
1 Introduction

1.1 Introduction to Data Mining

Progress in digital data acquisition and storage technology has resulted in the
growth of huge databases. This has occurred in all areas of human endeavor,
from the mundane (such as supermarket transaction data, credit card usage
records, telephone call details, and government statistics) to the more exotic
(such as images of astronomical bodies, molecular databases, and medical
records). Little wonder, then, that interest has grown in the possibility of
tapping these data, of extracting from them information that might be of
value to the owner of the database. The discipline concerned with this task
has become known as data mining.

Defining a scientific discipline is always a controversial task; researchers
often disagree about the precise range and limits of their field of study. Bear-
ing this in mind, and accepting that others might disagree about the details,
we shall adopt as our working definition of data mining:

Data mining is the analysis of (often large) observational data sets to
find unsuspected relationships and to summarize the data in novel
ways that are both understandable and useful to the data owner.

The relationships and summaries derived through a data mining exercise
are often referred to as models or patterns. Examples include linear equations,
rules, clusters, graphs, tree structures, and recurrent patterns in time series.

The definition above refers to “observational data,” as opposed to “exper-
imental data.” Data mining typically deals with data that have already been
collected for some purpose other than the data mining analysis (for exam-
ple, they may have been collected in order to maintain an up-to-date record
of all the transactions in a bank). This means that the objectives of the data
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mining exercise play no role in the data collection strategy. This is one way
in which data mining differs from much of statistics, in which data are often
collected by using efficient strategies to answer specific questions. For this
reason, data mining is often referred to as “secondary” data analysis.

The definition also mentions that the data sets examined in data mining
are often large. If only small data sets were involved, we would merely be
discussing classical exploratory data analysis as practiced by statisticians.
When we are faced with large bodies of data, new problems arise. Some
of these relate to housekeeping issues of how to store or access the data,
but others relate to more fundamental issues, such as how to determine the
representativeness of the data, how to analyze the data in a reasonable pe-
riod of time, and how to decide whether an apparent relationship is merely
a chance occurrence not reflecting any underlying reality. Often the avail-
able data comprise only a sample from the complete population (or, perhaps,
from a hypothetical superpopulation); the aim may be to generalize from the
sample to the population. For example, we might wish to predict how fu-
ture customers are likely to behave or to determine the properties of protein
structures that we have not yet seen. Such generalizations may not be achiev-
able through standard statistical approaches because often the data are not
(classical statistical) “random samples,” but rather “convenience” or “oppor-
tunity” samples. Sometimes we may want to summarize or compress a very
large data set in such a way that the result is more comprehensible, with-
out any notion of generalization. This issue would arise, for example, if we
had complete census data for a particular country or a database recording
millions of individual retail transactions.

The relationships and structures found within a set of data must, of course,
be novel. There is little point in regurgitating well-established relationships
(unless, the exercise is aimed at “hypothesis” confirmation, in which one
was seeking to determine whether established pattern also exists in a new
data set) or necessary relationships (that, for example, all pregnant patients
are female). Clearly, novelty must be measured relative to the user’s prior
knowledge. Unfortunately few data mining algorithms take into account a
user’s prior knowledge. For this reason we will not say very much about
novelty in this text. It remains an open research problem.

While novelty is an important property of the relationships we seek, it is
not sufficient to qualify a relationship as being worth finding. In particular,
the relationships must also be understandable. For instance simple relation-
ships are more readily understood than complicated ones, and may well be
preferred, all else being equal.
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Data mining is often set in the broader context of knowledge discovery in
databases, or KDD. This term originated in the artificial intelligence (AI) re-
search field. The KDD process involves several stages: selecting the target
data, preprocessing the data, transforming them if necessary, performing
data mining to extract patterns and relationships, and then interpreting and
assessing the discovered structures. Once again the precise boundaries of the
data mining part of the process are not easy to state; for example, to many
people data transformation is an intrinsic part of data mining. In this text
we will focus primarily on data mining algorithms rather than the overall
process. For example, we will not spend much time discussing data pre-
processing issues such as data cleaning, data verification, and defining vari-
ables. Instead we focus on the basic principles for modeling data and for
constructing algorithmic processes to fit these models to data.

The process of seeking relationships within a data set— of seeking accu-
rate, convenient, and useful summary representations of some aspect of the
data—involves a number of steps:

� determining the nature and structure of the representation to be used;

� deciding how to quantify and compare how well different representations
fit the data (that is, choosing a “score” function);

� choosing an algorithmic process to optimize the score function; and

� deciding what principles of data management are required to implement
the algorithms efficiently.

The goal of this text is to discuss these issues in a systematic and detailed
manner. We will look at both the fundamental principles (chapters 2 to 8) and
the ways these principles can be applied to construct and evaluate specific
data mining algorithms (chapters 9 to 14).

Example 1.1 Regression analysis is a tool with which many readers will be
familiar. In its simplest form, it involves building a predictive model to relate
a predictor variable, X , to a response variable, Y , through a relationship of the
form Y = aX+b. For example, we might build a model which would allow us
to predict a person’s annual credit-card spending given their annual income.
Clearly the model would not be perfect, but since spending typically increases
with income, the model might well be adequate as a rough characterization. In
terms of the above steps listed, we would have the following scenario:

� The representation is a model in which the response variable, spending, is
linearly related to the predictor variable, income.
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� The score function most commonly used in this situation is the sum of
squared discrepancies between the predicted spending from the model and
observed spending in the group of people described by the data. The smaller
this sum is, the better the model fits the data.

� The optimization algorithm is quite simple in the case of linear regression:
a and b can be expressed as explicit functions of the observed values of
spending and income. We describe the algebraic details in chapter 11.

