
Introduction

Chapter 1

well as some of the complexities of evaluating the resulting timings, are examined.

Performance is not the only - or even the most important - measure of a

Lisp implementation . Trade -offs are often made that balance performance against

flexibility , ease of debugging, and address space.

Benchmarking and analysis of implementations will be viewed as complementary
aspects in the comparison of Lisps: benchmarking without analysis is as

useless as analysis without benchmarking.

' Performance ' evaluation of a Lisp implementation can be expressed as a

sequence of statements about the implementation on a number of distinct , but

related , levels . Implementation details on each level can have an effect on the

evaluation of a given Lisp implementation .

This is the final report of the Stanford Lisp Performance Study , which was

conducted by the author during the period from February 1981 through October

1984 . This report is divided into three major parts : the first is the theoretical

background , which is an exposition of the factors that go into evaluating the

performance of a Lisp system ; the second part is a description of the Lisp implementations

that appear in the benchmark study ; and the last part is a description

of the benchmark suite that was used during the bulk of the study and the results

themselves .

This chapter describes the issues involved in evaluating the performance of

Lisp systems and is largely a reprint of the paper " Performance of Lisp Systems "

by Richard P . Gabriel and Larry Ma sinter . The various levels at which quantitative

statements can be made about the performance of a Lisp system are explored ,

and examples from existing implementations are given wherever possible . The thesis

is that benchmarking is most effective when performed in conjunction with an

analysis of the underlying Lisp implementation and computer architecture . Some

simple benchmarks which have been used to measure Lisp systems examined , as

2

The technical issues and trade -offs that determine the efficiency and usability

of a Lisp implementation will be explained in detail ; though there will appear

to be a plethora of facts , only those aspects of a Lisp implementation that are

the most important for evaluation will be discussed. Throughout , the impact of

these issues and trade -offs on benchmarks and benchmarking methodologies will

be explored .

The Lisp implementations that will be used for most examples are:

INTERLISP-10 [Teitelman 1978], INTERLISP-D [Burton 1981], INTERLISP- Vax

[Ma sinter 1981a] [Bates 1982], Vax NIL [White 1979], 8-1 Lisp [Brooks 1982b],

FRANZ Lisp [Foderaro 1982], and PDP-10 MacLisp [Moon 1974],

1.1 Levels of Lisp System Architecture

The performance of a Lisp system can be viewed from the lowest level of the

hardware implementation to the highest level of user program functionality . Understanding

and predicting Lisp system performance depends upon understanding

the mechanisms at each of these levels. The following levels are important for char -

acterizing Lisp systems : basic hardware , Lisp ' instructions ,' simple Lisp functions ,

and major Lisp facilities .

There is a range of methodologies for determining the speed of an implementation
. The most basic methodology is to examine the machine instructions that

are used to implement constructs in the language , to look up in the hardware

manual the timings for these instructions , and then to add up the times needed.

Another methodology is to propose a sequence of relatively small benchmarks

and to time each one under the conditions that are important to the investigator

(under typical load average, with expected working-set sizes, etc). Finally , real

(naturally occurring) code can be used for the benchmarks.

Unfortunately , each of these representative methodologies has problems .

The simple instruction -counting methodology does not adequately take into account
the effects of cache memories, system services (such as disk service), and

other interactions within the machine and operating system . The middle , small -

benchmark methodology is susceptible to 'edge' effects: that is, the small size of

the benchmark may cause it to straddle a boundary of some sort and this leads

to unrepresentative results . For instance , a small benchmark may be partly on

one page and partly on another , which may cause many page faults . Finally , the

 1.1 Levels of Lisp System Architecture 3

real-code methodology , while accurately measuring a particular implementation ,1

is not necessarily accurate when comparing implementations . For example , programmers

, knowing the performance profile of their machine and implementation ,

will typically bias their sty Ie of programming on that piece of code. Hence, had an

expert on another system attempted to program the same algorithms , a different

program might have resulted .

1.1.1 Hardware Level

At the lowest level , things like the machine clock speed and memory bandwidth
affect the speed of a Lisp implementation . One might expect a CPU with a

basic clock rate of 50 nanoseconds to run a Lisp system faster than the same architecture
with a clock rate of 500 nanoseconds. This , however , is not necessarily

true , since a slow or small memory can cause delays in instruction and operand
fetch .

