manhattan or the Euclidean distance. Instead, between free space
pixels, a vertical or horizontal step has length 1 and a diagonal has length 1.4 (our
approximation of

√
2). The cost of traveling from a free space pixel to an obstacle pixel

is made to be arbitrarily high; we chose 10000. So one pixel step from a free space
to an obstacle pixel along a vertical or horizontal direction costs 10000 and one pixel
step along a diagonal direction costs 10000.4. Here, we are assuming that our graph
connects all cells in the grid, not just the free space, and the prohibitively high cost
of moving into an obstacle will prevent the robot from collision (figure H.16).

Note that this metric, in the free space, does not induce a true Euclidean met-
ric because two cells sideways and one cell up is 2.4, not

√
5. However, this met-

ric is quite representative of path length within the grid. This heuristic is optimistic
because the actual cost to current cell to the goal will always be greater than or equal

Figure H.15 Heuristic values are set, but backpointers and priorities have not.
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x5x6x7

x4x1x8

x3x2x9 c(x1, x2) = 1
c(x1, x9) = 1.4

c(x1, x8) = 10000, if x8 is in
obstacle, x1 is a free cell

c(x1,x9) = 10000.4, if x9 is in
obstacle, x1 is a free cell

Figure H.16 Eight-point connectivity and possible cost values.

Figure H.17 Start node is put on priority queue, displayed in upper right.

to the heuristic. Thus far, in figure H.15 the back pointers and priorities have not
been set.

The start pixel is put on the priority queue with a priority equal to its heuristic.
See figure H.17. Next, the start node is expanded and the priority values for each of
the start’s neighbors are determined. They are all put on the priority queue sorted in
ascending order by priority. See figure H.18(left). Cell (3, 2) is expanded next, as
depicted in figure H.18(right). Here, cells (4, 1), (4, 2), (4, 3), (3, 3), and (2, 3) are
added onto the priority queue because our graph representation of the grid includes
both free space and obstacle pixels. However, cells (4, 2), (3, 3), and (2, 3) correspond
to obstacles and thus have a high cost. If a path exists in the free space or the longest
path in the free space has a traversal cost less than our arbitrarily high number chosen
for obstacles (figure H.16), then these pixels will never be expanded. Therefore, in
the figures below, we did not display them on the priority queue.

Eventually, the goal cell is reached (figure H.19 (left)). Since the priority value of
the goal is less than the priorities of all other cells in the priority queue, the resulting
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Figure H.18 (Left) The start node is expanded, the priority queue is updated, and the back-
pointers are set, which are represented by the right bottom icon. b = (i, j) points to cell (i, j).
(Right) Cell (3, 2) was expanded. Note that pixels (3, 3), (2, 3), and (4, 2) are not displayed in
the priority queue because they correspond to obstacles.

Figure H.19 (Left) The goal state is expanded. (Right) Resulting path.

path is optimal and A∗ terminates. A∗ traces the backpointers to find the optimal path
from start to goal (figure H.19 (right)).

H.2.5 Nonoptimistic Example

Figure H.20 contains an example of a graph whose heuristic values are nonoptimistic
and thus force A∗ to produce a nonoptimal path. A∗ puts node S on the priority queue
and then expands it. Next, A∗ expands node A because its priority value is 7. The goal
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Figure H.20 A nonoptimistic heuristic leads to a nonoptimal path with A∗.

node is then reached with priority value 8, which is still less than node B’s priority
value of 13. At this point, node B will be eliminated from the priority queue because
its value is greater than the goal’s priority value. However, the optimal path passes
through B, not A. Here, the heuristic is not optimistic because from B to G, h = 10
when the actual edge length was 2.

H.3 D∗ Algorithm

So far we have only considered static environments where only the robot experiences
motion. However, we can see that many worlds have moving obstacles, which could be
other robots themselves. We term such environments dynamic. There are three types
of dynamic obstacles: ones that move significantly slower than the robot, those that
move at the same speed, and finally obstacles that move much faster than the robot.
The superfast obstacle case is easy to ignore because the obstacles will be moving
so fast that there probably is no need to plan for them because they will either move
too fast for the planner to have time to account for them or they will be in and out of
the robot’s path so quickly that it does not require any consideration. In this section,
we consider dynamic environments where the world changes at a speed much slower
than the robot. An example can be a door opening and closing.

Consider the grid environment in figure H.21(left) which is identical to the one in
figure H.15, except pixel (4, 3) is a gate which can either be a free-space pixel or
an obstacle pixel. Let’s assume it starts as a free-space pixel. We can run the A∗ or
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Figure H.21 (Left) A pixel world similar to figure H.15, except it has a gate, heuristic, and
minimum heuristic values. (Right) Goal node is expanded.

Dijkstra’s algorithm to determine a path from start to goal, and then follow that path
until an unexpected change occurs, which in figure H.21(left) happens at (4, 3). When
the robot encounters pixel (4, 3) and determines that it changed from a free-space to
an obstacle pixel, it can simply reinvoke the A∗ algorithm to determine a new path.
This, however, can become quite inefficient if many pixels are changing from obstacle
to free space and back. The D∗ algorithm was devised to “locally repair” the graph
allowing for an efficient updated searching in dynamic environments, hence the term
D∗ [397].

D∗ initially determines a path starting with the goal and working back to the start
using a slightly modified Dijkstra’s search. The modification involves updating a
heuristic and a minimum heuristic function. Each cell in figure H.21(left) contains a
heuristic cost (h) which for D∗ is an estimate of path length from the particular cell
to the goal, not necessarily the shortest path length to the goal as it was for A∗. In
this example, the h values do not respect the presence of obstacles when reflecting
distance to the goal node; in other words, computation of h assumes that the robot can
pass through obstacles. For example, cell (1, 6) has an h value of 6. These h values
will be updated during the initial Dijkstra search to reflect the existence of obstacles.
The minimum heuristic values (k) are the estimate of the shortest path length to the
goal. Both the h and the k values will vary as the D∗ search runs, but they are equal
upon initialization, and were derived from the metric described in figure H.16.

Initially, the goal node is placed on the queue with h = 0 and then is expanded
(figure H.21, right), adding (6, 6), (6, 5), and (7, 5) onto the queue. Next, pixel (6, 6)
is expanded adding cells (5, 6), (5, 5) onto the queue. Note that the k values are used
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Figure H.22 (Left) First (6, 6) and then (7, 5) is expanded. (Right) The h values in obstacle
cells that are put on priority queue are updated.

Figure H.23 (Left) Termination of Dijkstra’s search phase: start cell is expanded. (Right)
Tracing backpointers yields the optimal path.

to determine the priority for the Dijkstra’s search (and later on for the D∗ search) and
that they are equal to the h values for the initial Dijkstra’s search.

Next, pixel (7, 5) is expanded adding cells (6, 4) and (7, 4) onto the queue
(figure H.22, left). More pixels are expanded until we arrive at pixel (4, 6) (figure H.22,
right). When (4, 6) is expanded, pixels (3, 6) and (3, 5), which are obstacle pixels,
are placed onto the priority queue. Unlike our A∗ example, we display these obsta-
cle pixels in the priority queue in figure H.22(right). Note that the h values of the
expanded obstacle pixels are all updated to prohibitively high values which reflects
the fact that they lie on obstacles.
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Figure H.24 (Left) The robot physically starts tracing the optimal path. (Right) The robot
cannot trace the assumed optimal path: gate (4, 3) is closed.

The Dijkstra’s search is complete when the start node (2, 1) is expanded (fig-
ure H.23, left). The optimal path from start to goal (assuming that the gate pixel (4, 3)
is open) is found by traversing the backpointers starting from the start node to the
goal node (figure H.23(right)). The optimal path is (2, 1) −→ (3, 2) −→ (4, 3) −→
(5, 4) −→ (6, 5) −→ (7, 6). Note that pixels (1, 1), (1, 2), (1, 3), (1, 4), and (1, 6)
are still on the priority queue.

The robot then starts tracing the optimal path from the start pixel to the goal pixel.
In figure H.24(left), the robot moves from pixel (2, 1) to (3, 2). When the robot
tries to move from pixel (3, 2) to (4, 3), it finds that the gate pixel (4, 3) is closed
(figure H.24, left). In the initial search for an optimal path, we had assumed that the
gate pixel was open, and hence the current path may not be feasible. At this stage,
instead of replanning for an optimal path from the current pixel (3, 2) to goal pixel
using A∗, D∗ tries to make local changes to the optimal path.