� Unless the data set is very large, few data management problems arise with
regression algorithms. Simple summaries of the data (the sums, sums of
squares, and sums of products of the X and Y values) are sufficient to com-
pute estimates of a and b. This means that a single pass through the data
will yield estimates.

Data mining is an interdisciplinary exercise. Statistics, database technol-
ogy, machine learning, pattern recognition, artificial intelligence, and visual-
ization, all play a role. And just as it is difficult to define sharp boundaries
between these disciplines, so it is difficult to define sharp boundaries be-
tween each of them and data mining. At the boundaries, one person’s data
mining is another’s statistics, database, or machine learning problem.

1.2 The Nature of Data Sets

We begin by discussing at a high level the basic nature of data sets.
A data set is a set of measurements taken from some environment or pro-

cess. In the simplest case, we have a collection of objects, and for each object
we have a set of the same p measurements. In this case, we can think of the
collection of the measurements on n objects as a form of n�p data matrix. The
n rows represent the n objects on which measurements were taken (for exam-
ple, medical patients, credit card customers, or individual objects observed
in the night sky, such as stars and galaxies). Such rows may be referred to as
individuals, entities, cases, objects, or records depending on the context.

The other dimension of our data matrix contains the set of pmeasurements
made on each object. Typically we assume that the same p measurements are
made on each individual although this need not be the case (for example, dif-
ferent medical tests could be performed on different patients). The p columns
of the data matrix may be referred to as variables, features, attributes, or fields;
again, the language depends on the research context. In all situations the
idea is the same: these names refer to the measurement that is represented
by each column. In chapter 2 we will discuss the notion of measurement in
much more detail.
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ID Age Sex Marital Status Education Income
248 54 Male Married High school graduate 100000
249 ?? Female Married High school graduate 12000
250 29 Male Married Some college 23000
251 9 Male Not married Child 0
252 85 Female Not married High school graduate 19798
253 40 Male Married High school graduate 40100
254 38 Female Not married Less than 1st grade 2691
255 7 Male ?? Child 0
256 49 Male Married 11th grade 30000
257 76 Male Married Doctorate degree 30686

Table 1.1 Examples of data in Public Use Microdata Sample data sets.

Example 1.2 The U.S. Census Bureau collects information about the U.S. pop-
ulation every 10 years. Some of this information is made available for public
use, once information that could be used to identify a particular individual
has been removed. These data sets are called PUMS, for Public Use Micro-
data Samples, and they are available in 5 % and 1 % sample sizes. Note that
even a 1 % sample of the U.S. population contains about 2.7 million records.
Such a data set can contain tens of variables, such as the age of the person,
gross income, occupation, capital gains and losses, education level, and so on.
Consider the simple data matrix shown in table 1.1. Note that the data con-
tains different types of variables, some with continuous values and some with
categorical. Note also that some values are missing—for example, the Age of
person 249, and the Marital Status of person 255. Missing measurements are
very common in large real-world data sets. A more insidious problem is that
of measurement noise. For example, is person 248’s income really $100,000 or
is this just a rough guess on his part?

A typical task for this type of data would be finding relationships between
different variables. For example, we might want to see how well a person’s in-
come could be predicted from the other variables. We might also be interested
in seeing if there are naturally distinct groups of people, or in finding values
at which variables often coincide. A subset of variables and records is avail-
able online at the Machine Learning Repository of the University of California,
Irvine , www.ics.uci.edu/�mlearn/MLSummary.html.

Data come in many forms and this is not the place to develop a complete
taxonomy. Indeed, it is not even clear that a complete taxonomy can be devel-
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oped, since an important aspect of data in one situation may be unimportant
in another. However there are certain basic distinctions to which we should
draw attention. One is the difference between quantitative and categorical
measurements (different names are sometimes used for these). A quantita-
tive variable is measured on a numerical scale and can, at least in principle,
take any value. The columns Age and Income in table 1.1 are examples of
quantitative variables. In contrast, categorical variables such as Sex, Marital
Status and Education in 1.1 can take only certain, discrete values. The com-
mon three point severity scale used in medicine (mild, moderate, severe) is
another example. Categorical variables may be ordinal (possessing a natural
order, as in the Education scale) or nominal (simply naming the categories, as
in the Marital Status case). A data analytic technique appropriate for one type
of scale might not be appropriate for another (although it does depend on
the objective—see Hand (1996) for a detailed discussion). For example, were
marital status represented by integers (e.g., 1 for single, 2 for married, 3 for
widowed, and so forth) it would generally not be meaningful or appropriate
to calculate the arithmetic mean of a sample of such scores using this scale.
Similarly, simple linear regression (predicting one quantitative variable as a
function of others) will usually be appropriate to apply to quantitative data,
but applying it to categorical data may not be wise; other techniques, that
have similar objectives (to the extent that the objectives can be similar when
the data types differ), might be more appropriate with categorical scales.

Measurement scales, however defined, lie at the bottom of any data tax-
onomy. Moving up the taxonomy, we find that data can occur in various
relationships and structures. Data may arise sequentially in time series, and
the data mining exercise might address entire time series or particular seg-
ments of those time series. Data might also describe spatial relationships, so
that individual records take on their full significance only when considered
in the context of others.

Consider a data set on medical patients. It might include multiple mea-
surements on the same variable (e.g., blood pressure), each measurement taken
at different times on different days. Some patients might have extensive im-
age data (e.g., X-rays or magnetic resonance images), others not. One might
also have data in the form of text, recording a specialist’s comments and diag-
nosis for each patient. In addition, there might be a hierarchy of relationships
between patients in terms of doctors, hospitals, and geographic locations.
The more complex the data structures, the more complex the data mining
models, algorithms, and tools we need to apply.

