
Epilogue: Open Source outside the Domain of Software

Clay Shirky

The unenviable burden of providing an epilogue to Perspectives on Free and
Open Source Software is made a bit lighter by the obvious impossibility of
easy summation. The breadth and excellence of the work contained here
makes the most important point—the patterns implicit in the production
of Open Source software are more broadly applicable than many of us
believed even five years ago. Even Robert Glass, the most determined Open
Source naysayer represented here, reluctantly concludes that “[T]here is no
sign of the movement’s collapse because it is impractical.”

So the publication of this book is a marker—we have gotten to a 
point where we can now take at least the basic success of the Open 
Source method for granted. This is in itself a big step, since much of the
early literature concerned whether it could work at all. Since even many
of its critics now admit its practicality, one obvious set of questions is how
to make it work better, so that code produced in this way is more useful,
more easily integrated into existing systems, more user-friendly, more
secure.

These are all critical questions, of course. There are many people working
on them, and many thousands of programmers and millions of users
whose lives will be affected for the better whenever there is improvement
in those methods.

There is however a second and more abstract set of questions implicit 
in the themes of this book that may be of equal importance in the long
term. Human intelligence relies on analogy (indeed, Douglas Hofstadter, 
a researcher into human cognition and the author of Gödel, Escher, Bach:
An Eternal Golden Braid suggests that intelligence is the ability to analo-
gize). Now that we have identified Open Source as a pattern, and armed
with the analytical work appearing here and elsewhere, we can start 
asking ourselves where that pattern might be applied outside its original
domain.



I first came to this question in a roundabout way, while I was research-
ing a seemingly unrelated issue: why it is so hard for online groups to make
decisions? The answer turns out to be multivariate, including, among other
things, a lack of perceived time pressure for groups in asynchronous com-
munication, a preference in online groups for conversation over action; 
a lack of constitutional structures that make users feel bound by their 
decisions, and a lack of the urgency and communal sensibility derived from
face-to-face contact. There is much more work to be done on understand-
ing both these issues and their resolution.

I noticed, though, in pursuing this question, that Open Source projects
seemed to violate the thesis. Open Source projects often have far-flung
members who are still able, despite the divisions of space and time, to make
quite effective decisions that have real-world effects.

I assumed that it would be possible to simply document and emulate
these patterns. After all, I thought, it can’t be that Open Source projects
are so different from other kinds of collaborative efforts, so I began looking
at other efforts that styled themselves on Open Source, but weren’t about
creating code.

One of the key observations in Eric Raymond’s seminal The Cathedral
and the Bazaar (2001) was that the Internet changed the way software was
written because it enabled many users to collaborate asynchronously and
over great distance. Soon after that essay moved awareness of the Open
Source pattern into the mainstream, we started to see experiments in apply-
ing that pattern to other endeavors where a distributed set of users was
invited to contribute.

Outside software production, the discipline that has probably seen the
largest number of these experiments is collaborative writing. The incred-
ible cultural coalescence stimulated by The Cathedral and the Bazaar led 
to many announcements of Open Source textbooks, Open Source fiction,
and other attempts to apply the pattern to any sort of writing, on the
theory that writing code is a subset of writing, and of creative production
generally.

Sadly, my initial optimism about simple application of Open Source
methods to other endeavors turned out to be wildly overoptimistic. Efforts
to create “Open Source” writing have been characterized mainly by failure.
Many of the best-known experiments have gotten attention at launch,
when the Open Source aspect served as a novelty, rather than at comple-
tion, where the test is whether readers enjoy the resulting work. (Compare
the development of Apache or Linux, whose fame comes not from the
method of their construction but from their resulting value.)

484 Clay Shirky



The first lesson from these experiments is that writing code is different
in important ways from writing generally, and more broadly, that tools
that support one kind of creativity do not necessarily translate directly to
others. Merely announcing that a piece of writing is Open Source does
little, because the incentives of having a piece of writing available for
manipulation are different from the incentives of having a piece of useful
code available.

A good piece of writing will typically be read only once, while good code
will be reused endlessly. Good writing, at least of fiction, includes many
surprises for the reader, while good code produces few surprises for the
user. The ability to read code is much closer, as a skill, to the ability to
write code than the ability to read well is to the ability to write well.

While every writer will tell you they write for themselves, this is more a
statement of principle than an actual description of process—a piece of
writing, whether a textbook or a novel, needs an audience to succeed. A
programmer who claims to writes code for him or herself, on the other
hand, is often telling the literal truth: “This tool is for me to use. Addi-
tional users are nice, but not necessary.”

The list of differences goes on, and has turned out to be enough to upend
most attempts at Open Source production of written material. Writing code
is both a creative enterprise and a form of intellectual manufacturing. That
second characteristic alone is enough to make writing code different from
writing textbooks.

This is the flipside of Open Source software being written to scratch a
developer’s particular itch; Open Source methods work less well for the
kinds of things that people wouldn’t make for themselves. Things like
GUIs, documentation, and usability testing are historical weaknesses in
Open Source projects, and these weaknesses help explain why Open Source
methods aren’t applicable to creative works considered as a general
problem. Even when these weaknesses are overcome, the solutions typi-
cally involve a level of organization, and sometimes of funding, that takes
them out of the realm of casual production.

Open Source projects are special for several reasons. Members of the com-
munity can communicate their intentions in the relatively unambiguous
language of code. The group as a whole can see the results of a proposed
change in short cycles. Version control allows the group to reverse deci-
sions, and to test both forks of a branching decision. And, perhaps most
importantly, such groups have a nonhuman member of their community,
the compiler, who has to be consulted but who can’t be reasoned with—
proposed changes to the code either compile or don’t compile, and when

Epilogue 485



compiled can be tested. This requirement provides a degree of visible arbi-
tration absent from the problem of writing.