D∗ puts the pixel (4, 3) on the priority queue because it corresponds to a discrepancy
between the map and the actual environment. Note that this pixel must have the
lowest minimum heuristic, i.e., k value, because all other pixels on the priority queue
have a k value greater than or equal to the start and all pixels along the previously
determined optimal path have a k value less than the start. The idea here is to put the
changed pixel onto the priority queue and then expand it again, thereby propagating
the possible changes in the heuristic, i.e., the h values, to pixels for which an optimal
path to the goal passes through the changed pixel.

In the current example, pixel (4, 3) is expanded, i.e., it is popped off the priority
queue and pixels whose optimal paths pass through (4, 3) are placed onto the priority
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Figure H.25 (Left) The gate pixel (4, 3) is put on priority queue and expanded. The assumed
optimal path from (3, 2) to goal passed through (4, 3), so the h value is increased to a high
value to reflect that the assumed optimal path may not in fact be optimal. (Right) Pixel (3, 2)
is expanded; the h values of (2, 2),(2, 1) and (3, 1) are updated because the assumed optimal
path from these cells passed through the expanded cell. (4, 1)) remains unaffected.

queue with updated heuristic values (h values). The new h values are the h values of
the changed pixel plus the path cost from the changed pixel to the given pixel. This
path cost is a high number which we set to 10000.4 if it passes diagonally through an
obstacle pixel. Therefore, pixel (3, 2) has an h value equal to 10004.6 (figure H.25,
left).

Next, pixel (3, 2) is expanded because its k value is the smallest. However, its k
value is less than its h value and we term such pixels as having a raised state. When
a pixel is in a raised state, its back pointer may no longer point to an optimal path.
Now, pixels (2, 2), (2, 1), (3, 1), and (4, 1) are on the priority queue. The h values of
cells (2, 2), (2, 1), and (3, 1) are updated to high values to reflect that the estimated
optimal path from these cells to the goal passed through the gate cell, and may not
be optimal anymore. However, the optimal path for pixel (4, 1) did not pass through
the gate, and hence its h value stays the same (figure H.25, right).

Pixel (1, 6) is expanded next, but it does not affect the h values of its neighbors.
Next pixel (4, 1) is expanded and pixels (3, 2), (3, 1), (5, 1), and (5, 2) are put onto
the priority queue (figure H.26(left). Now the h values of (5, 1) and (5, 2) remain
unaffected, however, for cell (3, 2), the goal can now possibly be reached in h(4, 1) +
1.4 = 6.2+1.4 = 7.6 because cell (4, 1) is in a lowered state, i.e., it is a cell whose h
values did not have to be updated because of the gate. Therefore, cell (3, 2) receives
an h value of 7.6. The backpointer of (3, 2) is now set pointing toward (4, 1). The
initially determined optimal path from (4, 1) to the goal did not pass through the
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Figure H.26 (Left) (4, 1) is expanded; (5, 1) and (5, 2) remain unaffected, the h values of
(3, 2) and (3, 1) are lowered to reflect the lowered heuristic value because of detour, while the
minimum-heuristic values of these two cells are increased, and the backpointers of these cells
are set pointing to (4, 1). (Right) The robot traces the new locally modified optimal path.

gate pixel, and hence it indeed is optimal even after the change of state of the gate
pixel. Then, the path obtained by concatenating the (3, 2) → (4, 1) transition and
the optimal path from (4, 1) will be optimal for (3, 2). Thus, the estimate for the best
path from (3, 2) toward the goal, i.e., k(3, 2), is now 7.6, and the process terminates.
The robot then physically traces the new optimal path from (3, 2) to reach the goal
(figure H.26(right)).

See algorithms 25–31 for a description of the D∗ algorithm. This algorithm uses
the following notation.

X represents a state.

O is the priority queue.

L is the list of all states.

G is the goal state.

S is the start state.

t (X ) is value of state with regards to the priority queue.

– t (X ) = N EW , if X has never been in O ,
– t (X ) = O P E N , if X is currently in O , and
– t (X ) = C L O SE D, if X was in O but currently is not.
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Algorithm 25 D∗ Algorithm
Input: List of all states L
Output: The goal state, if it is reachable, and the list of states L are updated so that
the backpointer list describes a path from the start to the goal. If the goal state is not
reachable, return NULL.

1: for each X ∈ L do
2: t(X) = NEW
3: end for
4: h(G) = 0
5: O = {G}
6: Xc = S

{The following loop is Dijkstra’s search for an initial path}
7: repeat
8: kmin = P ROC E SS − ST AT E(O , L)
9: until (kmin = −1) or (t (Xc) = C L O SE D)

10: P = G ET − B AC K P O I N T E R − L I ST (L , Xc, G) (algorithm 26)
11: if P = NULL then
12: Return (NULL)
13: end if
14: repeat
15: for each neighbor Y ∈ L of Xc do
16: if r (Xc, Y ) �= c(Xc, Y ) then
17: M O DI FY − C O ST (O , Xc, Y, r (Xc, Y ))
18: repeat
19: kmin = P ROC E SS − ST AT E(O , L)
20: until (kmin ≥ h(Xc)) or (kmin = −1)
21: P = G ET − B AC K P O I N T E R − L I ST (L , Xc, G)
22: if P = NULL then
23: Return (NULL)
24: end if
25: end if
26: end for
27: Xc = the second element of P {Move to the next state in P}.
28: P = G ET − B AC K P O I N T E R − L I ST (L , Xc, G)
29: until Xc = G
30: Return (Xc)
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Algorithm 26 G ET − B AC K P O I N T E R − L I ST (L , S, G)
Input: A list of states L and two states (start and goal)
Output: A list of states from start to goal as described by the backpointers in the list
of states L

1: if path exists then
2: Return (The list of states)
3: else
4: Return (NU L L)
5: end if

Algorithm 27 I N SE RT (O , X, hnew )
Input: Open list, a state, and an h-value
Output: Open list is modified

1: if t (X ) = N EW then
2: k(X ) = hnew

3: else if t (X ) = O P E N then
4: k(X ) = min(k(X ), hnew )
5: else if t (X ) = C L O SE D then
6: k(X ) = min(h(X ), hnew )
7: end if
8: h(X ) = hnew

9: t (X ) = O P E N
10: Sort O based on increasing k values

c(X, Y ) is the estimated path length between adjacent states X and Y .

h(X ) is the estimated cost of a path from X to Goal (heuristic).

k(X ) is the estimated cost of a shortest path from X to Goal (minimum-heuristic
= min h(X ) before X is put on O , values h(X ) takes after X is put on O).

b(X ) = Y implies that Y is a parent state of X , i.e. the path is like X −→ Y −→ G.

r (X, Y ) is the measured distance adjacent states X and Y .
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Algorithm 28 M O DI FY − C O ST (O , X, Y, cval)
Input: The open list, two states and a value
Output: A k-value and the open list gets updated

1: c(X, Y ) = cval
2: if t (X ) = C L O SE D then
3: I N SE RT (O , X, h(X ))
4: end if
5: Return G ET − K M I N (O) (algorithm 30)

Algorithm 29 M I N − ST AT E(O)
Input: The open list O
Output: The state with minimum k value in the list related values

1: if O = ∅ then
2: Return (−1)
3: else
4: Return (argminY∈Ok(Y ))
5: end if

Algorithm 30 G ET − K M I N (O)
Input: The open list O
Output: Lowest k-value of all states in the open list

1: if O = ∅ then
2: Return (−1)
3: else
4: Return (minY∈O k(Y ))
5: end if
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Algorithm 31 PROCESS-STATE
Input: List of all states L and the list of all states that are open O
Output: A kmin , an updated list of all states, and an updated open list

1: X = M I N − ST AT E(O) (algorithm 29)
2: if X = NU L L then
3: Return (−1)
4: end if
5: kold = G ET − K M I N (O) (algorithm 30)
6: DE L ET E(X )
7: if kold < h(X ) then
8: for each neighbor Y ∈ L of X do
9: if h(Y ) ≤ kold and h(X ) > h(Y ) + c(Y, X ) then

10: b(X ) = Y
11: h(X ) = h(Y ) + c(Y, X );
12: end if
13: end for
14: else if kold = h(X ) then
15: for each neighbor Y ∈ L of X do
16: if (t (Y ) = N EW ) or (b(Y ) = X and h(Y ) �= h(X ) + c(X, Y )) or (b(Y ) �=

