ABSTRACT. Dislocation motions are related to the concept of fluid
viscosity. In this way it is possible to take advantage of existing
viscosity theory to interpret dislocation behavior and to unify the
description of dislocation mobility. The resulting viewpoint places
the behavior of plastic solids between elastic solids at one extreme
and fluids at the other.

I. A Unified View of Flow Mechanisms in Materials
J. J. GILMAN

1.1 Introduction

Deformational flow in sclids is often viewed as a special process
because it occurs by means of the movements of dislocations. This is not
a necessary viewpoint, however. If deformation is considered as a transport
process, the flow mechanisms in solids can be unified with those in gases
and liquids. There is considerable advantage in this concept because it
allows a more free exchange of ideas among persons who study these
various material types. _

The idea that flow in crystalline solids is microscopically inhomogeneous
and can be described in terms of the movements of specific configurations
(crystal dislocations) has been crucial in developing understanding of the
process. It is equally important to realize that flow in noncrystalline solids
does not, in general, result from a sequence of random local shears between
molecules (or atoms). The molecular shear events tend to be correlated,
and if the correlation is high the process can be described in terms of
generalized dislocation lines. That is, if a shear event occurs at a certain
place in a solid, the probability that another event will occur adjacent to
the first is considerably greater than the probability that the second event
will occur at some random position. In other words, once a region of shear
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is nucleated it tends to grow, and as it grows it is surrounded by a dislocation
line-loop.

On the other hand, the overall behavior of a plastic crystal is inter-
mediate between that of a solid and that of a liquid. This is because the
perfect regions of a crystal have substantial shear rigidity, but the centers
of the dislocated regions do not. These central regions (cores) behave
essentially like liquids, sometimes with high viscosity and sometimes with
low. The viscosity is not necessarily constant along the length of a disloca-
tion if the material is heterogeneous.

The above comments indicate that high-viscosity ““liquids” have some
of the flow characteristics of solids, and plastic ““solids” behave in part
like liquids. Therefore, certain connecting bridges exist between these
differing materials, and the following paragraphs are intended to describe
some of their common features

1.2. Dislocations in High-Viscosity Liquids (Noncrystalline Solids)

The description of flow in crystals is greatly simplified by the fact
that Burgers vectors are constant and well conserved in them for given
glide systems. However, the concept of a dislocation line remains useful
even if the Burgers vector does not have a fixed value, as may be the case
for noncrystalline solids such as glasses.

In a noncrystalline solid a dislocation line will have a somewhat variable
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Figure 1.1. Dislocation lines in crystalline and noncrystalline silica compared
(only silicon atoms are drawn). (a) plane of crystal structure; (b) projection of
sheet of glassy network.
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Burgers vector along its length, as suggested in Figure 1.1 for the prototype
material: silica glass. Projections onto the plane of the drawing of the
positions of the silicon atoms of a single sheet in the structure are shown.
The oxygen atoms are not shown, but each silicon atom is bonded to one
oxygen atom that lies just above it, plus to three others that lie just below
it parallel to the plane of the drawing. If parts of the upper oxygen layers
are translated while their positions are not, dislocation lines can be formed
at positions indicated by the dashed lines in Figure 1.1. The arrows repre-
sent the translations that move oxygen atoms in the next higher layer from
initial sites to equivalent final sites during an elementary motion of the
dislocation line.

It may be seen that by allowing the magnitude and direction of the
Burgers vector to fluctuate about mean values, the concept of a dislocation
line can be retained for glassy structures (Gilman 1968a). This analogy is
not forced but is desirable because it allows the flow properties of these
structures to be discussed in a more organized way than is otherwise
possible. That is, it provides a simple means for describing the correlations
that must exist between adjacent elementary shear processes. In existing
treatments of the flow of glasses (Eyring et al. 1964), it is assumed that the
elementary flow events are independent of one another. This is not justified
except at very high temperatures.

If an elementary flow event occurs somewhere locally, both the chemical
and the stress state become changed in the immediate vicinity. Therefore,
at ordinary temperatures, the probability that another event will occur in
that vicinity is enhanced. That is, a dislocation line is created and continues
to exist and move until it becomes annihilated by another line, or by a free
surface.

The Burgers vector of a dislocation in a glass will not have a constant
value but will fluctuate about a mean value that is determined by the
average network dimensions. However, for small fluctuations of b the
increase in the self-energy is small. Suppose a unit length of dislocation
has a Burgers displacement of (b + 6) along one-half of its length, and
(b — 6) along the other half, where ¢ is a small increment. Then, since the
self-energy is proportional to the square of b, the ratio of its energy to that
of the same length without the fluctuationsis 1 + 8%/b*. Thus fluctuations
as large as 30 percent cause only a 10 percent energy increase.