These advantages allow software developers to experience the future, or
at least the short-term future, rather than merely trying to predict it. This
ability in turn allows them to build a culture made on modeling multiple
futures and selecting among them, rather than arguing over some theo-
retical “best” version.

Furthermore, the overall value built up in having a collection of files that
can be compiled together into a single program creates significant value,
value that is hard to preserve outside the social context of a group of pro-
grammers. Thus the code base itself creates value in compromise.

Where the general case of applying Open Source methods to other forms
of writing has failed, though, there have been some key successes, and there
is much to learn from the why and how of such projects. Particularly
instructive in this regard is the Wikipedia project (http://wikipedia.org),
which brings many of the advantages of modeling culture into a creative
enterprise that does not rely on code.

The Wikipedia is an open encyclopedia hosted on a wiki, a collaborative
Web site that allows anyone to create and link to new pages, and to edit
existing pages. The site now hosts over 200,000 articles in various states of
completion, and many of them are good enough as reference materials to
be on the first page of a Google search for a particular topic.

There are a number of interesting particularities about the Wikipedia
project. First, any given piece of writing is part of a larger whole—the cross-
linked encyclopedia itself. Next, the wiki format provides a history of all
previous edited versions. Every entry also provides a single spot of con-
tention—there can’t be two wikipedia entries for Islam or Microsoft, so
alternate points of view have to be reflected without forking into multiple
entries. Finally, both the individual entries and the project as a whole is
tipped toward utility rather than literary value—since opposing sides of
any ideological divide will delete or alter one another’s work, only mater-
ial that both sides can agree on survives.

As a reference work, the Wikipedia creates many of the same values of
compromise created by a large code base, and the history mechanism
works as a version control system for software does, as well as forming a
defense against trivial vandalism (anyone whom comes in and deletes or
defaces a Wikipedia entry will find their vandalism undone and the pre-
vious page restored within minutes).

Open Source methods can’t be trivially applied to all areas of creative
production, but as the Wikipedia shows, when a creative endeavor takes

486 Clay Shirky



on some of the structural elements of software production, Open Source
methods can create tremendous value.

This example suggests a possible reversal of the initial question. Instead
of asking “How can we apply Open Source methods to the rest of the
world?” we can ask “How much of the rest of the world be made to work
like a software project?” This is, to me, the most interesting question, in
part because it is the most open-ended. Open Source is not pixie dust, to
be sprinkled at random, but if we concentrate on giving other sorts of work
the characteristics of software production, Open Source methods are apt
to be a much better fit.

A key element here is the introduction of a recipe, broadly conceived;
which is to say a separation between the informational and actual aspects
of production, exactly the separation that the split between source code
and compilers or interpreters achieves. For example, there are two ways 
to get Anthony Bourdain’s steak au poivre—go to Bourdain’s restaurant, 
or get his recipe and make it yourself. The recipe is a way of decoupling
Bourdain’s expertise from Bourdain himself. Linus Torvalds’s operating
system works on the same principle—you don’t need to know Torvalds to
get Linux. So close is the analogy between software and recipes, in fact,
that many introductory software texts use the recipe analogy to introduce
the very idea of a program.

One surprise in the modern world is the degree to which production of
all sorts is being recipe-ized. Musicians can now trade patches and plug-
ins without sharing instruments or rehearsing together, and music lovers
can trade playlists without trading songs. CAD/CAM programs and 3D
printers allow users to alter and share models of objects without having to
share the objects themselves. Eric von Hippel, who wrote the chapter in
this book on user innovation networks, is elsewhere documenting the way
these networks work outside the domain of software. He has found a
number of places where the emergence of the recipe pattern is affecting
everything from modeling kite sails in virtual wind tunnels to specifying
fragrance design by formula.

Every time some pursuit or profession gets computerized, data begins to
build up in digital form, and every time the computers holding that data
are networked, that data can be traded, rated, and collated. The Open
Source pattern, part collaborative creativity, part organizational style, and
part manufacturing process, can take hold in these environments when-
ever users can read and contribute to the recipes on their own.

This way of working—making shared production for projects rang-
ing from encyclopedia contributions to kite wing design take on the 

Epilogue 487



characteristics of software production—is one way to extend the bene-
fits of Open Source to other endeavors. The work Creative Commons is
doing is another. A Creative Commons license is a way of creating a legal
framework around a document that increases communal rights, rather
than decreasing them, as typical copyrights do.

This is an almost exact analogy to the use of the GPL and other Open
Source licensing schemes, but with terms form-fit to writing text, rather
than to code. The most commonly used Creative Commons license, for
instance, allows licensed work to be excerpted but not altered, and requires
attribution for its creator. These terms would be disastrous for software, but
work well for many forms of writing, from articles and essays to stories and
poems. As with the recipe-ization of production, the Creative Commons
work has found a way to alter existing practices of creation to take advan-
tage of the work of the Open Source movement.

Of all the themes and areas of inquiry represented in Perspectives on 
Free and Open Source Software, this is the one that I believe will have the
greatest effect outside the domain of software production itself. Open
Source methods can create tremendous value, but those methods are not
pixie dust to be sprinkled on random processes. Instead of assuming that
Open Source methods are broadly applicable to the rest of the world, we
can instead assume that that they are narrowly applicable, but so valuable
that it is worth transforming other kinds of work, in order to take advan-
tage of the tools and techniques pioneered here. The nature and breadth
of those transformations are going to be a big part of the next five years.

488 Clay Shirky