�

Getting a quantitative estimate of the performance improvement yielded by

a cache memory can best be done by measurement and benchmarking . Lisp has

less locality than many other programming languages, so that a small benchmark

may fail to accurately measure the total performance by failing to demonstrate

'normal ' locality . Hence, one would expect the small -benchmark methodology to

1 Namely , the implementation on which the program was developed .

2 Locality is the extent to which the locus of memory references - both instruction fetches

and data references - span a 'small ' number of memory cells 'most ' of the time .

Several hardware facilities complicate the understanding of basic system performance

, especially on microcoded machines : the memory system , the instruction

buffering and decoding , and the size of data paths . The most important of these

facilities will be described in the rest of this section .

Cache memory is an important and difficult - to - quantify determiner of performance

. It is designed to improve the speed of programs that demonstrate a lot

of locality2 by supplying a small high - speed memory that is used in conjunction

with a larger , but slower (and less expensive) main memory . An alternative to a

cache is a stack buffer , which keeps some number of the top elements of the stack

in a circular queue of relatively high - speed memory . The Symbolics 3600 has such

a PDL buffer .

4

tend to result in optimistic measurements, since small programs have atypically

higher locality than large Lisp programs.

An instruction pipeline is used to overlap instruction decode, operand decode,

operand fetch , and execution . On some machines the pipeline can become blocked

when a register is written into and then referenced by the next instruction . Similarly

, if a cache does not have parallel write -through , then such things as stack

instructions can be significantly slower than register instructions .

Memory bandwidth is important - without a relatively high bandwidth for

a given CPU speed, there will not be an effective utilization of that CPU. As

an extreme case, consider a 50-nanosecond machine with 3-Jlsec memory and

no cache. Though the machine may execute instructions rapidly once fetched ,

fetching the instructions and the operands will operate at memory speed at best .

There are two factors involved in memory speeds: the time it takes to fetch

instructions and decode them and the time it takes to access data once a path to

the data is known to the hardware . Instruction pre-fetch units and pipelining can

improve the first of these quite a bit , while the latter can generally only be aided

by a large cache or a separate instruction and data cache.

Internal bus size can have a dramatic effect . For example , if a machine has

16-bit internal data paths but is processing 32-bit data to support the Lisp , more

microinstructions may be required to accomplish the same data movement than on

a machine that has the same clock rate but wider paths . Narrow bus architecture

can be compensated for by a highly parallel microinstruction interpreter because

a significant number of the total machine cycles go into things , such as condition

testing and instruction dispatch , that are not data -path limited .

Many other subtle aspects of the architecture can make a measurable difference

on Lisp performance . For example , if error correction is done on a 64-bit

quantity so that storing a 32-bit quantity takes significantly longer than storing

a 64-bit quantity , arranging things throughout the system to align data appropriately

on these 64-bit quantities will take advantage of the higher memory bandwidth

possible when the quad-word alignment is guaranteed . However , the effect

of this alignment is small compared to the above factors .

 1.1 Levels of Lisp System Architecture 5

1 . 1 . 2 Lisp ' Instruction ' Level

Above the hardware level , the Lisp ' instruction ' level includes such things as

local variable assignment and reference , freej .special3 variable assignment , binding

, and unbinding ; function call and return ; data structure creation , modification ,

and reference ; and arithmetic operations .

At the ' instruction level ' Lisp is more complex than a language such as PAS -

CAL because many of the Lisp ' instructions ' have several implementation strategies

in addition to several implementation tactics for each strategy . In contrast ,

PASCAL compilers generally implement the constructs of the language the same

way - that is , they share the same implementation strategy . For example , there

are two distinct strategies for implementing free / special variables in Lisp - deep

binding and shallow binding . These strategies implement the same functionality ,

but each optimizes certain operations at the expense of others . Deep - binding Lisps

may cache pointers to stack - allocated value cells . This is a tactic for accomplishing

speed in free / special variable lookups .

The timings associated with these operations can be determined either by

analysis of the implementation or by designing simple test programs (benchmarks)

that contain that operation exclusively and that time the execution in one of several

ways . The operations will be discussed before the benchmarking techniques .