X and h(Y ) > h(X ) + c(X, Y )) then
17: b(Y ) = X
18: I N SE RT (O , Y, h(X ) + c(X, Y )) (algorithm 27)
19: end if
20: end for
21: else
22: for each neighbor Y ∈ L of X do
23: if (t (Y ) = N EW ) or (b(Y ) = X and h(Y ) �= h(X ) + c(X, Y )) then
24: b(Y ) = X
25: I N SE RT (O , Y, h(X ) + c(X, Y ))
26: else if b(Y ) �= X and h(Y ) > h(X ) + c(X, Y ) then
27: I N SE RT (O , X, h(X ))
28: else if (b(Y ) �= X and h(X ) > h(Y ) + c(X, Y )) and (t (Y ) = C L O SE D) and

(h(Y ) > kold ) then
29: I N SE RT (O , Y, h(Y ))
30: end if
31: end for
32: end if
33: Return G ET − K M I N (O) (algorithm 30)
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H.4 Optimal Plans

There exists a huge number of search algorithms in the literature, with the ones
discussed here being just the most basic ones. All of the techniques discussed here
result in a path. A path is sufficient if the robot is able to follow it. Sometimes,
randomness may push the robot off its path. One possibility is to replan, as we did in
D∗ (albeit for different reasons: above the environment changed and thereby mandated
replanning). Another is to determine the best action for all nodes in the graph, not
just the ones along the shortest path. A mapping from nodes to actions is called
a universal plan, or policy. Techniques for finding optimal policies are known as
universal planners and can be computationally more involved than the shortest path
techniques surveyed here. One simple way to attain a universal plan to a goal is to
run Dijkstra’s algorithm backward (as in D∗): After completion, we know for each
node in the graph the length of an optimal path to the goal, along with the appropriate
action. Generalizations of this approach are commonly used in stochastic domains,
where the outcome of actions is modeled by a probability distribution over nodes in
the graph.
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ELEGANT AND powerful techniques are at the fingertips of statisticians. Although
difficult at first, speaking their language can be quite powerful. Probability theory
provides a set of tools that can be used to quantify uncertain events. In the context of
robotics, probability theory allows us make decisions in the presence of uncertainty
caused by phenomena such as noisy sensor data or interaction with unpredictable
humans. This section introduces a few fundamental concepts including probability,
random variables, distributions, and Gaussian random vectors.

When we talk about probability, we generally talk in terms of experiments and
outcomes. When an experiment is conducted, a single outcome from the set of possible
outcomes for that experiment results. For example, an experiment could be flipping
a coin and the set of possible outcomes is {heads, tails}. If the experiment were to
take a measurement in degrees Kelvin, then the set of possible outcomes would be
the interval [0, ∞). An event is defined to be a subset of the possible outcomes.

Let S denote the set of all possible outcomes for a given experiment, and let E be
an event, i.e., E ⊂S. The probability of the event E occurring when the experiment
is conducted is denoted Pr(E). Pr maps S to the interval [0, 1]. In the example of
flipping a fair coin, Pr(heads) = 0.5, Pr(tails) = 0.5, and Pr(heads ∪ tails) = 1. In
general, the probability must obey certain properties:

1. 0 ≤ Pr(E) ≤ 1 for all E ⊂ S.

2. Pr(S) = 1.
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3.
∑

i Pr(Ei ) = Pr(E1 ∪ E2 ∪ . . .) for any countable disjoint collection of sets
E1, E2, . . . . This property is known as sigma additivity. In particular, we have∑n

i=1 Pr(Ei ) = Pr(E1 ∪ E2 ∪ . . . ∪ En).

4. Pr(∅) = 0.

5. Pr(Ec) = 1 − Pr(E), where Ec denotes the complement of E in S.

6. Pr(E1 ∪ E2) = Pr(E1) + Pr(E2) − Pr(E1 ∩ E2).

Technically, the first three axioms imply the last three.
Events may or may not depend upon each other. If the occurance of E1 has no

effect on E2, then E1 and E2 are independent; otherwise they are dependent. We say
E1 and E2 are independent if Pr(E1 ∧ E2) = Pr(E1) · Pr(E2). One way to express the
dependence of two events is through conditional probability. For events E1 and E2,
Pr(E1 | E2) is the conditional probability that E1 occurs given that E2 occurs. If E1

and E2 are independent and Pr(E2) > 0, then Pr(E1 | E2) = Pr(E1). For dependent
events, Bayes’ rule expresses the relationship between the conditional probabilities
for two events, again assuming Pr(E2) > 0:

Pr(E1 | E2) = Pr(E2 | E1)Pr(E1)

Pr(E2)
.

Bayes’ rule is a useful formula; it is the foundation of the estimation methods presented
in chapter 9.

I.1 Distributions and Densities

Within robotics, a somewhat simplified but nevertheless sufficient model of a ran-
dom variable is a mapping from the set of events to the real line, usually denoted
X : S → R. A simple example of a random variable is to consider a single coin flip
and define X = 0 when the outcome is heads and X = 1 when the outcome is tails. As
another example, consider flipping a fair coin ten times. A random variable can be the
number of heads that appeared or the number of times heads appeared sequentially,
etc. Random variables are useful because they represent events as real numbers. With
real numbers, we can perform calculations and analysis that are difficult or impossible
to perform on the abstract events.

A distribution is an abstract concept that corresponds to all probability statements
that can be made about a random variable. Before we discuss the various distribu-
tions used to describe random variables, we first distinguish between contiunous and
discrete random variables. A random variable is said to be discrete if its range (the
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values that it maps to) is a set of discrete points. We call a random variable continuous
if its range forms a continuum on the real line and, using a term that is defined further
below, it possesses a probability density function.

Discrete random variables are commonly described using one of two types of
distributions. The first is the cumulutive distribution function (CDF) which is denoted
FX (a) = Pr(X ≤ a). The second is the probability mass function (PMF), which is
defined to be fX (a) = Pr(X = a).

Continuous random variables are described with two analogous distributions. The
first is the cumulative distribution function (figure I.1), which is defined for continuous
random variables exactly the same way that it is defined for discrete random variables.
The second is the probability density function (PDF) (figure I.2), which is denoted
fX and is defined such that

Pr(a ≤ X ≤ b) =
∫ b

x=a
fX (x) dx .

a'a' b' b'
0

1

Figure I.1 Cumulative uniform distribution.

a b

Figure I.2 Probability density function.
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Note that for a continuous random variable, Pr((X = a)) = ∫ a
x=a fX (x) dx = 0. This

can be disconcerting to the newcomer. Another way to view this is: consider the odds
of landing exactly on a. Since the point a is a set of measure zero, it should have zero
probability of occurring.

Some distributions are so common that they have their own name. For example,
the uniform distribution is a family of continuous distributions over an interval. It can
either be described by the CDF

U (x ; a, b) =
0 x < a

x−a
b−a a ≤ x ≤ b

1 x ≥ b

or by the corresponding PDF

u(x ; a, b) =
0 x < a

1
b−a a ≤ x ≤ b

0 x ≥ b.

One can calculate all sorts of probabilties using either the CDF or the PDF. Consider
for a′, b′ ∈ [a, b] with a′< b′. Using the CDF we can compute Pr(a′ ≤ x ≤ b′) =
U (b′; a, b) − U (a′; a, b). Alternatively we can use the PDF to compute Pr(a′ ≤ x ≤
b′) = ∫ b′

x=a′ u(x ; a, b) dx .

I.2 Expected Values and Covariances

We previously defined a random variable to be a function that maps the event space
to the real line. Similarly, we define a random vector to be a mapping from the event
space to the space of real-valued vectors of some dimension. In other words, a random
vector X is a map X : S → R

n . Note that a random variable is just a special case of a
random vector where n = 1.

The expected value (or mean) for a discrete random vector is defined to be

E(X ) =
∑

i

xi fX (xi ),

where xi is the i th value that random variable X can take and fX is the PMF associated
with X . Note that E(X ) is a vector in R

n , where n is the dimension of X . It is tempting
to think that the expected value is the outcome most likely to occur, but this is not
generally the case. The expected value of a single fair die roll is 3.5 which, of course,
cannot occur.



Choset-79066 book February 23, 2005 13:15

I.3 Multivariate Gaussian Distributions 551

The expected value (or mean) of a continuous random vector is defined to be

E(X ) =
∫

x∈Rn

x fX (x) dx ,

where fX is the PDF associated with X . As in the case of discrete random vectors,
E(X ) is a vector in R

n . We also denote E(X ) with X̄. Expectation is a linear operator,
which means that E(aX + bY ) = aE(X ) + bE(Y ).