For all of the reasons discussed above, the n � p data matrix is often an
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oversimplification or idealization of what occurs in practice. Many data sets
will not fit into this simple format. While much information can in principle
be “flattened” into the n� p matrix (by suitable definition of the p variables),
this will often lose much of the structure embedded in the data. Nonetheless,
when discussing the underlying principles of data analysis, it is often very
convenient to assume that the observed data exist in an n � p data matrix;
and we will do so unless otherwise indicated, keeping in mind that for data
mining applications n and p may both be very large. It is perhaps worth
remarking that the observed data matrix can also be referred to by a variety
names including data set, training data, sample, database, (often the different
terms arise from different disciplines).

Example 1.3 Text documents are important sources of information, and data
mining methods can help in retrieving useful text from large collections of
documents (such as the Web). Each document can be viewed as a sequence
of words and punctuation. Typical tasks for mining text databases are clas-
sifying documents into predefined categories, clustering similar documents
together, and finding documents that match the specifications of a query. A
typical collection of documents is “Reuters-21578, Distribution 1.0,” located at
http://www.research.att.com/�lewis. Each document in this collec-
tion is a short newswire article.

A collection of text documents can also be viewed as a matrix, in which the
rows represent documents and the columns represent words. The entry (d;w),
corresponding to documentd and wordw, can be the number of timesw occurs
in d, or simply 1 if w occurs in d and 0 otherwise.

With this approach we lose the ordering of the words in the document (and,
thus, much of the semantic content), but still retain a reasonably good repre-
sentation of the document’s contents. For a document collection, the number
of rows is the number of documents, and the number of columns is the num-
ber of distinct words. Thus, large multilingual document collections may have
millions of rows and hundreds of thousands of columns. Note that such a data
matrix will be very sparse; that is, most of the entries will be zeroes. We discuss
text data in more detail in chapter 14.

Example 1.4 Another common type of data is transaction data, such as a list of
purchases in a store, where each purchase (or transaction) is described by the
date, the customer ID, and a list of items and their prices. A similar example is
a Web transaction log, in which a sequence of triples (user id, web page, time),
denote the user accessing a particular page at a particular time. Designers and
owners of Web sites often have great interest in understanding the patterns of
how people navigate through their site.
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Figure 1.1 A portion of a retail transaction data set displayed as a binary image,
with 100 individual customers (rows) and 40 categories of items (columns).

As with text documents, we can transform a set of transaction data into matrix
form. Imagine a very large, sparse matrix in which each row corresponds to a
particular individual and each column corresponds to a particular Web page
or item. The entries in this matrix could be binary (e.g., indicating whether
a user had ever visited a certain Web page) or integer-valued (e.g., indicating
how many times a user had visited the page).

Figure 1.1 shows a visual representation of a small portion of a large retail
transaction data set displayed in matrix form. Rows correspond to individ-
ual customers and columns represent categories of items. Each black entry
indicates that the customer corresponding to that row purchased the item cor-
responding to that column. We can see some obvious patterns even in this
simple display. For example, there is considerable variability in terms of which
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categories of items customers purchased and how many items they purchased.
In addition, while some categories were purchased by quite a few customers
(e.g., columns 3, 5, 11, 26) some were not purchased at all (e.g., columns 18 and
19). We can also see pairs of categories which that were frequently purchased
together (e.g., columns 2 and 3).

Note, however, that with this “flat representation” we may lose a significant
portion of information including sequential and temporal information (e.g., in
what order and at what times items were purchased), any information about
structured relationships between individual items (such as product category
hierarchies, links between Web pages, and so forth). Nonetheless, it is often
useful to think of such data in a standard n � p matrix. For example, this
allows us to define distances between users by comparing their p-dimensional
Web-page usage vectors, which in turn allows us to cluster users based on Web
page patterns. We will look at clustering in much more detail in chapter 9.

1.3 Types of Structure: Models and Patterns

The different kinds of representations sought during a data mining exercise
may be characterized in various ways. One such characterization is the dis-
tinction between a global model and a local pattern.

A model structure, as defined here, is a global summary of a data set; it
makes statements about any point in the full measurement space. Geomet-
rically, if we consider the rows of the data matrix as corresponding to p-
dimensional vectors (i.e., points in p-dimensional space), the model can make
a statement about any point in this space (and hence, any object). For ex-
ample, it can assign a point to a cluster or predict the value of some other
variable. Even when some of the measurements are missing (i.e., some of
the components of the p-dimensional vector are unknown), a model can typ-
ically make some statement about the object represented by the (incomplete)
vector.

A simple model might take the form Y = aX + c, where Y and X are
variables and a and c are parameters of the model (constants determined
during the course of the data mining exercise). Here we would say that the
functional form of the model is linear, since Y is a linear function of X. The
conventional statistical use of the term is slightly different. In statistics, a
model is linear if it is a linear function of the parameters. We will try to be
clear in the text about which form of linearity we are assuming, but when
we discuss the structure of a model (as we are doing here) it makes sense
to consider linearity as a function of the variables of interest rather than the
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parameters. Thus, for example, the model structure Y = aX2 + bX + c,
is considered a linear model in classic statistical terminology, but the func-
tional form of the model relating Y and X is nonlinear (it is a second-degree
polynomial).

In contrast to the global nature of models, pattern structures make state-
ments only about restricted regions of the space spanned by the variables.
An example is a simple probabilistic statement of the form if X > x1 then
prob(Y > y1) = p1. This structure consists of constraints on the values
of the variables X and Y , related in the form of a probabilistic rule. Al-
ternatively we could describe the relationship as the conditional probability
p(Y > y1jX > x1) = p1, which is semantically equivalent. Or we might
notice that certain classes of transaction records do not show the peaks and
troughs shown by the vast majority, and look more closely to see why. (This
sort of exercise led one bank to discover that it had several open accounts
that belonged to people who had died.)