1 . 1 . 2 . 1 Variable / Constant Reference

The first major category of Lisp ' instruction ' consists of variable reference ,

variable assignment , and constant manipulation . References to variables and constants

appear in several contexts , including passing a variable as an argument ,

referencing a constant , and referencing lexical and global variables .

Typically , bound variables are treated as lexical variables by the compiler .

The compiler is free to assign a lexical variable to any location (or more prop -
�

3 In the literature there are several terms used to describe the types of variables and how

they are bound in the various implementations . Global variables have a value cell that can

be set and examined at any lexical level but cannot be lambda - bound . A special variable

can sometimes mean a global variable , and sometimes it can mean a free , fluid , or dynamic

variable ; these synonymous terms refer to a variable that is not lexically apparent , but that can

be lambda - bound . In this report the terms lexical or local will be used for nonglobal , nonfluid

variables , global for global variables , and free / special for global and fluid variables .

6

1.1.2.2 Free/ Special Variable Lookup and Binding

There are two primary methods for storing the values of free/ special variables:

shallow binding and deep binding . Deep binding is conceptually similar to ALIST

binding; (variable name, value) pairs are kept on a stack, and looking up the value
of a variable consists of finding the most recently bound (variable name, value)

pair . Binding a free/ special variable is simply placing on the stack a new pair
that will be found before any previous pairs with the same variable name in

a sequential search backwards along the variable lookup path (typically this is

along the control stack).

A shallow -binding system has a cell called the value cell for each variable .

The current value of the variable with the corresponding name is always found

4 And , in fact , on some machines the cache may be faster than the registers , making some

memory references faster than register references . A good example is the KL - IO , where , unlike

KA - IO , it is slower to execute instructions out of registers and to fetch registers as memory

operands than it is to perform those operations from the cache .

erly, to assign any location the name of the lexical variable at various times).

Typical locations for temporaries , both user-defined and compiler -defined , are the

registers , the stack , and memory . Since Lisp code has a high proportion of function
calls to other operations , one expects register protection considerations to

mean that temporaries are generally stored on the stack or in memory . In addition

, since many Lisp programs are recursive , their code must be re-entrant

and , hence, must be read-only . This argues against general memory assignment

of temporaries . Consequently , most lexical variables are assigned to the stack in

many Lisp implementations . Variables that are in registers can be accessed faster

than those in memory , although cache memories reduce the differential .4

Compilation of references to constants can be complicated by the fact that ,

depending on the garbage collection strategy , the constants can move. Thus ,

either the garbage collector must be prepared to relocate constant pointers from

inside code streams or the references must be made indirect through areference -

table. Sometimes, the constants are ' immediate' (i .e., the bits can be computed at

compile time). On some systems, constants are in a read-only area, and pointers to
them are computed at load time . Immediate data are normally faster to reference

than other kinds , since the operand -fetch -and-decode unit performs most of the

work .

�

 1.1 Levels of Lisp System Architecture 7

there . When a variable is bound , a (variable name, old value) pair is placed on a

stack so that when control is returned beyond the binding point , the old value is

restored to the value cell . Hence, lookup time is constant in this scheme.

The performance profiles for free/ special lookup and binding are very different

depending on whether you have deep or shallow binding . In shallow -binding

implementations , times for function call and internal binding of free/ special variables
are inflated because of the additional work of swapping bindings . On some

deep-binding systems , referencing a dynamically bound variable (which includes

all variable references from the interpreter) can require a search along the access

path to find the value . Other systems cache pointers to the value cells of freely

referenced free/ special variables on top of the stack ; caching can take place upon

variable reference/ assignment or upon entry to a new lexical contour ,5 and at each

of these points the search can be one variable at a time or all / some variables in

parallel . Shallow -binding systems look up and store into value cells, the pointers

to which are computed at load time . Deep-binding systems bind and unbind faster

than shallow -binding systems , but shallow -binding systems look up and store values
faster .6 Context -switching can be performed much faster in a deep-binding

implementation than in a shallow -binding one. Deep binding therefore may be

the better strategy for a multiprocessing Lisp .7

A complication to these free/ special problems occurs if a function can be

returned as a value . In this case the binding context or environment must be

retained as part of a closure and re-established when the closure is invoked . Logically

, this involves a tree rather than a stack model of the current execution

environment , since portions of the stack must be retained to preserve the binding
environment .