The variance of a (scalar) random variable x is E((X − X̄)2). For a scalar random
variable the variance is denoted σ 2. For a random vector we can consider the variance
of each element Xi of X individually. The variance of Xi is denoted σ 2

i .
Now we want to consider the effect of one variable on another. This is termed

covariance between two random variables Xi and X j . Let σi j = E((Xi − X̄i )(X j −
X̄ j )). By this definition σi i is the same as σ 2

i , the variance of Xi . For i �= j , if σi j = 0,
then Xi and X j are independent of each other. The covariance matrix of a random
vector X is defined to be

PX = E((X − X̄)(X − X̄)T ).

The n × n matrix PX contains the variances and covariances within the random
vector X . Specifically, the element in the i th row, j th column of PX will be identical
to the σi j defined above.

I.3 Multivariate Gaussian Distributions

A random vector X is said to have a multivariate Gaussian distribution if it is described
by the PDF

fX (x) = 1√
(2π )n|PX |e− 1

2 (x−X̄ )T P−1
X (x−X̄ ) ,(I.1)

where X̄ ∈ R
n is the mean vector and PX ∈ R

n×n is the covariance matrix. It can
be verified by direct substitution that X̄ and PX are in fact the mean and covariance
matrix of X as defined in the section above.
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THIS APPENDIX gives a brief review of the theory of linear time invariant (LTI) dynam-
ical systems. Many dynamical systems that appear in science and engineering can be
approximated by LTI systems, and linear systems theory provides important tools to
control and observe them. We focus on the so-called state space formulation of LTI
systems because that is the formulation used in the Kalman filter (see chapter 8). In
this appendix we present some of the more fundamental concepts of LTI state-space
systems, including stability, feedback control, and observability.

J.1 State Space Representation

Consider as an example the mass-spring-damper system depicted in figure J.1, where
z(t) denotes the position of the mass m at time t . If we assume that the spring is
linear, then the force applied by the spring is given as Fs = −kz(t). Likewise, if we
assume that the damper is linear, then the force applied by the damper is proportional

to the velocity of the mass, yielding Fd = −γ dz
dt (t)

�= γ ż(t). For now we assume the
externally applied force Fext = 0. Summing these forces and applying Newton’s law
(force = mass × acceleration) yields

mz̈(t) = −γ ż(t) − kz(t).(J.1)

This second-order ordinary differential equation (ODE) provides a mathematical
description of how the position and velocity of mass change with time. Accordingly,
we call equation (J.1) a model of the mass-spring-damper system. If the position z and
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m

Fext

Fs = –kz

Fd =    z

Figure J.1 Mass–spring–damper system.

velocity ż are known at some instant of time t0, then the solution to equation (J.1) sub-
ject to initial conditions z(t0) and ż(t0) will match the trajectory of the physical system.

Now define the vector

x(t) =
[

x1(t)
x2(t)

]
=

[
z(t)
ż(t)

]
.

Equation (J.1) can be rewritten in terms of x as follows:

ẋ(t) =
[

ż(t)
z̈(t)

]
=

[
x2(t)

− 1
m (γ ż(t) + kz(t))

]
=

[
x2(t)

− 1
m (γ x2(t) + kx1(t))

]
,

which can finally be summarized as

ẋ(t) =
[

0 1
− k

m − γ

m

]
x(t).(J.2)

Thus we have taken a second-order scalar ODE and rewritten it as a first-order vector
ODE. We call this first-order vector ODE the state-space representation of the mass-
spring-damper system, and the state vector x(t) is a member of the state space. Since
the right hand side of equation (J.2) can be written as a constant matrix multiplied by
the state vector, this system is both linear and time invariant.

Generally, an LTI state-space system can be written as the vector ODE,

ẋ(t) = Ax(t); x(t0) = x0,(J.3)

where x(t) ∈ R
n and A ∈ R

n×n . This ODE is sometimes called a vector field because
it assigns a vector Ax to each point x in the state space. This ODE has a unique
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solution, and the solution can be written in closed form,

x(t) = eA(t−t0)x0,(J.4)

where the matrix exponential is defined by the Peano-Baker series

eA(t−t0) =
∞∑

i=0

Ai (t − t0)i

i!

= In×n + A (t − t0) + A2(t − t0)2

2!
+ · · · .

J.2 Stability

Assuming that the matrix A has full rank, then the point x = 0 is the only point in the
state space that satisfies the equilibrium condition ẋ = 0. The point x = 0 is called
an equilibrium point. Note that the state will not move from an equilibrium point. If
the initial condition is x(t0) = 0, then x(t) will remain at 0 for all time. In this section
we discuss the stability of the origin of an LTI system.

We begin by defining a few notions of stability. An equilibrium point xe (in the case
of LTI systems xe = 0) is said to be stable if for every ε > 0 there exists a δ > 0 such
that whenever the initial condition satisfies ‖xe − x(t0)‖< δ the solution x(t) satisfies
‖xe − x(t)‖< ε for all time t > 0. In other words, stable means that if the initial
condition starts close enough to the equilibrium, then the solution will never drift
very far away. xe is said to be asymptotically stable if it is stable and ‖xe − x(t)‖ → 0
as t → ∞. Likewise, xe is said to be unstable if it is neither stable nor asymptotically
stable.

It is worth noting that for LTI systems, the stability properties are global. If they
hold on any open subset of the state space, then they hold everywhere. Stability can
be characterized in terms of the eigenvalues of the matrix A, as stated in the following
theorem:

THEOREM J.2.1 (LTI stability) Consider the LTI system stated in equation (J.3), and
let λi , i ∈ {1, 2, . . . , n} denote the eigenvalues of A. Let re(λi ) denote the real part
of λi Then the following holds:

1. xe = 0 is stable if and only if re(λi ) ≤ 0 for all i .

2. xe = 0 is asymptotically stable if and only if re(λi ) < 0 for all i .

3. xe = 0 is unstable if and only if re(λi ) > 0 for some i .
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Figure J.2 Asymptotical stability. (Left) The states x1 and x2 (z and ż, respectively) plotted
as time evolves. (Right) Phase plane plot of x2 vs. x1.

Consider the mass-spring-damper example. The eigenvalues of A are

−γ ± √
γ 2 − 4km

2m
.

When the damping term is positive, the real parts of the eigenvalues are negative and
the system is asymptotically stable. Figure J.2 shows two different representations
of the trajectory of the mass-spring-damper system with m = 1, k = 5, and γ = 1.
The figure on the left shows the values of x1 and x2 plotted as functions of time. As
expected for an asymptotically stable system, both converge to zero. The figure on
the right shows the trajectory in state space by plotting x2 vs. x1. This is sometimes
referred to as a “phase plane” plot. The direction in which the trajectory flows is
depicted by arrows. Here the trajectory starts at the initial condition and spirals into
the origin. When the damping is zero, the system solution is a bounded oscillation
and hence is stable but not asymptotically stable. Figure J.3 plots the time and phase
plane representations of the stable trajectory that results when m = 1, k = 5, and
γ = 0. Note that in the phase plane the periodic oscillation becomes a closed loop.
When the damping is negative the damping term actually adds energy to the system,
creating an oscillation that grows without bound. Time and phase plane plots for the
case where m = 1, k = 5, and γ = −0.4 are shown in figure J.4.
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Figure J.3 Stability. (Left) The states x1 and x2 (z and ż, respectively) plotted as time evolves.
(Right) Phase plane plot of x2 vs. x1.
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Figure J.4 Instability. (Left) The states x1 and x2 (z and ż, respectively) plotted as time
evolves. (Right) Phase plane plot of x2 vs. x1.
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J.3 LTI Control Systems

Often one has the ability to affect the behavior of a dynamical system by applying
some sort of external input. For example, in the mass-spring-damper system discussed
earlier we can influence the trajectory of the system by applying a time-varying
external force F(t) to the mass. This results in the LTI control system

ẋ(t) =
[

0 1
− k

m − γ

m

]
x(t) +

[
0
1
m

]
F(t).(J.5)

More generically, we write an LTI control system as

ẋ(t) = Ax(t) + Bu(t); x(t0) = x0,(J.6)

where the state vector x(t) ∈ R
n and the external input vector u(t) ∈ R

m . The matrix
B ∈ R

n×m . The matrix A describes the system dynamics of the unforced system, i.e.,
A describes how the state would evolve if the input were zero. B describes how the
inputs affect the evolution of the state.

The system described in equation (J.3) is said to be controllable if for any initial
condition x(t0), there exists a continuous control input u(t) that drives the solution
x(t) to the origin, x = 0. Note that the origin is an equilibrium point for the unforced
system. This definition of controllability is equivalent to the definition of controlla-
bility for nonlinear systems presented in chapter 8, section 12.3 where the goal state
is restricted to xgoal = 0.