Thus, in contrast to (global) models, a (local) pattern describes a structure
relating to a relatively small part of the data or the space in which data could
occur. Perhaps only some of the records behave in a certain way, and the pat-
tern characterizes which they are. For example, a search through a database
of mail order purchases may reveal that people who buy certain combina-
tions of items are also likely to buy others. Or perhaps we identify a handful
of “outlying” records that are very different from the majority (which might
be thought of as a central cloud in p-dimensional space). This last example
illustrates that global models and local patterns may sometimes be regarded
as opposite sides of the same coin. In order to detect unusual behavior we
need a description of usual behavior. There is a parallel here to the role of
diagnostics in statistical analysis; local pattern-detection methods have appli-
cations in anomaly detection, such as fault detection in industrial processes,
fraud detection in banking and other commercial operations.

Note that the model and pattern structures described above have param-
eters associated with them; a; b; c for the model and x1; y1 and p1 for the
pattern. In general, once we have established the structural form we are in-
terested in finding, the next step is to estimate its parameters from the avail-
able data. Procedures for doing this are discussed in detail in chapters 4, 7,
and 8. Once the parameters have been assigned values, we refer to a par-
ticular model, such as y = 3:2x + 2:8, as a “fitted model,” or just “model”
for short (and similarly for patterns). This distinction between model (or
pattern) structures and the actual (fitted) model (or pattern) is quite impor-
tant. The structures represent the general functional forms of the models (or
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patterns), with unspecified parameter values. A fitted model or pattern has
specific values for its parameters.

The distinction between models and patterns is useful in many situations.
However, as with most divisions of nature into classes that are convenient
for human comprehension, it is not hard and fast: sometimes it is not clear
whether a particular structure should be regarded as a model or a pattern.
In such cases, it is best not to be too concerned about which is appropri-
ate; the distinction is intended to aid our discussion, not to be a proscriptive
constraint.

1.4 Data Mining Tasks

It is convenient to categorize data mining into types of tasks, corresponding
to different objectives for the person who is analyzing the data. The catego-
rization below is not unique, and further division into finer tasks is possible,
but it captures the types of data mining activities and previews the major
types of data mining algorithms we will describe later in the text.

1. Exploratory Data Analysis (EDA) (chapter 3): As the name suggests, the
goal here is simply to explore the data without any clear ideas of what we
are looking for. Typically, EDA techniques are interactive and visual, and
there are many effective graphical display methods for relatively small,
low-dimensional data sets. As the dimensionality (number of variables, p)
increases, it becomes much more difficult to visualize the cloud of points
in p-space. For p higher than 3 or 4, projection techniques (such as princi-
pal components analysis) that produce informative low-dimensional pro-
jections of the data can be very useful. Large numbers of cases can be
difficult to visualize effectively, however, and notions of scale and detail
come into play: “lower resolution” data samples can be displayed or sum-
marized at the cost of possibly missing important details. Some examples
of EDA applications are:

� Like a pie chart, a coxcomb plot divides up a circle, but whereas in a
pie chart the angles of the wedges differ, in a coxcomb plot the radii of
the wedges differ. Florence Nightingale used such plots to display the
mortality rates at military hospitals in and near London (Nightingale,
1858).

� In 1856 John Bennett Lawes laid out a series of plots of land at Rotham-
sted Experimental Station in the UK, and these plots have remained
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untreated by fertilizers or other artificial means ever since. They pro-
vide a rich source of data on how different plant species develop and
compete, when left uninfluenced. Principal components analysis has
been used to display the data describing the relative yields of different
species (Digby and Kempton, 1987, p. 59).

� More recently, Becker, Eick, and Wilks (1995) described a set of in-
tricate spatial displays for visualization of time-varying long-distance
telephone network patterns (over 12,000 links).

2. Descriptive Modeling (chapter 9): The goal of a descriptive model is de-
scribe all of the data (or the process generating the data). Examples of
such descriptions include models for the overall probability distribution
of the data (density estimation), partitioning of the p-dimensional space into
groups (cluster analysis and segmentation), and models describing the rela-
tionship between variables (dependency modeling). In segmentation analy-
sis, for example, the aim is to group together similar records, as in mar-
ket segmentation of commercial databases. Here the goal is to split the
records into homogeneous groups so that similar people (if the records
refer to people) are put into the same group. This enables advertisers and
marketers to efficiently direct their promotions to those most likely to re-
spond. The number of groups here is chosen by the researcher; there is no
“right” number. This contrasts with cluster analysis, in which the aim is
to discover “natural” groups in data—in scientific databases, for example.
Descriptive modelling has been used in a variety of ways.

� Segmentation has been extensively and successfully used in market-
ing to divide customers into homogeneous groups based on purchas-
ing patterns and demographic data such as age, income, and so forth
(Wedel and Kamakura, 1998).

� Cluster analysis has been used widely in psychiatric research to con-
struct taxonomies of psychiatric illness. For example, Everitt, Gourlay
and Kendell (1971) applied such methods to samples of psychiatric in-
patients; they reported (among other findings) that “all four analyses
produced a cluster composed mainly of patients with psychotic de-
pression.”

� Clustering techniques have been used to analyze the long-term cli-
mate variability in the upper atmosphere of the Earth’s Northern hemi-
sphere. This variability is dominated by three recurring spatial pres-
sure patterns (clusters) identified from data recorded daily since 1948
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(see Cheng and Wallace [1993] and Smyth, Ide, and Ghil [1999] for fur-
ther discussion).