In a deep-binding system , changing the current execution environment (in-�

5 A lexical contour is the real or imaginary boundary that occurs at a LAMBDA , a FROG,

a function definition, or at any other environment construct. This terminology is not universal.

6 Shallow-binding systems look up and store in constant time. Deep-binding systems must

search for the (variable name, value) pairs, and in cached, deep-binding systems this search time

may be amortized over several references and assignments.

7 A shallow-binding system can take an arbitrary time to context switch, and for the

same reason, a deep-binding system can take an arbitrary amount of time to search for the

(variable name, value) pairs.[Baker 1978b]

8

free/ special

�

8

voking a closure) can be accomplished by altering the search path in the tree . In

cached systems one must also invalidate relevant caches.

1.1.2.3 Function Call/ Return

The performance of function call and return is more important in Lisp than

in most other high -level languages due to Lisp 's emphasis on functional style . In

many Lisp implementations, call/ return accounts for about 25% of total execution

time. Call/ return involves one of two major operations: 1) building a stack frame,

moving address es of computed arguments into that frame , placing a return address

in it , and transferring control ; and 2) moving arguments to registers, placing the
return address on the stack , and transferring control . In addition , function calling

may require the callee to move arguments to various places in order to reflect

temporary name bindings (referred to as stashing below), to default arguments not

supplied , and to allocate temporary storage . Furthermore , saving and restoring

registers over the function call can be done either by the caller or the callee, or

Canonical implementations allow separately compiled or interpreted functions to access

variables .

In a shallow-binding system, the current value cells must be updated, essentially

by a tree traversal that simulates the unbinding and rebinding of variables.

Some shallow-binding Lisps (LISP370, for instance) have a hybrid scheme in
which the value cell is treated more like a cache than like an absolute repository

of the value and does cache updates and write -throughs in the normal manner for
caches.

 Some Lisps (the Common Lisp family , for example) are partially lexical in

that free variables are by default free/ special , but the visibility of a bound variable

is limited to the lexical context of the binding unless the binding specifies it as

free/ special . Lisp compilers assign locations to these variables according to the

best possible coding techniques available in the local context rather than demand

a canonical or default implementation in all cases.8

As hinted , variable access and storage times can vary greatly from implementation

to implementation and also from case to case within an implementation .

Timing just variable references can be difficult because a compiler can make decisions

that may not reflect intuition , such as optimizing out unreferenced variables .

Function call without arguments in INTERLISP- lO on a DEC 2060 has a range

of about 3 ji,sec for an internal call in a block (PUSHJ, POPJ) to around 30 ji,sec

for the shortest non-block -compiled call (builds a frame in about 60 instructions)

to around 100 ji,sec (function call to a swapped function) .

 1.1 Levels of Lisp System Architecture 9

Some Lisps (Common Lisp [Steele 1982], Lisp Machine Lisp [Weinreb 1981])
have multiple values . The implementation of multiple values can have great impact

on the performance of a Lisp . For example , if multiple values are pervasive

, then there is a constant overhead for marking or recognizing the common ,

single-value case, and some tail -recursive cases may require that an arbitrary

amount of storage be allocated to store values that will be passed on- for example
, (prog1 (multiple -values) . . .). If some multiple values are passed in registers

(S-1 [Correll 1979]), there may be an impact on how the register allocator can

operate , and this may cause memory bottlenecks . If they are all on the stack

by some cache type of operation that saves / restores on demand [Lampson 1982]

[Steele 1979] . As noted in the previous section , function calling can require caching

deep - binding free / special variables on the stack .

Function call and return time are grouped together because every function

call is normally paired with a function return . It is possible for a function to

exit via other means , for example , via the nonlocal exits such as RETFROM in

INTERLISP and THROW in MacLisp . As it search es for the matching .CATCH ,

THROW does free / special unbinds along the way (referred to as unwinding) .

The following two paragraphs constitute an example of the kind of analysis

that is possible from an examination of the implementation .