THEOREM J.3.1 (LTI Controllability Test) The LTI control system in equation (J.6)
is controllable if and only if the matrix

Wc = [B AB A2 B · · · An−1 B]

has rank n.

Because controllability is determined solely by the matrices A and B, we can say that
the pair (A, B) is controllable if the system in equation (J.6) is controllable.

One common control objective is to make the origin of a naturally unstable system
stable using state feedback. Consider the control input given by the state-dependent
control law

u(t) = −K x(t)

for some matrix K ∈ R
m×n . Substituting this into equation (J.6) yields

ẋ(t) = ( A − BK )x(t).
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As a result, we can examine the stability of this new system in terms of the eigenvalues
of the matrix A − BK . One of the fundamental properties of real-valued matrices is
that their eigenvalues must occur in complex conjugate pairs. If a+bi is an eigenvalue
of a matrix, then a − bi must also be an eigenvalue of that matrix. Hence we define
a collection of complex numbers � = {λi | i ∈ {1, 2, . . . , n}} to be allowable if for
each λi that has a nonzero imaginary part there is a corresponding conjugate λ j . Now
we are prepared to state an important result of linear control theory:

THEOREM J.3.2 (Eigenvalue Placement) Consider the system of equation (J.6) and
assume the pair (A, B) is controllable and that the matrix B has full column rank. Let
� = {λi | i ∈ {1, 2, . . . , n}} be any allowable collection of complex numbers. Then
there exists a constant matrix K ∈ R

m×n such that the set of eigenvalues of ( A − BK)
is equal to �.

Under the assumptions of this theorem, we can place the eigenvalues of the matrix
A − BK in any allowable configuration using linear feedback. The task of stabilizing
an LTI system is then simply a matter of finding a K so that the corresponding
eigenvalues have negative real parts. There are a number of algorithms to perform
direct eigenvalue assignment (also sometimes called pole placement). Some of these
are implemented in the MATLAB control systems toolbox. Similarly, the famous
linear quadratic regulator (LQR) (see e.g., [396]) places the eigenvalues of A − BK
to optimize a user-defined cost function.

Consider as an example the mass-spring-damper system with negative damping.
As was pointed out earlier, this system is unstable; solutions for initial conditions
arbitrarily close to the origin will grow without bound. To use state feedback to
stabilize this system, consider the matrix

A − BK =
[

0 1
− k

m − γ

m

]
−

[
0
1
m

]
[k1 k2] =

[
0 1

− k+k1
m

γ+k2

m

]
.

The eigenvalues of A − BK are

(−γ − k2) ± √
(−γ − k2)2 − 4(k − k1)m

2m
,

so we can ensure that the real part of both eigenvalues is negative by choosing k2 such
that −γ − k2 < 0. This is equivalent to adding sufficient positive viscous damping to
overcome the energy added by the negative damping term γ .
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J.4 Observing LTI Systems

Often it is not possible to directly measure the entire state of an LTI system. Rather,
the state must be observed through the use of sensors that provide some lower-
dimensional measurement of the current state. If it were possible to measure only
velocity in the mass-spring-damper example, then equations of motion together with
the output equation for the system would be

ẋ(t) =
[

0 1
− k

m − γ

m

]
x(t) +

[
0
1
m

]
F(t),

(J.7)
y(t) = [0 1] x(t),

where y(t) represents the output signal coming from the sensor. We write a general
LTI system with output equation as

ẋ(t) = Ax(t) + Bu(t); x(t0) = x0,
(J.8)

y(t) = Cx(t),

where the state vector x(t) ∈ R
n , the control vector u(t) ∈ R

m , and the output
vector y(t) ∈ R

p. The constant matrix C ∈ R
p×n . Note that the matrix C may

not be invertible (it is usually not even square!), so the state at any instant x(t) cannot
be directly observed from the measurement at that instant y(t). We must instead
reconstruct the state by measuring the output over some interval of time and using
knowledge of the system dynamics. A device that performs such a reconstruction is
called an observer.

We say that the system of equation (J.8) is observable if it is possible to determine
the initial state x(t0) by observing the known signals y(t) and u(t) over some period
of time.

THEOREM J.4.1 (LTI Observability Test) The LTI control system in equation (J.8)
is observable if and only if the matrix

Wo =




C
C A
C A2

...

C An−1




has rank n.

As in the case of controllability, we say that the pair (A, C) is observable if the system
in equation (J.8) is observable. Note that the pair (A, C) is observable if and only if
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C
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u

+

–
x = Ax + Bu + K(y – Cx)

x

y = Cx

x = Ax + Bu

Figure J.5 Block diagram for a linear observer.

the pair (AT , CT ) is controllable. If the pair (A, B) is controllable and the pair (A, C)
is observable, then the system [and the triple (A, B, C)] is said to be minimal.

Now consider an observer defined by the ODE

˙̂x(t) = Ax̂(t) + Bu(t) + K (y(t) − Cx̂(t)).(J.9)

Note that this ODE requires that we know the matrices A, B, and C as well as the
input u(t) and output y(t). The vector x̂(t) is called the state estimate produced by
this observer. As shown in the block diagram in figure J.5, this observer is essentially
a copy of the original dynamic system with a correcting term that is a linear function
of the difference between the measured output y(t) and the estimated output Cx̂(t).
The task is then to try to choose K so that the correcting term forces the state estimate
to converge to the actual value.

If we define the error signal e(t) = x(t) − x̂(t), we can examine how the error
evolves with time:

ė(t) = ẋ(t) − ˙̂x(t)
= Ax(t) + Bu(t) − ( Ax̂(t) + Bu(t) + K (y(t) − Cx̂(t)))
= A(x(t) − x̂(t)) − K (Cx(t) − Cx̂(t))
= (A − K C)e(t)

If e(t) → 0, then x̂(t) → x(t). So the state estimate x̂(t) that results from the observer
presented in equation (J.9) converges to the actual state x(t) if K is chosen so that
the unforced LTI system ė(t) = ( A − K C)e(t) is asymptotically stable.
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Figure J.6 Solid lines represent the actual state and the dashed line represents the state
estimate determined by the observer. The left figure depicts x1 and the right x2.

Recall that the eigenvalues of any matrix are equal to the eigenvalues of its trans-
pose, so the eigenvalues of A − K C are identical to the eigenvalues of AT − CT K T .
According to theorem J.3.2, we can place the eigenvalues of AT −CT K T in any allow-
able configuration provided that the pair (AT , CT ) is controllable and the matrix CT

has full column rank. This is equivalent to saying that the eigenvalues of A − K C can
be placed in any allowable configuration provided that the pair (A, C) is observable
and C has full row rank. Under these conditions, it is possible to chose a K so that
the observer estimate x̂(t) converges to x(t).

Consider the mass-spring-damper system of equation (J.7). The matrix

A − K C =
[

0 1 − k1

− k
m − γ

m − k2

]
.

The eigenvalues of this matrix are

−(γ + mk2) ± √
(−γ − mk2)2 − 4m(k − k1)

2m
,

so choosing k2 such that −γ − mk2 < 0 will guarantee that the observer given in
equation (J.9) converges, meaning that after some initial transient, estimate x̂(t) will
provide a good approximation of the state. For the case where m = 1, k = 2, and
γ = 0, the choice of K = [0 2]T will provide a convergent observer. Figure J.6 shows
how the estimates x̂1(t) and x̂2(t) converge to x1(t) and x2(t), respectively.
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J.5 Discrete Time Systems

The previous sections dealt with an LTI system whose trajectories were continuous
in time. In practice, a continuous dynamical system is usually sampled at regular
time intervals. The sampled or discrete time signal is then fed into a computer as a
sequence of numbers. The computer can then use this sequence to calculate a desired
control input or to estimate the state. In this section we present an overview of the
theory of discrete time LTI systems and their relationship to their continuous time
cousins.

Consider the continuous time signal x(t). We define a sequence of vectors using
the formula xs(k) = x(t0 + kT ). The sequence xs(k) is the discrete time sampling
of the continuous signal x(t). In the future, we will abuse notation and drop the s
subscript on the discrete time sequence. The continuous and discrete signals can be
differentiated by the letter used in their argument; x(k) represents an element of the
sequence and x(t) denotes the continuous time signal.