3. Predictive Modeling: Classification and Regression (chapters 10 and 11):
The aim here is to build a model that will permit the value of one variable
to be predicted from the known values of other variables. In classification,
the variable being predicted is categorical, while in regression the vari-
able is quantitative. The term “prediction” is used here in a general sense,
and no notion of a time continuum is implied. So, for example, while we
might want to predict the value of the stock market at some future date,
or which horse will win a race, we might also want to determine the diag-
nosis of a patient, or the degree of brittleness of a weld. A large number of
methods have been developed in statistics and machine learning to tackle
predictive modeling problems, and work in this area has led to signifi-
cant theoretical advances and improved understanding of deep issues of
inference. The key distinction between prediction and description is that
prediction has as its objective a unique variable (the market’s value, the
disease class, the brittleness, etc.), while in descriptive problems no single
variable is central to the model. Examples of predictive models include
the following:

� The SKICAT system of Fayyad, Djorgovski, and Weir (1996) used a
tree-structured representation to learn a classification tree that can per-
form as well as human experts in classifying stars and galaxies from a
40-dimensional feature vector. The system is in routine use for auto-
matically cataloging millions of stars and galaxies from digital images
of the sky.

� Researchers at AT&T developed a system that tracks the characteris-
tics of all 350 million unique telephone numbers in the United States
(Cortes and Pregibon, 1998). Regression techniques are used to build
models that estimate the probability that a telephone number is located
at a business or a residence.

4. Discovering Patterns and Rules (chapter 13): The three types of tasks
listed above are concerned with model building. Other data mining ap-
plications are concerned with pattern detection. One example is spotting
fraudulent behavior by detecting regions of the space defining the differ-
ent types of transactions where the data points significantly different from
the rest. Another use is in astronomy, where detection of unusual stars



14 1 Introduction

or galaxies may lead to the discovery of previously unknown phenom-
ena. Yet another is the task of finding combinations of items that occur
frequently in transaction databases (e.g., grocery products that are often
purchased together). This problem has been the focus of much attention in
data mining and has been addressed using algorithmic techniques based
on association rules.

A significant challenge here, one that statisticians have traditionally dealt
with in the context of outlier detection, is deciding what constitutes truly
unusual behavior in the context of normal variability. In high dimensions,
this can be particularly difficult. Background domain knowledge and hu-
man interpretation can be invaluable. Examples of data mining systems
of pattern and rule discovery include the following:

� Professional basketball games in the United States are routinely anno-
tated to provide a detailed log of every game, including time-stamped
records of who took a particular type of shot, who scored, who passed
to whom, and so on. The Advanced Scout system of Bhandari et al.
(1997) searches for rule-like patterns from these logs to uncover inter-
esting pieces of information which might otherwise go unnoticed by
professional coaches (e.g., “When Player X is on the floor, Player Y’s shot
accuracy decreases from 75% to 30%.”) As of 1997 the system was in use
by several professional U.S. basketball teams.

� Fraudulent use of cellular telephones is estimated to cost the telephone
industry several hundred million dollars per year in the United States.
Fawcett and Provost (1997) described the application of rule-learning
algorithms to discover characteristics of fraudulent behavior from a
large database of customer transactions. The resulting system was
reported to be more accurate than existing hand-crafted methods of
fraud detection.

5. Retrieval by Content (chapter 14): Here the user has a pattern of interest
and wishes to find similar patterns in the data set. This task is most com-
monly used for text and image data sets. For text, the pattern may be a set
of keywords, and the user may wish to find relevant documents within
a large set of possibly relevant documents (e.g., Web pages). For images,
the user may have a sample image, a sketch of an image, or a description
of an image, and wish to find similar images from a large set of images.
In both cases the definition of similarity is critical, but so are the details of
the search strategy.
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There are numerous large-scale applications of retrieval systems, includ-
ing:

� Retrieval methods are used to locate documents on the Web, as in the
Google system (www.google.com) of Brin and Page (1998), which
uses a mathematical algorithm called PageRank to estimate the relative
importance of individual Web pages based on link patterns.

� QBIC (“Query by Image Content”), a system developed by researchers
at IBM, allows a user to interactively search a large database of images
by posing queries in terms of content descriptors such as color, texture,
and relative position information (Flickner et al., 1995).

Although each of the above five tasks are clearly differentiated from each
other, they share many common components. For example, shared by many
tasks is the notion of similarity or distance between any two data vectors. Also
shared is the notion of score functions (used to assess how well a model or
pattern fits the data), although the particular functions tend to be quite dif-
ferent across different categories of tasks. It is also obvious that different
model and pattern structures are needed for different tasks, just as different
structures may be needed for different kinds of data.

1.5 Components of Data Mining Algorithms

In the preceding sections we have listed the basic categories of tasks that
may be undertaken in data mining. We now turn to the question of how one
actually accomplishes these tasks. We will take the view that data mining
algorithms that address these tasks have four basic components:

1. Model or Pattern Structure: determining the underlying structure or func-
tional forms that we seek from the data (chapter 6).

2. Score Function: judging the quality of a fitted model (chapter 7).

3. Optimization and Search Method: optimizing the score function and
searching over different model and pattern structures (chapter 8).

4. Data Management Strategy: handling data access efficiently during the
search/optimization (chapter 12).

We have already discussed the distinction between model and pattern
structures. In the remainder of this section we briefly discuss the other three
components of a data mining algorithm.



16 1 Introduction

1.5.1 Score Functions

Score functions quantify how well a model or parameter structure fits a given
data set. In an ideal world the choice of score function would precisely reflect
the utility (i.e., the true expected benefit) of a particular predictive model. In
practice, however, it is often difficult to specify precisely the true utility of a
model’s predictions. Hence, simple, “generic” score functions, such as least
squares and classification accuracy are commonly used.