In the noncrystalline case of Figure 1b, the mean Burgers displacement
has a definite value that is determined by the network dimensions, but
there are fluctuations in both its magnitude and its direction along the
line. In order to minimize the energy of such a dislocation, it is necessary
for the mean b to be conserved over long distances; so although the local
b’s may fluctuate, there are long-range correlations (occasional large energy
densities may cause this condition to be relaxed). Furthermore, there will
be little tendency for the line to lie on a single plane, and its local structure
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will change as its moves. Nevertheless, it is expected that such dislocations
will exist in noncrystalline solids, especially under flow conditions. When
they are viewed with a somewhat fuzzy microscope (resolution of approxi-
mately 10A), their behavior should resemble that of dislocations in crystals.

Most of the usual techniques for observing dislocations in solids are
ineffective for noncrystals. One that might be used is the high-resolution
observation of surface steps which would reveal the egress of dislocations
from a material (Gilman 1968a). An effective method for observing mono-
molecular surface steps is the gold decoration technique discovered by
Bassett and developed by Bethge (1962).

Evidence that the ideas of dislocation dynamics that have been developed
to describe crystalline solids can be applied to noncrystals (or partial
crystals) has been obtained by Dey (1967) for the case of flow in nylon.
He measured the velocities of reorientation (Luders) fronts as a function
of stress and temperature, and showed that the behavior is consistent with
the behavior of crystals.

1.3 Viscous Resistance to Dislocation Motion

1t is well known that dislocation motion is a very dissipative pro-
cess with most of the plastic work being converted into heat and some of
it into structural defects within the material. Because so much dissipation
occurs, there is no unique way of describing the details of the process, but
there is a distinct advantage in using the language and ideas associated
with the.behavior of fluids. One reason is that this tends to unify
discussions of crystalline and noncrystalline solids. Another reason is that
the theory of transport in fluids has deep traditions and a highly developed
status.

Since dislocations have both micro-aspects and macro-aspects, it is
necessary to describe the viscous resistance to their motion in at least two
stages: first in terms of semi-macromechanics, where viscous effects are
described by means of a viscosity cuefficient that is treated as a continuous
parameter, and second, in terms of the molecular mechanisms that deter-
mine the local value of the viscosity coefficient. A complication is intro-
duced by the special structure at the core of a dislocation. This structure
can be expected to have a different viscosity coefficient than the remainder
of the material. Fortunately, the core region actually playsa dominantrole,
as will be demonstrated shortly, so attention can be focused on it and its
local viscosity. :

The net effect of various linear loss-mechanisms integrated over the
entire flow field of a dislocation is described by means of a “damping
constant”’ which conventionally has the symbol B. Oftentimes nonlinear
losses are larger than the linear ones, and the damping depends on the
stress and/or the velocity in a nonlinear way.
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Another source of drag on moving dislocations is the anelastic relaxation
that can occur if impurities or other defects are present and can move
to cause stress relaxation. This type of drag depends strongly on the dis-
location velocity (Schoek and Seeger, 1959) and has a relatively small
magnitude. It will not be discussed further here because it is absent in pure
materials, and point defects usually cause other effects that are larger in
magnitude.

As a dislocation moves along its glide plane the elastic strains at points
remote from its center undergo changes. Thus the moving dislocation is
surrounded by a strain-rate field. In addition, at the very center the atoms
on the top side of the glide plane slide over those on the bottom side. Thus
a velocity gradient exists across the glide plane. For a narrow core, its
magnitude can be very large compared with the other velocity gradients
(strain-rates) in the system. Whenever a velocity gradient existsina material
(gas, liquid, or solid) it tends to become decreased as momentum is trans-
ported from the higher velocity regions to those with lower velocities. The
viscosity coefficient measures the efficiency of this transport.

Mason (1960) first emphasized the usefulness of this viewpoint in con-
sidering dislocation losses, and showed how to calculate the power loss
in the strain-rate field. However, he arbitrarily excluded the core region
when he integrated over the field. Gilman (1968b) showed how the core
region can be included in the calculation and that most of the loss occurs
there for a given viscosity coefficient.