Using the first-order derivative approximation

ẋ(t0 + kT ) ≈ x(k + 1) − x(k)

T

and substituting into the continuous time LTI system of equation (J.8) yields

x(k + 1) − x(k)

T
≈ Ax(k) + Bu(k),

which leads to

x(k + 1) ≈ x(k) + T Ax(k) + T Bu(k).

Defining F = In×n + T A, G = T B, and H = C , we can then write a discrete time
approximation of the continuous system:

ẋ(k + 1) = Fx(k) + Gu(k); x(0) = x0

y(k) = H x(k)
(J.10)

Most of the concepts from continuous LTI systems have direct analogs in discrete
time LTI systems. We discuss them briefly here.

J.5.1 Stability

The discrete time notions of stability, asymptotic stability, and instability follow
directly from the continuous time definitions. As in the case of continuous systems,
the stability of the unforced system x(k + 1) = Fx(k) can be evaluated in terms of
the eigenvalues of F :
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THEOREM J.5.1 (Discrete Time LTI Stability) Consider the unforced discrete time
LTI system described by the equation x(k + 1) = Fx(k), and let λi , i ∈ {1, 2, . . . , n}
denote the eigenvalues of F. Then the following hold:

1. xe = 0 is stable if and only if |λi | ≤ 1 for all i .

2. xe = 0 is asymptotically stable if and only if |λi | < 1 for all i .

3. xe = 0 is unstable if and only if |λi | > 1 for some i .

J.5.2 Controllability and Observability

The properties of controllability and observability for the discrete time LTI sys-
tem follow from the properties of the continuous time system. The controllability
test is the same for both: the pair (F, G) is controllable if and only if the matrix
[G FG F2G · · · Fn−1G] has rank n. The pair (F, H ) is observable if and only if
the pair (F T , H T ) is controllable. As in the case of continuous systems, construction
of linear state feedback control laws or linear observers results in a pole placement
problem which can be solved if the system is controllable or observable, respectively.
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[231] L. E. Kavraki, P. Švestka, J. C. Latombe, and M. H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE
Transactions on Robotics and Automation, 12(4):566–580, June 1996.



Choset-79066 book February 23, 2005 13:36

582 Bibliography

[232] H. Keller. Lectures on Numerical Methods in Bifurcation Problems. Tata Insti-
tute of Fundamental Research, Bombay, India, 1987.

[233] S. D. Kelly and R. M. Murray. Geometric phases and robotic locomotion.
Journal of Robotic Systems, 12(6):417–431, 1995.

[234] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots.
International Journal of Robotics Research, 5:90–98, 1986.

[235] R. Kindel, D. Hsu, J. C. Latombe, and S. Rock. Kinodynamic motion planning
amidst moving obstacles. In IEEE International Conference on Robotics and
Automation, pages 537–543, 2000.

[236] D. E. Kirk. Optimal Control Theory. Prentice-Hall Inc., 1970.

[237] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, O. E., and H. Matsubara.
RoboCup: A challenge problem for AI. AI Magazine, 18(1):73–85, 1997.

[238] J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral, and K. Zikan.
Efficient collision detection using bounding volume hierarchies of k-DOPs.
IEEE Transactions on Visualization and Computer Graphics, 4(1):21–36,
1998.

[239] D. E. Koditschek and E. Rimon. Robot navigation functions on manifolds with
boundary. Advances in Applied Mathematics, 11:412–442, 1990.

[240] S. Koenig and R. Simmons. A robot navigation architecture based on partially
observable Markov decision process models. In D. Kortenkamp, R. Bonasso,
and R. Murphy, editors, Artificial Intelligence and Mobile Robots. MIT/AAAI
Press, Cambridge, MA, 1998.

[241] Y. Koga, K. Kondo, J. Kuffner, and J. C. Latombe. Planning motions with
intentions. Computer Graphics (SIGGRAPH’94), pages 395–408, 1994.

[242] Y. Koga and J. C. Latombe. Experiments in dual-arm manipulation planning.
In IEEE International Conference on Robotics and Automation, pages 2238–
2245, 1992.

[243] Y. Koga and J. C. Latombe. On multi-arm manipulation planning. In IEEE
International Conference on Robotics and Automation, pages 945–952, 1994.

[244] K. Kondo. Motion planning with six degrees of freedom by multistrategic
bidirectional heuristic free-space enumeration. IEEE Transactions on Robotics
and Automation, 7:267–277, 1991.

[245] K. Konolige. Markov localization using correlation. In Proc. of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), 1999.

[246] J. J. Kuffner. Effective sampling and distance metrics for 3D rigid body path
planning. In IEEE International Conference on Robotics and Automation,
2004.



Choset-79066 book February 23, 2005 13:36

Bibliography 583

[247] J. J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue. Motion plan-
ning for humanoid robots under obstacle and dynamic balance constraints. In
IEEE International Conference on Robotics and Automation, pages 692–698,
Seoul, Korea, May 2001.

[248] J. J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue. Motion plan-
ning for humanoid robots. In International Symposium on Robotics Research,
2003. Book to appear.

[249] J. J. Kuffner and S. M. LaValle. RRT-connect: An efficient approach to
single-query path planning. In IEEE International Conference on Robotics
and Automation, pages 995–1001, 2000.

[250] B. Kuipers and Y. Byan. A robot exploration and mapping strategy based
on a semantic hierarchy of spatial representations. Journal of Robotics and
Autonomous Systems, 8:47–63, 1991.

[251] A. M. Ladd and L. E. Kavraki. Motion planning for knot untangling. In J.-D.
Boissonnat, J. Burdick, K. Goldberg, and S. Hutchinson, editors, Algorithmic
Foundations of Robotics V, pages 7–24. Springer-Verlag, 2002.

[252] A. M. Ladd and L. E. Kavraki. Measure theoretic analysis of probabilistic path
planning. IEEE Transactions on Robotics and Automation, 20(2):229–242,
2004.

[253] G. Lafferriere and H. Sussmann. Motion planning for controllable systems
without drift. In IEEE International Conference on Robotics and Automation,
pages 1148–1153, Sacramento, CA, 1991.

[254] G. Lafferriere and H. J. Sussmann. A differential geometric approach to motion
planning. In Z. Li and J. Canny, editors, Nonholonomic Motion Planning.
Kluwer Academic, 1993.

[255] F. Lamiraux and L. E. Kavraki. Planning paths for elastic objects under manipu-
lation constraints. International Journal of Robotics Research, 20(3):188–208,
2001.

[256] F. Lamiraux and L. E. Kavraki. Positioning of symmetric and nonsymmet-
ric parts using radial and constant fields: Computation of al equilibrium
configurations. International Journal of Robotics Research, 20(8):635–659,
2001.

[257] F. Lamiraux and J.-P. Laumond. On the expected complexity of random path
planning. In IEEE International Conference on Robotics and Automation,
pages 3014–3019, 1996.

[258] F. Lamiraux and J.-P. Laumond. Smooth motion planning for car-like vehi-
cles. IEEE Transactions on Robotics and Automation, 17(4):498–502, Aug.
2001.



Choset-79066 book February 23, 2005 13:36

584 Bibliography

[259] F. Lamiraux, S. Sekhavat, and J.-P. Laumond. Motion planning and control
for Hilare pulling a trailer. IEEE Transactions on Robotics and Automation,
15(4):640–652, Aug. 1999.

[260] S. Land and H. Choset. Coverage path planning for landmine location. In Third
International Symposium on Technology and the Mine Problem, Monterey, CA,
April 1998.

[261] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha. Fast proximity queries with
swept sphere volumes. Technical Report TR99-018, Department of Computer
Science, University of North Carolina at Chapel Hill, North Carolina, 1999.

[262] J. C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston,
MA, 1991.

[263] J. C. Latombe. Personal communication.

[264] J.-P. Laumond and R. Alami. A geometrical approach to planning manipula-
tion tasks: The case of a circular robot and a movable circular object amidst
polygonal obstacles. Report 88314, LAAS/CNRS, Toulouse, France, 1989.

[265] J.-P. Laumond. Controllability of a multibody mobile robot. IEEE Transactions
on Robotics and Automation, 9(6):755–763, Dec. 1993.

[266] J.-P. Laumond. Robot motion planning and control. Springer, 1998.

[267] J.-P. Laumond, P. E. Jacobs, M. Taı̈x, and R. M. Murray. A motion planner for
nonholonomic mobile robots. IEEE Transactions on Robotics and Automation,
10(5):577–593, Oct. 1994.

[268] S. M. LaValle, J. Yakey, and L. E. Kavraki. Randomized path planning for
linkages with closed kinematics chains. IEEE Transactions on Robotics and
Automation, 17(6):951–959, 2001.