In PDP - IO (KL - IOB or DEC - 2060) MacLisp , a function call is either a

PUSHJ / POPJ (3 Jlsec) for the saving and restoring of the return address and transfer

of control , a MOVE from memory to register (with possible indexing off the

stack - . 4 - . 8 Jlsec) for each argument up to 5 , or a PUSH and maybe a MOVEM

(MOVE to Memory - . 6 Jlsec) for each argument when the total number of arguments

is more than 5 . Function entry is usually a sequence of PUS H ' s to the stack

from registers . Return is a MOVE to register plus the POP J already mentioned .

Upon function entry , numeric code ' unboxes ' numbers (converts from pointer format

to machine format) via a MOVE Indirect (. 5 Jlsec) to obtain the machine

format number .

10

(Lisp machine, SEUS [Weyhrauch 1981]), a count of the number of values that
must be examined must be made at various times . Sometimes an implementation

may put multiple values in heap-allocated storage . This could severely degrade

performance .

Timing function calls has several pitfalls that should be noted as analyses

such as the ones given above can be misleading . First , the number of arguments

passed may make more than a linear difference . For example , the last of several

arguments could naturally be computed into the correct register or stack location ,

causing zero time beyond the computation for evaluating the argument . Second,

if several functions are compiled together or with cross declarations , special cases

can be much faster , eliminating the move to a canonical place by the caller followed

by a stashing operation by the callee. In this case also, complete knowledge of register
use by each routine can eliminate unnecessary register saving and restoring .

Third , numeric function calls can be made faster given suitable representations of

numbers . In MacLisp , as noted , stashing and unboxing can be incorporated into a

single instruction , MOVE Indirect . Note that these performance improvements are

often at the expense either of type safety or of flexibility (separate compilation;

defaulting unsupplied arguments, for instance).

An expression such as

 lambda (x . . .) . . .) . . .)

is also an example of a function call , even though control is not transferred . If x

is a free/ special variable, then in a shallow-binding Lisp there will be a binding
operation upon entry to the lambda and an unbinding upon exit , even in compiled

code; in a deep-binding Lisp, caching of free/ special variables freely referenced in

the body of the lambda may take place at entry . In some Lisps the values of

lexical variables may be freely substituted for , so that the code

 lambda (x)

(plus (loo) x)) 3)

may be exactly equivalent to

(plus (loo) 3)

Some machine architectures (e.g., Vax) have special features for making function

call easier, although these features may be difficult to use in a given Lisp implementation
. For example , on the Vax the CALLS instruction assumes a right to left

evaluation order , which is the opposite of Lisp 's evaluation order .

 1.1 Levels of Lisp System Architecture 11

9

10

Calls from compiled and interpreted functions must be analyzed separately .

Calls from interpreted code involve locating the functional object (in some Lisp

implementations this requires a search of the property list of the atom whose

name is the name of the function .) Calls from compiled functions involve either

the same lookup followed by a transfer of control to the code or a simple , machine -

specific subroutine call ; usually a Lisp will attempt to transform the former into

the latter once the function has been looked up . This transformation is called

fast links , link smashing , or UUO - link smashing on various systems . Some Lisps

(Vax . NIL and S - l Lisp) implement calls to interpreted code via a heap - allocated

piece of machine code that simply calls the interpreter on the appropriate function

application . Hence , calls to both compiled and interpreted code from compiled

code look the same . When benchmarking function calls , it is imperative to note

which of these is being tested .

The requirement for this function lookup is a result of the Lisp philosophy that

functions may be defined on the fly by the user , that functions can be compiled

separately , that compiled and interpreted calls can be intermixed , and that when

an error or interrupt occurs , the stack can be decoded within the context of

the error . While link - smashing allows separate compilation and free mixing of

compiled and interpreted code , it does not allow for frame retention and often

does not leave enough information on the stack for debugging tools to decode the

call history .

Franz Lisp is a good example of an implementation with several types of

function - calling mechanisms . It has slow function call , which interprets the pointer

to the function for each call . 9 This setting allows one to redefine functions at any

time . Franz also has normal function call , which smashes the address of the function

and a direct machine - level call to that code into instances of calls to that

function . This usually disallows free redefinitions and hence reduces the debug -

gabilityl O of the resulting code . Finally Franz has local function call , which uses

a simple load - register - and - jump - to - subroutine sequence in place of a full stack -

frame - building call . Functions compiled this way cannot be called from outside

the file where they are defined . This is similar to INTERLISP - 10 block compilation .