Consider a screw dislocation line that lies parallel to the z axis and moves
with velocity v, along the xz glide plane. Outside the core region, the strain-
rate field is given by

. b\ v,cos @
€13 = (Er) —r (1.1)

and if the viscosity coefficient is called #, the power loss dP in a differential
volume dV is

dP = n(é,5)* dV. (1.2)

If the separation distance at the glide plane is a, then the elastic approxi-
mation can be used in the regions (x, < —a/2) and (x, > +a/2), which lie
outside a slab of thickness a centered on the glide plane. The power loss
in these regions is

bl)x 2 .0 .t _ n by 2
Po=2a(32) [ ] sttt s = (52)

(1.3)

and this is essentially the same as Mason’s previous result.
In the region within the slab (—a/2 < x, < +a/2), the velocity gradient
can be obtained from the rate of relative displacement (sliding) across the
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glide plane. To a good approximation (and exactly in some cases), the
relative displacement is given by

us(x;) = —%tan'*(z—:‘), (1.4)

where w is the “width > of the dislocation core. Then the velocity gradient
in the glide plane region is

. 1 (dus\ v, (Ou;
w=a(@) -5 ) -

1) e

FiGURrE 1.2. Relation of velocity gradient (¢€) to displacement along the glide
plane of a dislocation. (a) displacement function of stationary dislocation;
(b) velocity gradient for moving dislocation (neglects perturbations caused by
local atomic interactions)

The relations just above are illustrated by Figure 1.2. Substitution of this
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(1.6)
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Equations 1.3 and 1.6 combined give the total power loss
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where o is a numerical factor that equals unity for a screw dislocation;
and 3/4(1 — v) for an edge dislocation. The width is usually comparable
with a in size so the second term in Equation 1.7 is small compared with
the first. Thus most of the power loss occurs on the glide plane near the
core.

Because of the localization of the power loss, viscous processes that
occur at the glide plane are most important in determining the dislocation
damping constant, B, which can be written approximately as

B:Y(f), (1.8)

T \aw

where 1 is the local viscosity coefficient. This has the fortunate consequence
of considerably reducing the number of important mechanisms. Further-
more, if dislocation-line motion is decomposed into a series of kink
motions, then the possible sources of viscosity become even more localized.

1.4 Sources of Viscosity

In order to smooth out differences in velocities within a medium,
momentum must be transferred from regions that are moving fast to slower
ones. The means for this to occur were analyzed long ago by Maxwell
(1867); modern developments began with the work of Frenkel (1926) and
Andrade (1934). There are two general categories of viscous mechanisms:
“gas-like” and “solid-like” (Green 1952). In the gas-like mode particles
(or quasiparticles) are free to traverse relatively long distances between
collisions. As the particles cross an imaginary plane perpendicular to a
velocity gradient, they carry more momentum down the gradient (on the
average) than they carry up it. Thus the velocity of the slower material
tends to increase, while that of the faster tends to decrease. The net velocity
relative to some fixed reference tends toward zero.

In the case of solids, the main ‘“ gases” are formed by free electrons, and
phonons. Other excitations that create mobile quasiparticles may also act
in this fashion, but their densities may be too small to cause significant
viscosity.

In the solid-like mode, direct interactions between sliding molecules tend
to smooth out velocity differences. The molecules may be constrained to
remain in their own layers, but a faster moving layer sliding over a slower
one exerts a dragging force that tends to speed up the latter. At the same
time the faster layer tends to slow down. On the average one can think of
the sliding molecules as being temporarily coupled together by a force, or
per unit area by a coupling shear stress, o.. If the mean time that the
coupling lasts is called 7, then the viscosity coefficient is (Maxwell 1867)

n=o.1, (1.9)
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and if a single process causes most of the loss, the damping constant
becomes

B~ (ﬁ) 9T (1.10)

aw T

The coupling relaxation time may be a function of such factors as the
applied stress and the temperature, depending on what particular loss
mechanism operates.

For dislocations moving through otherwise perfect crystals, the Peierls
stress couples the molecules across the glide plane. If it is small, as for
close-packed glide planes in pure metals, then since t is roughly the recip-
rocal Debye frequency (say 1072 sec), and o, is certainly less than about
10° dyn/cm?, the local viscosity coefficient may be as small as ~10"7 P,
which is very small compared with the viscosity of a typical liquid metal
(~1072 P).

On the other hand, if the Peierls stress is large as in covalent crystals
such as Ge and Si (say ~10'° dyn/cm?), and the coupling force is localized
so that the velocity is directly related to the coupling time, which is given
by b/V ~ 5 x 107 sec, for a velocity of one micron per second; then the
local viscosity coefficient is ~5 x 10° P, which is moderately large.

In imperfect crystals the viscosity is heterogeneous. Dislocations may
move quite freely over glide-plane areas that are free of imperfection,
impeded only by electron, or phonon, gas viscosity. At imperfections,
strong local bonding may create a strong coupling force across the glide
plane, or weak bonding may destroy the local periodicity and thereby raise
the effective Peierls stress. Nonviscous drag will also result if the moving
dislocation intersects another one and acquires a jog so that it leaves a
dipole in its wake. This constitutes a net change in the internal structure
and leads to strain-hardening, but is qualitatively different from a viscous
loss mechanism.