[269] S. M. LaValle and M. S. Branicky. On the relationship between classi-
cal grid search and probabilistic roadmaps. In J.-D. Boissonnat, J. Burdick,
K. Goldberg, and S. Hutchinson, editors, Algorithmic Foundations of Robotics
V, pages 59–76. Springer-Verlag, 2002.

[270] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. In IEEE
International Conference on Robotics and Automation, pages 473–479, 1999.

[271] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. Interna-
tional Journal of Robotics Research, 20(5):378–400, May 2001.

[272] S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: Progress and
prospects. In B. R. Donald, K. Lynch, and D. Rus, editors, New Directions in
Algorithmic and Computational Robotics, pages 293–308. AK Peters, 2001.

[273] S. M. Lavalle, D. Lin, L. J. Guibas, J. C. Latombe, and R. Motwani. Finding
an unpredictable target in a workspace with obstacles. In IEEE International
Conference on Robotics and Automation, pages 1677–1682, 1997.



Choset-79066 book February 23, 2005 13:36

Bibliography 585

[274] J. Lengyel, M. Reichert, B. R. Donald, and D. P. Greenberg. Real-time robot
motion planning using rasterizing computer graphics hardware. Computer
Graphics, 24(4):327–335, 1990.

[275] S. Lenser and M. Veloso. Sensor resetting localization for poorly modelled
mobile robots. In IEEE International Conference on Robotics and Automation,
2000.

[276] J. J. Leonard and H. Durrant-Whyte. Directed Sonar Sensing for Mobile Robot
Navigation. Kluwer Academic, Boston, MA, 1992.

[277] J. J. Leonard and H. Feder. A computationally efficient method for large-scale
concurrent mapping and localization. In J. Hollerbach and D. Koditschek, edi-
tors, Proceedings of the Ninth International Symposium on Robotics Research,
Salt Lake City, Utah, 1999.

[278] J. J. Leonard and H. Durrant-Whyte. Simultaneous map building and localiza-
tion for an autonomous mobile robot. In IEEE/RSJ International Workshop on
Intelligent Robots and Systems, pages 1442–1447, May 1991.

[279] N. E. Leonard. Control synthesis and adaptation for an underactuated
autonomous underwater vehicle. IEEE Journal of Oceanic Engineering,
20(3):211–220, July 1995.

[280] N. E. Leonard and P. S. Krishnaprasad. Motion control of drift-free, left-
invariant systems on Lie groups. IEEE Transactions on Automatic Control,
40(9):1539–1554, Sept. 1995.

[281] P. Leven and S. Hutchinson. Real-time path planning in changing environments.
International Journal of Robotics Research, 21(12):999–1030, Dec. 2002.

[282] P. Leven and S. Hutchinson. Using manipulability to bias sampling during the
construction of probabilistic roadmaps. IEEE Transactions on Robotics and
Automation, 19(6):1020–1026, Dec. 2003.

[283] A. D. Lewis. When is a mechanical control system kinematic? In IEEE Con-
ference on Decision and Control, pages 1162–1167, Dec. 1999.

[284] A. D. Lewis. Simple mechanical control systems with constraints. IEEE Trans-
actions on Automatic Control, 45(8):1420–1436, 2000.

[285] A. D. Lewis and R. M. Murray. Configuration controllability of simple mechan-
ical control systems. SIAM Journal on Control and Optimization, 35(3):766–
790, May 1997.

[286] A. D. Lewis and R. M. Murray. Configuration controllability of simple mechan-
ical control systems. SIAM Review, 41(3):555–574, 1999.

[287] F. L. Lewis and V. L. Syrmos. Optimal Control. John Wiley and Sons, Inc.,
1995.

[288] Z. Li and J. Canny. Nonholonomic Motion Planning. Kluwer Academic, 1993.



Choset-79066 book February 23, 2005 13:36

586 Bibliography

[289] K. Lian, L. Wang, and L. Fu. Controllability of spacecraft systems in a central
gravitational field. IEEE Transactions on Automatic Control, 39(12):2426–
2440, Dec. 1994.

[290] M. C. Lin, D. Manocha, J. Cohen, and S. Gottschalk. Collision detection:
Algorithms and applications. In J.-P. Laumond and M. Overmars, editors,
Algorithms for Robotic Motion and Manipulation, pages 129–142. A K Peters,
Wellesley, MA, 1997.

[291] S. R. Lindemann and S. M. LaValle. Incremental low-discrepancy lattice meth-
ods for motion planning. In IEEE International Conference on Robotics and
Automation, pages 2920–2927, 2003.

[292] S. R. Lindemann and S. M. LaValle. Current issues in sampling-based motion
planning. In International Symposium on Robotics Research, 2003. Book to
appear.

[293] G. Liu and Z. Li. A unified geometric approach to modeling and control of con-
strained mechanical systems. IEEE Transactions on Robotics and Automation,
18(4):574–587, Aug. 2002.

[294] Y. Liu and S. Arimoto. Path planning using a tangent graph for mobile robots
among polygonal and curved obstacles. International Journal of Robotics
Research, 11(4):376–382, 1992.

[295] C. Lobry. Controllability of nonlinear systems on compact manifolds. SIAM
Journal on Control, 12(1):1–4, 1974.

[296] I. Lotan, F. Schwarzer, D. Halperin, and J. C. Latombe. Efficient maintenance
and self-collision testing for kinematic chains. In Proceedings of the 18th
annual Symposium on Computational geometry, pages 43–52. ACM Press,
2002.
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(k1 | k2) notation, 275
C∞-related, 56
SE(n), 62
SO(3), 62
SO(n), 61
ε-neighborhood, 475
3R robot arm, 462

accessible, 416
AERCam, 2
affine connection, 429
angular momentum, 364
applicability condition, 504
Ariadne’s clew, 228
artificial potential function, 12
assembly, 259
asymptotic stability, 554
atan2, 74
atlas, 57
axis-angle parameterization, 492

bad bracket, 420
ball-and-socket joint, 49
Banach space, 481
base variable, 442
Bayes’ rule, 548
Bayesian estimation, 13
bijective, 52
biology, 262
body inertia matrix, 366
body-frame transformation, 65

boundary, 476
bounded, 18
boustrophedon decomposition, 169
bridge planner, 217
brushfire algorithm, 87
Bug1, 17
Bug2, 19

C-space, 40
car, 450
car pulling trailer, 459
Cauchy sequence, 480
cell decomposition, 13
center of mass, 362
centralized planning, 254
centrifugal term, 354
chain rule, 484
chained form, 444
chart, 55
Chow’s theorem, 419
Christoffel symbol, 354
closed set, 476
closed-chain robot, 49
closest neighbors, 209
closure, 476
codimension, 132
codistribution, 408
collision, 201
collision checking, 212
column space, 276
compact, 59
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compact factor, 59
complement of a set, 475
complete, 407
complete planner, 6
complexity, 198
complexity theory, 515
computational complexity, 10
conditional probability, 548
configuration, 2, 39, 40, 202,

203, 227
configuration space, 10, 39, 40, 198
configuration space obstacle, 2, 43
configuration space, 2
connected, 58
connected component, 205, 225
connected components, 58
connection sampling, 223
connectivity, 202, 203, 205, 207
conservative, 47
constrained affine connection, 438
continuous function, 481
control affine nonlinear system, 415
control vector field, 415
control vector field, 406
control-based planning, 253
controllability, 401, 557
controllable, 416
convex hull, 477, 510
convex polygonal region, 500
convexity, 477
coordinate system, 56
Coriolis matrix, 354
Coriolis term, 354
cotangent bundle, 408
cotangent space, 408
covariance matrix, 278, 551
covariant derivative, 426
covector, 408
covector field, 408
cover, 168
coverage, 6
critical arc, 380

critical point, 78, 125, 379
critical values, 142
cumulutive distribution function