A final type of function call is a variant of APPLY called FUNCALL , which takes

Corresponding to the variable NOUUO being T in MacLisp .

As contrasted with Debuggabilly , the music of hayseed hackers .

12

1.1.2.4 Data Structure Manipulation

There are three important data structure manipulations: accessing data,

storing into data, and creating new data. For list cells, these are C A Rj C DR,

R P L A C Aj R P L A C D, and CONS.

In addition to CONS cells, several implementations provide other basic data

structures that are useful for building more complex objects. Vectors and vectorlike

objects12 help build sequences and record structures; arrays build vectors (in

implementations without vectors), matrices, and multidimensional records; and

strings are a useful specialization of vectors of characters.

Further , many Lisps incorporate abstract data structuring facilities such

as the INTERLISP DATATYPE facility , the MacLisp EXTEND, DEFSTRUCT, and

DEFVST facilities, and the Lisp Machine DEFSTRUCT and FLAVOR facilities. Several
of these, especially the FLAVOR facility , also support Object Oriented Programming

, much in the style of SMALLTALK.

The following is an example analysis of CONS cell manipulations.
�

11 The reason that FUNCALL is faster than the slow-function-call case is that the slow-

function-call case pushes additional information on the stack so that it is possible to examine

the stack upon error.

12 For instance, hunks are short, fixed-length vectors in MacLisp.

a function with some arguments and applies the function to those arguments.

In Franz, if normal function call is time 1.0 on a function-cal J-heavy benchmark

(T A K' , described below) running on a Vax. 11/ 780, slow function call is 3.95, and

local function call is .523. FUN CALL for this same benchmark (involving an extra

argument to each function) is time 2.05.11

In addition , if the formal parameters to a function are free/ special, then the
binding described earlier must be performed, and this adds additional overhead
to the function call.

Direct timing , then, requires that the experimenter report the computation

needed for argument evaluation, the method of compilation, the number of arguments
, and the number of values. The timing must be done over a range of all of

these parameters, with each beihg duly noted.

 1.1 Levels of Lisp System Architecture 13

In MacLisp , for example , array access is on the order of 5 PDP - IO instructions

for each dimension when compiled in - line . For fixed - point and floating - point

arrays in which the numeric data are stored in machine representation , access may

also involve a number - CONS . Similarly , storing into an array of a specific numeric

type may require an unbox .

In some implementations , changing array elements involves range checking on

the indices , coercing offsets into array type . Pointer array entries in MacLisp are

stored two per word , so there is coercion to this indexing scheme , which performs

a rotate , a test for parity , and a conditional jump to a half - word move to memory .

This adds a constant 5 instructions to the 5n , where n is the number of dimensions

that are needed to locate the entry . Hence , storing into an n - dimensional pointer

array is on the order of 5 (n + 1) PDP - 10 instructions .

Timing C A Rj C DR and vector access is most simply done by observing the

implementation . Array access is similar , but getting the timings involves understanding

how the multidimension arithmetic is done if one is to generalize from a

small number of benchmarks .

A basic feature of Lisp systems is that they do automatic storage management

, which means that allocating or creating a new object can cause a garbage

collection - a reclamation of unreferenced objects . Hence , object creation has a

potential cost in garbage collection time , which can be amortized over all object

creations . Some implementations do incremental garbage collection with each operation

(such as CAR / CDR / RPLACA / RPLACD) on the data type performing a

few steps of the process . Others delay garbage collection until there are no more

In INTERLISP - 10 on a DEC 2060 , times for the simple operations are as follows :

CAR compiles into a HRRZ , which is on the order of . 5 J1 , sec . RPLACA is either

. 5 J1 , sec (for FRPLACA) or 40 - 50 J1 , sec (function call + type test) . CONS is about

10 J1 , sec (an average of 20 PDP - 10 instructions) . MacLisp timings are the same

for CAR and RPLACA but faster for CONS , which takes 5 instructions in the

non - garbage collection initiating case .

Creating data structures like arrays consists of creating a header and allocating

contiguous (usually) storage cells for the elements ; changing an element is

often modifying a cell ; and accessing an element is finding a cell . Finding a cell

from indices requires arithmetic for multidimensional arrays .