Without some form of score function, we cannot tell whether one model
is better than another or, indeed, how to choose a good set of values for the
parameters of the model. Several score functions are widely used for this pur-
pose; these include likelihood, sum of squared errors, and misclassification
rate (the latter is used in supervised classification problems). For example,
the well-known squared error score function is defined as

nX
i=1

(y(i) � ŷ(i))2 (1.1)

where we are predicting n “target” values y(i), 1 � i � n, and our predictions
for each are denoted as ŷ(i) (typically this is a function of some other “input”
variable values for prediction and the parameters of the model).

Any views we may have on the theoretical appropriateness of different
criteria must be moderated by the practicality of applying them. The model
that we consider to be most likely to have given rise to the data may be the
ideal one, but if estimating its parameters will take months of computer time
it is of little value. Likewise, a score function that is very susceptible to slight
changes in the data may not be very useful (its utility will depend on the
objectives of the study). For example if altering the values of a few extreme
cases leads to a dramatic change in the estimates of some model parameters
caution is warranted; a data set is usually chosen from a number of possible
data sets, and it may be that in other data sets the value of these extreme
cases would have differed. Problems like this can be avoided by using robust
methods that are less sensitive to these extreme points.

1.5.2 Optimization and Search Methods

The score function is a measure of how well aspects of the data match pro-
posed models or patterns. Usually, these models or patterns are described in
terms of a structure, sometimes with unknown parameter values. The goal
of optimization and search is to determine the structure and the parameter
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values that achieve a minimum (or maximum, depending on the context)
value of the score function. The task of finding the “best” values of param-
eters in models is typically cast as an optimization (or estimation) problem.
The task of finding interesting patterns (such as rules) from a large family of
potential patterns is typically cast as a combinatorial search problem, and is
often accomplished using heuristic search techniques. In linear regression, a
prediction rule is usually found by minimizing a least squares score function
(the sum of squared errors between the prediction from a model and the ob-
served values of the predicted variable). Such a score function is amenable to
mathematical manipulation, and the model that minimizes it can be found
algebraically. In contrast, a score function such as misclassification rate in
supervised classification is difficult to minimize analytically. For example,
since it is intrinsically discontinuous the powerful tool of differential calcu-
lus cannot be brought to bear.

Of course, while we can produce score functions to produce a good match
between a model or pattern and the data, in many cases this is not really
the objective. As noted above, we are often aiming to generalize to new
data which might arise (new customers, new chemicals, etc.) and having too
close a match to the data in the database may prevent one from predicting
new cases accurately. We discuss this point later in the chapter.

1.5.3 Data Management Strategies

The final component in any data mining algorithm is the data management
strategy: the ways in which the data are stored, indexed, and accessed. Most
well-known data analysis algorithms in statistics and machine learning have
been developed under the assumption that all individual data points can
be accessed quickly and efficiently in random-access memory (RAM). While
main memory technology has improved rapidly, there have been equally
rapid improvements in secondary (disk) and tertiary (tape) storage technolo-
gies, to the extent that many massive data sets still reside largely on disk or
tape and will not fit in available RAM. Thus, there will probably be a price
to pay for accessing massive data sets, since not all data points can be simul-
taneously close to the main processor.

Many data analysis algorithms have been developed without including
any explicit specification of a data management strategy. While this has
worked in the past on relatively small data sets, many algorithms (such as
classification and regression tree algorithms) scale very poorly when the “tra-



18 1 Introduction

ditional version” is applied directly to data that reside mainly in secondary
storage.

The field of databases is concerned with the development of indexing meth-
ods, data structures, and query algorithms for efficient and reliable data re-
trieval. Many of these techniques have been developed to support relatively
simple counting (aggregating) operations on large data sets for reporting
purposes. However, in recent years, development has begun on techniques
that support the “primitive” data access operations necessary to implement
efficient versions of data mining algorithms (for example, tree-structured in-
dexing systems used to retrieve the neighbors of a point in multiple dimen-
sions).

1.6 The Interacting Roles of Statistics and Data Mining

Statistical techniques alone may not be sufficient to address some of the more
challenging issues in data mining, especially those arising from massive data
sets. Nonetheless, statistics plays a very important role in data mining: it is
a necessary component in any data mining enterprise. In this section we
discuss some of the interplay between traditional statistics and data mining.

With large data sets (and particularly with very large data sets) we may
simply not know even straightforward facts about the data. Simple eye-
balling of the data is not an option. This means that sophisticated search and
examination methods may be required to illuminate features which would be
readily apparent in small data sets. Moreover, as we commented above, of-
ten the object of data mining is to make some inferences beyond the available
database. For example, in a database of astronomical objects, we may want
to make a statement that “all objects like this one behave thus,” perhaps with
an attached qualifying probability. Likewise, we may determine that particu-
lar regions of a country exhibit certain patterns of telephone calls. Again, it is
probably not the calls in the database about which we want to make a state-
ment. Rather it will probably be the pattern of future calls which we want to
be able to predict. The database provides the set of objects which will be used
to construct the model or search for a pattern, but the ultimate objective will
not generally be to describe those data. In most cases the objective is to de-
scribe the general process by which the data arose, and other data sets which
could have arisen by the same process. All of this means that it is necessary
to avoid models or patterns which match the available database too closely:
given that the available data set is merely one set from the sets of data which
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could have arisen, one does not want to model its idiosyncrasies too closely.
Put another way, it is necessary to avoid overfitting the given data set; instead
one wants to find models or patterns which generalize well to potential future
data. In selecting a score function for model or pattern selection we need to
take account of this. We will discuss these issues in more detail in chapter 7
and chapters 9 through 11. While we have described them in a data mining
context, they are fundamental to statistics; indeed, some would take them as
the defining characteristic of statistics as a discipline.

Since statistical ideas and methods are so fundamental to data mining, it
is legitimate to ask whether there are really any differences between the two
enterprises. Is data mining merely exploratory statistics, albeit for poten-
tially huge data sets, or is there more to data mining than exploratory data
analysis? The answer is yes—there is more to data mining.