1.5 Viscosity at High Velocities

A linear dependence of dislocation velocity on applied stress has
been observed in several pure crystals: copper (Greenman, Vreeland, and
Wood, 1967); zinc (Pope, Vreeland, and Wood, 1967); and germanium
(Schafer, 1967). It is apparent, however, that the velocity cannot continue
to be proportional to stress indefinitely because it would soon exceed sonic
velocities. Therefore, it is legitimate to wonder how the damping constant
depends on velocity. Taylor (1968) has suggested that relativistic effects cause
the damping constant to take the form (screw dislocation)

B = By(1 — v?/c?)™! (1.11)
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where B, is the constant at low velocities, v is the instantaneous velocity,
and ¢, is the transverse elastic-wave velocity. According to this expression,
the drag force increases without limit as v approaches ¢,. Therefore, for
any feasible applied force, v cannot exceed c, (in a linear system).

The present author offers the following simple justification of Taylor’s
suggestion. The damping constant has the form B =p,/A, where p is
momentum and A is area. That is, it measures momentum transfer per
unit area. It is well known that the Lorentz transformation for a momentum
component is p, = p3/B where f = (1 —v%/c?)!/?; and since sliding occurs
in one direction, the Fitzgerald contraction of the area is given by 4, =
BAS. Thus Equation 1.11 follows.

For steady-state motion, the applied force o;b on a dislocation equals
the drag force BoV/B* so that the velocity is explicitly related to the
applied stress

=.§[(1 + X212 — 1], (1.12)

with x = reduced stress = o,(2b/Boc). This equation is plotted in Figure 1.3
to display its linear and saturation limits.

1.6. Nonlinear Viscous Drag

When localized coupling forces exist across glide planes, and the
temperature is low (that is, low compared with the Debye temperature
associated with the local coupling force) the flow velocity is not proportional
to the applied stress. Instead, it is observed that the flow rate is very small
until some critical stress is reached, and then “yielding” occurs. In other
words the flow is stress-activated. In terms of Equation 1.9, the mean
coupling time is a function of stress and it rather suddenly decreases when
a critical applied stress is reached. A simple analytic form that relates
velocity and stress in this case has been proposed by the author:

v =v¥e”Dlos, (1.13)

where v* is a terminal velocity and D is a drag stress. This form is followed
by several sets of data (Gilman 1965), and is consistent with the idea that
stress can activate dislocation motion via quantum-mechanical tunneling
(Gilman 1968a). It is not the purpose here to discuss these matters, however,
so Equation 1.13 will simply be asserted as a reasonable form.

At steady state the work done on a moving dislocation equals the power
dissipated in the form of both heat and structural defects. Assuming that
heat production dominates, the effective viscous damping constant is the
ratio of the driving force per unit length to the velocity

osb b
Be“- = v = (;;)O‘SeD/a‘ (1.14)
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Thus the effective damping constant is infinite when the stress is zero (the
dislocation is “pinned”). Then the damping decreases rapidly with in-
creasing stress until a minimum value is reached when o, = D/2; and then
it increases nearly linearly with further decreases of the stress. The corre-
sponding velocity-stress curve for this ““solid-like” viscosity is compared
with the curve for the ¢ gas-like ” viscosity in Figure 1.3.
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FIGURE 1.3. Comparison of velocity-stress functions. fo = linear viscosity
(Newton); fi = relativistic viscosity (Taylor); f> = yielding function( Gilman).

1.7. Amplification of Viscous Resistance by Internal Stresses

In addition to the complications caused by the heterogeneous
nature of real materials, the internal stress fluctuations that are usually
present in them can have important effects, especially for nonlinear flow.

For linear viscosity if the internal stresses fluctuate about some mean
value, ¢, with an average amplitude, Ao, and an average wavelength, 4, it
can be readily shown that the effective damping constant is

A 29-1
Bl =Bo[1 - (‘f) ] , (1.15)

so that for small fluctuations there is a negligible effect.

For the nonlinear case, since e!/**? is small compared with e'/*~? for
moderate values of 8, the effective damping constant has the approximate
value

Blis = Beg 9774, (1.16)
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so that the effective viscosity increases very rapidly with increasing stress
fluctuation amplitude. A more detailed discussion of this effect was first
given by Chen, Gilman, and Head (1964); more recently it has been con-
sidered by Li (1968) and by Argon (1968).

1.8. Summary

It has been shown that by relating dislocation motion to the
concept of fluid viscosity, it is possible to unify the description of mobility,
and to take advantage of the existing theories of fluids in interpreting
dislocation behavior. Also, this viewpoint places plastic solids between
elastic solids and fluids in a well-defined way. This is their natural position.
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