(CDF), 549
cycle algorithm, 181

data association, 292
dead reckoning, 285
decision problems, 516
decoupled planning, 256
decoupling vector field, 435
deformation retract, 118
deformation retraction, 121
degrees of freedom, 2, 10, 40
dense set, 477
deterministic sampling, 219
diffeomorphism, 53
differentiable manifold, 55, 57
differential, 69
differential drive, 452
differentially flat, 447
discrepancy, 219
dispersion, 220
distance function, 203
distance metric, 210, 428
distribution, 408
docking, 262
domain, 481
drift vector field, 406, 415
drift-free, 415
dynamical polysystem, 414

edge, 202, 203
eigenvalue placement, 558
eight-point connectivity, 87
EKF, 269, 289
elbow-down, 41
elbow-up, 41
embedding, 59, 210
end effector, 40
equilibrium controllable, 431
EST, 200, 201, 228, 230
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Euclidean metric, 429
Euler angles, 66, 489
Euler’s equation, 364
Euler-Lagrange equations, 350
events, 165
exact planning, 198
exhaustive search, 22
expected value, 550
extended Kalman filter (EKF), 289
extended system, 465

feedback transformation, 356
fiber controllability, 442
fiber variable, 442
fictitious input, 466
filtration, 411
first fundamental group, 122
fixed axis parameterizations, 491
flat output, 447
flexible object, 260
flow, 407
foliation, 412
forward kinematics, 69
four-bar mechanism, 72
four-point connectivity, 87
free configuration space, 43
free path, 43
free space, 43
freeways, 151
free configuration space, 14
free workspace, 14
Frobenius theorem, 412

Gaussian distribution, 277, 551
generalized coordinate, 350
generalized force, 350
generalized gradient, 155
generalized Voronoi graph, 129
generalized Voronoi region, 118
generalized mover’s problem, 2
generic loop, 447
geodesic, 428

GJK distance computation
algorithm, 509

global localization, 302
good bracket, 420
gradient, 77, 483
graph, 203
greedy, 22
grid, 86
group, 60
Grübler’s formula, 50

Hamiltonian, 386
Hessian, 78
Hilbert space, 481
holonomic constraint, 48, 361
homeomorphism, 53
homogeneous coordinates, 64
homotopic, 121
homotopy, 121
hopping robot, 433
hyper-redundant, 50
hyper-redundant robot, 7

image, 52
implicit function, 120
implicit function theorem, 36, 487
inadmissible region, 376
inertia matrix, 353
inertial frame inertia matrix, 364
injective, 52
inner product, 427, 481
innovation, 276
integral curve, 407
integral manifold, 407, 412
interior, 476
intersection, 475
inverse kinematics, 69
involutive, 412
involutive closure, 412

Jacobian, 35, 39, 69, 356, 483
junction region, 141
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Kalman filter, 269, 284
Kalman filtering, 13
kidnapped robot problem, 302
kinematic, 2
kinematic reduction, 435
kinematic reduction, rank 1, 435
kinematic reduction, rank m, 435
kinematically controllable, 437
kinetic energy metric, 429
kinodynamic, 228
knife-edge, 359

Lagrange multipliers, 357, 386
Lagrange’s equations, 350
Lagrangian, 350, 386
LARC, 419
lazy evaluation, 226
leaf, 412
left arm, 69
left-arm, 41, 42
Legendre-Clebsch condition, 387
Lie algebra, 402, 411
Lie algebra rank condition, 419
Lie bracket, 409, 410
Lie product, 410
line of nodes, 369
line of sight, 477
linear state feedback, 557
local planner, 203, 207, 211
localization, 4, 9
locally diffeomorphic, 54
locally homeomorphic, 54

Mahalanobis distance, 279, 293
Manhattan distance

metric, 480
manifold, 55
manifold with boundary, 59
manipulation, 257
mapping, 5, 9
mass matrix, 353
matrix commutator, 467

maximally reducible to a kinematic
system, 435

mean, 550
measurement noise, 273
meet points, 119
metric, 479
metric space, 479
metric spaces, 479
metric topology, 480
Minkowski difference, 477, 508
Minkowski sum, 477
mobility, 49
Morse, 93
Morse decomposition, 169, 171
motion model, 305
motion library, 466
motion planning, 14

natural pairing, 408
navigation, 9
navigation function, 80, 93
navigation functions, 93
negative half plane, 500
neighborhood, 54, 475, 479
neutralize, 421
Newton-Raphson convergence

theorem, 488
nilpotent, 412
nilpotentizable, 466
node, 202, 203
non-degenerate, 78
non-Euclidean space, 2
nonholonomic, 4, 10, 13, 409
nonholonomic constraint, 48, 361, 401
nonlinear optimization, 390
nonwandering point, 423
nonwandering set, 423
normed space, 480
null space, 35, 276

observability, 287, 559
observation model, 305
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observer, 559
obstacle based sampling, 216
offline, 11
offline planning, 2
offset curve, 33, 35
one-form, 408
one-to-one, 52
online, 11
onto, 52
open ball, 54, 480
open set, 476, 478
opportunistic, 22
opportunistic path planner, 151
optimal control, 440
optimization problems, 516
orthogonal, 276, 427

parallel mechanism, 49
parallel-axis theorem, 363, 369
parameterization, 56
path, 2, 14, 202, 203, 205
path planning, 14
path-connected, 58
Peano-Baker, 554
Pfaffian constraint, 357, 409
Philip Hall basis, 412
piano mover’s problem, 1
pixel, 86
planar body with thrusters, 404
plane sweep algorithms, 114
planner, 197, 198, 201, 202
polygon, 501
polygon soup, 499
polygonal region, 501
Pontryagin minimum principle, 386
position tracking, 301
positive half plane, 500
positively Poisson stable, 423
post processing, 212
posterior, 304
posterior probability, 304
potential, 227

potential function, 77
preimage, 52
principal axis of inertia, 366
prior, 305
prior probability, 305
priority queue, 526
prismatic joint, 49
PRM, 198, 200, 201
probabilistic completeness, 201, 243
probabilistic localization, 270
probabilistic roadmap, 202
probability density function

(PDF), 549
probability mass function (PMF), 549
process noise, 273
product of Gaussians, 283
protein folding, 262
pursuit/evasion problem, 187

quasirandom sampling, 219
quaternions, 494
query, 202–204

random variable, 548
random vector, 550
range, 481
raw distance function, 23
reduced visibility graph, 111
redundant, 50
redundant robot, 7
Reeb graph, 178
Reeds-Shepp curve, 453
regular, 411
regular distribution, 408
regular value, 125
retract, 121
retraction, 121
revolute joint, 49
Riemannian metric, 429
right arm, 69
right-arm, 41, 42
roadmap, 12, 198, 202, 203, 205
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robot, 197, 198, 203, 227
robot dynamics, 2, 13
rod, 138
roll, pitch and yaw, 491
rotation matrix, 66, 67
RP manipulator, 351
RPP, 227, 228
RRT, 200, 201, 228, 233

sampling-based, 197, 198, 227
saturate raw distance function, 23
SBL, 229
semifree path, 43
sensor-based, 11
sensor-based planning, 5
serial mechanism, 49
set, 475
shape variable, 442
shortest path, 427
silhouette curve, 142
simple mechanical control system, 425
singular, 70
singular arc, 380
singular optimal control, 388
singular point, 380
SLAM, 5, 270, 294
slice, 141
small-time local equilibrium

controllability, 431
small-time locally accessible, 416
small-time locally configuration

accessible, 431
small-time locally configuration

controllable, 431
small-time locally controllable, 417
small-time locally kinematically

controllable, 437
smooth, 53
smooth curve, 484
smooth function, 482
smoothing, 205
snakeboard, 470

sofa mover’s problem, 2
special Euclidean group, 62
special orthogonal group, 62
spherical joint, 49
SRT, 200, 201, 238, 257
stability, 554
standard topology, 478
star algorithm, 507
star-shaped, 97, 477
star-spaces, 97
state space, 552
STLA, 416
STLC, 417
STLCA, 431
STLCC, 431
STLEC, 431
STLKC, 437
submanifold, 60
subset, 475
surjective, 52
sweep line, 114, 165
symmetric closure, 431
symmetric control system, 414
symmetric product, 430

tangent, 31
Tangent Bug, 23
tangent bundle, 405
tangent map, 483
tangent space, 125, 405
tangent vector, 405
time scaling, 374
time-optimal, 6
topological space, 478
topology, 50, 478
torus, 41
trajectory, 2
trajectory planning, 13
transform matrix, 62
transversal, 132
transversality, 131
tree, 228
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two-form, 408, 429
type A contact, 503
type B contact, 503

ultrasonic sensor, 33
underactuated, 401
underactuation, 13
unicycle, 403
uniform distribution, 203, 550
uniform sampling, 208, 216
union, 475

variance, 551
vector field, 77, 405
velocity limit curve, 377
visibility graph, 110
visibility-based sampling, 218
Voronoi region, 118

weakly positively Poisson stable, 423
white noise, 273
workspace, 14, 40, 203, 227
world-frame transformation, 65

zero inertia point, 375, 379