The most fundamental difference between classical statistical applications
and data mining is the size of the data set. To a conventional statistician, a
“large” data set may contain a few hundred or a thousand data points. To
someone concerned with data mining, however, many millions or even bil-
lions of data points is not unexpected—gigabyte and even terabyte databases
are by no means uncommon. Such large databases occur in all walks of life.
For instance the American retailer Wal-Mart makes over 20 million transac-
tions daily (Babcock, 1994), and constructed an 11 terabyte database of cus-
tomer transactions in 1998 (Piatetsky-Shapiro, 1999). AT&T has 100 million
customers and carries on the order of 300 million calls a day on its long dis-
tance network. Characteristics of each call are used to update a database of
models for every telephone number in the United States (Cortes and Preg-
ibon, 1998). Harrison (1993) reports that Mobil Oil aims to store over 100
terabytes of data on oil exploration. Fayyad, Djorgovski, and Weir (1996)
describe the Digital Palomar Observatory Sky Survey as involving three ter-
abytes of data. The ongoing Sloan Digital Sky Survey will create a raw ob-
servational data set of 40 terabytes, eventually to be reduced to a mere 400
gigabyte catalog containing 3�108 individual sky objects (Szalay et al., 1999).
The NASA Earth Observing System is projected to generate multiple giga-
bytes of raw data per hour (Fayyad, Piatetsky-Shapiro, and Smyth, 1996).
And the human genome project to complete sequencing of the entire human
genome will likely generate a data set of more than 3:3 � 109 nucleotides
in the process (Salzberg, 1999). With data sets of this size come problems
beyond those traditionally considered by statisticians.

Massive data sets can be tackled by sampling (if the aim is modeling, but
not necessarily if the aim is pattern detection) or by adaptive methods, or by
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summarizing the records in terms of sufficient statistics. For example, in stan-
dard least squares regression problems, we can replace the large numbers of
scores on each variable by their sums, sums of squared values, and sums of
products, summed over the records—these are sufficient for regression co-
efficients to be calculated no matter how many records there are. It is also
important to take account of the ways in which algorithms scale, in terms of
computation time, as the number of records or variables increases. For ex-
ample, exhaustive search through all subsets of variables to find the “best”
subset (according to some score function), will be feasible only up to a point.
With p variables there are 2p � 1 possible subsets of variables to consider.
Efficient search methods, mentioned in the previous section, are crucial in
pushing back the boundaries here.

Further difficulties arise when there are many variables. One that is im-
portant in some contexts is the curse of dimensionality; the exponential rate
of growth of the number of unit cells in a space as the number of variables
increases. Consider, for example, a single binary variable. To obtain reason-
ably accurate estimates of parameters within both of its cells we might wish
to have 10 observations per cell; 20 in all. With two binary variables (and
four cells) this becomes 40 observations. With 10 binary variables it becomes
10240 observations, and with 20 variables it becomes 10485760. The curse of
dimensionality manifests itself in the difficulty of finding accurate estimates
of probability densities in high dimensional spaces without astronomically
large databases (so large, in fact, that the gigabytes available in data mining
applications pale into insignificance). In high dimensional spaces, “nearest”
points may be a long way away. These are not simply difficulties of ma-
nipulating the many variables involved, but more fundamental problems of
what can actually be done. In such situations it becomes necessary to impose
additional restrictions through one’s prior choice of model (for example, by
assuming linear models).

Various problems arise from the difficulties of accessing very large data
sets. The statistician’s conventional viewpoint of a “flat” data file, in which
rows represent objects and columns represent variables, may bear no resem-
blance to the way the data are stored (as in the text and Web transaction data
sets described earlier). In many cases the data are distributed, and stored on
many machines. Obtaining a random sample from data that are split up in
this way is not a trivial matter. How to define the sampling frame and how
long it takes to access data become important issues.

Worse still, often the data set is constantly evolving—as with, for example,
records of telephone calls or electricity usage. Distributed or evolving data
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can multiply the size of a data set many-fold as well as changing the nature
of the problems requiring solution.

While the size of a data set may lead to difficulties, so also may other prop-
erties not often found in standard statistical applications. We have already
remarked that data mining is typically a secondary process of data analysis;
that is, the data were originally collected for some other purpose. In contrast,
much statistical work is concerned with primary analysis: the data are col-
lected with particular questions in mind, and then are analyzed to answer
those questions. Indeed, statistics includes subdisciplines of experimental
design and survey design—entire domains of expertise concerned with the
best ways to collect data in order to answer specific questions. When data
are used to address problems beyond those for which they were originally
collected, they may not be ideally suited to these problems. Sometimes the
data sets are entire populations (e.g., of chemicals in a particular class of
chemicals) and therefore the standard statistical notion of inference has no
relevance. Even when they are not entire populations, they are often con-
venience or opportunity samples, rather than random samples. (For instance,
the records in question may have been collected because they were the most
easily measured, or covered a particular period of time.)

In addition to problems arising from the way the data have been collected,
we expect other distortions to occur in large data sets—including missing
values, contamination, and corrupted data points. It is a rare data set that
does not have such problems. Indeed, some elaborate modeling methods
include, as part of the model, a component describing the mechanism by
which missing data or other distortions arise. Alternatively, an estimation
method such as the EM algorithm (described in chapter 8) or an imputation
method that aims to generate artificial data with the same general distribu-
tional properties as the missing data might be used. Of course, all of these
problems also arise in standard statistical applications (though perhaps to a
lesser degree with small, deliberately collected data sets) but basic statistical
texts tend to gloss over them.

In summary, while data mining does overlap considerably with the stan-
dard exploratory data analysis techniques of statistics, it also runs into new
problems, many of which are consequences of size and the non traditional
nature of the data sets involved.
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1.7 Data Mining: Dredging, Snooping, and Fishing

An introductory chapter on data mining would not be complete without
reference to the historical use of terms such as “data mining,” “dredging,”
“snooping,” and “fishing.” In the 1960s, as computers were increasingly
applied to data analysis problems, it was noted that if you searched long
enough, you could always find some model to fit a data set arbitrarily well.
There are two factors contributing to this situation: the complexity of the
model and the size of the set of possible models.

Clearly, if the class of models we adopt is very flexible (relative to the size
of the available data set), then we will probably be able to fit the available
data arbitrarily well. However, as we remarked above, the aim may be to
generalize beyond the available data; a model that fits well may not be ideal
for this purpose. Moreover, even if the aim is to fit the data (for example,
when we wish to produce the most accurate summary of data describing
a complete population) it is generally preferable to do this with a simple
model. To take an extreme, a model of complexity equivalent to that of the
raw data would certainly fit it perfectly, but would hardly be of interest or
value.

Even with a relatively simple model structure, if we consider enough dif-
ferent models with this basic structure, we can eventually expect to find a
good fit. For example, consider predicting a response variable, Y from a pre-
dictor variable X which is chosen from a very large set of possible variables,
X1; : : : ; Xp, none of which are related to Y . By virtue of random variation in
the data generating process, although there are no underlying relationships
between Y and any of the X variables, there will appear to be relationships
in the data at hand. The search process will then find the X variable that
appears to have the strongest relationship to Y . By this means, as a conse-
quence of the large search space, an apparent pattern is found where none
really exists. The situation is particularly bad when working with a small
sample size n and a large number p of potential X variables. Familiar ex-
amples of this sort of problem include the spurious correlations which are
popularized in the media, such as the “discovery” that over the past 30 years
when the winner of the Super Bowl championship in American football is
from a particular league, a leading stock market index historically goes up
in the following months. Similar examples are plentiful in areas such as
economics and the social sciences, fields in which data are often relatively
sparse but models and theories to fit to the data are relatively plentiful. For
instance, in economic time-series prediction, there may be a relatively short
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time-span of historical data available in conjunction with a large number of
economic indicators (potential predictor variables). One particularly humor-
ous example of this type of prediction was provided by Leinweber (personal
communication) who achieved almost perfect prediction of annual values of
the well-known Standard and Poor 500 financial index as a function of an-
nual values from previous years for butter production, cheese production,
and sheep populations in Bangladesh and the United States.

The danger of this sort of “discovery” is well known to statisticians, who
have in the past labelled such extensive searches “data mining” or “data
dredging”—causing these terms to acquire derogatory connotations. The
problem is less serious when the data sets are large, though dangers remain
even then, if the space of potential structures examined is large enough.
These risks are more pronounced in pattern detection than model fitting,
since patterns, by definition, involve relatively few cases (i.e., small sample
sizes): if we examine a billion data points, in search of an unusual configura-
tion of just 50 points, we have a good chance of detecting this configuration.

There are no easy technical solutions to this problem, though various strate-
gies have been developed, including methods that split the data into subsam-
ples so that models can be built and patterns can be detected using one part,
and then their validity can be tested on another part. We say more about
such methods in later chapters. The final answer, however, is to regard data
mining not as a simple technical exercise, divorced from the meaning of the
data. Any potential model or pattern should be presented to the data owner,
who can then assess its interest, value, usefulness, and, perhaps above all, its
potential reality in terms of what else is known about the data.

1.8 Summary

Thanks to advances in computers and data capture technology, huge data
sets—containing gigabytes or even terabytes of data—have been and are be-
ing collected. These mountains of data contain potentially valuable informa-
tion. The trick is to extract that valuable information from the surrounding
mass of uninteresting numbers, so that the data owners can capitalize on it.
Data mining is a new discipline that seeks to do just that: by sifting through
these databases, summarizing them, and finding patterns.

Data mining should not be seen as a simple one-time exercise. Huge data
collections may be analyzed and examined in an unlimited number of ways.
As time progresses, so new kinds of structures and patterns may attract in-
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terest, and may be worth seeking in the data.
Data mining has, for good reason, recently attracted a lot of attention: it is

a new technology, tackling new problems, with great potential for valuable
commercial and scientific discoveries. However, we should not expect it to
provide answers to all questions. Like all discovery processes, successful
data mining has an element of serendipity. While data mining provides use-
ful tools, that does not mean that it will inevitably lead to important, inter-
esting, or valuable results. We must beware of over-exaggerating the likely
outcomes. But the potential is there.

1.9 Further Reading

Brief, general introductions to data mining are given in Fayyad, Piatetsky-
Shapiro, and Smyth (1996), Glymour et al. (1997), and a special issue of the
Communications of the ACM, Vol. 39, No. 11. Overviews of certain aspects of
predictive data mining are given by Adriaans and Zantige (1996) and Weiss
and Indurkhya (1998). Witten and Franke (2000) provide a very readable,
applications-oriented account of data mining from a machine learning (arti-
ficial intelligence) perspective and Han and Kamber (2000) is an accessible
textbook written from a database perspective data mining. There are many
texts on data mining aimed at business users, notably Berry and Linoff (1997,
2000) that contain extensive practical advice on potential business applica-
tions of data mining.

Leamer (1978) provides a general discussion of the dangers of data dredg-
ing, and Lovell (1983) provides a general review of the topic. From a statis-
tical perspective. Hendry (1995, section 15.1) provides an econometrician’s
view of data mining. Hand et al. (2000) and Smyth (2000) present compara-
tive discussions of data mining and statistics. Casti (1990, 192–193 and 439)
provides a briefly discusses “common folklore” stock market predictors and
coincidences.