14

Garbage collection will be discussed

There is a spectrum of methods for encoding the type of a Lisp object and

the following are the two extremes : the typing information can be encoded in the

pointer or it can be encoded in the object . If the type information is encoded in

the pointer , then either the pointer is large enough to hold a machine address plus

some tag bits (tagged architecture) or the address itself encodes the type . As an

example , in the latter case, the memory can be partitioned into segments, and

free objects or until a threshold is reached.

in detail in a subsequent section.

It is sometimes possible to economize storage requirements or shrink the

working -set size by changing the implementation strategy for data structures .

The primary compound data structure is the CONS cell , which is simply a pair of

pointers to other objects . Typically these CONS cells are used to represent lists ,

and for that case , it has been observed that the CDR part of the CONS cell often

happens to be allocated sequentially after the CONS . As a compaction scheme and

as a strategy for increasing the locality (and hence, reducing the working-set), a

method called CDR -coding was developed that allows a CONS cell to efficiently

state that the CDR is the next cell in memory . However , doing a RPLACD on such

an object can mean putting a forwarding pointer in the old CONS cell and finding

another cell to which the forwarding pointer will point and which will contain the

old CAR and the new CDR . All this could bring the cost of this relatively simple

operation way beyond what is expected . In a reference-count garbage collection

scheme, this operation added to the reference count updating can add quite a few

more operations in some cases. Therefore , on a machine with CDR -coding it is

possible to construct a program that performs many R P L A C Ds and that by doing

so will show the machine to be much worse than expected (where that expectation

is based on other benchmarks).

The point is that there is a trade -off between compacting data structures and

the time required for performing certain operations on them .

1.1.2.5 Type Computations

Lisp supports a runtime typing system. This means that at runtime it is

possible to determine the type of an object and take various actions depending

on that type. The typing information accounts for a significant amount of the

complexity of an implementation; type decoding can be a frequent operation.

Architecture

In most Lisps , types are encoded in the pointer . However , if there are not

enough bits to describe the subtype of an object in the pointer , the main type is

encoded in the pointer , and the subtype is encoded in the object . For instance , in

8- 1 Lisp a fixed -point vector has the vector type in the tag portion of the pointer

and the fixed -point subtype tag in the vector header . In SMALLTALK-80 and MDL,

the type is in the object not the pointer .

benchmar

 1.1 Levels of Lisp System 15

Since type checking is so pervasive in the language, it is difficult to

the 'type checking facility ' effectively.

'k

for each segment there is an entry in a master type table (indexed by segment
number) describing the data type of the objects in the segment. In MacLisp this
is called the BIBD? scheme (Big Bag Of Pages) [Steele 1977a].

In tagged architectures (such as the Lisp Machine [Weinreb 1981]), the tags

of arguments are automatically used to dispatch to the right routines by the

microcode in generic arithmetic . In INTERLISPD operations such as CAR compute
the type for error-checking purposes. In MacLisp, interpreted functions check

types more often than compiled code where safety is sacrificed for speed. The

speed of MacLisp numeric compiled code is due to the ability to avoid computing

runtime types as much as possible.

Microcoded machines typically can arrange for the tag ! ield to be easily or

automatically extracted upon memory fetch . Stock hardware can either have byte

instructions suitable for tag extraction or can arrange for other field extraction ,

relying on shift and / or mask instructions in the worst case . Runtime management

of types is one of the main attractions of microcoded Lisp machines .

The following paragraph is an example analysis of some common type checks .

 In MacLisp , type checking is about 7 instructions totalling about 7 , usec ,

while in 8 - 1 Lisp it is 2 shift instructions totalling about . 1 , usec . In MacLisp , NIL

is the pointer 0 , so the NULL test is the machine - equality - toO test . In 8 - 1 Lisp

and Vax NIL , there is a NULL type , which must be computed and compared for .

8 - 1 Lisp keeps a copy of NIL in a vector pointed to by a dedicated register , so a

NULL test is a compare against this entry (an indirection through the register) .

16

1 . 1 . 2 .6 Arithmetic

Arithmetic is complicated because Lisp passes pointers to machine format

numbers rather than passing machine format numbers directly . Converting to and

from pointer representation is called boxing and unboxing , respectively . Boxing is

also called number -CO N Sing.

The speed of Lisp on arithmetic depends on the boxingjunboxing strategy and

on the ability of the compiler to minimize the number of boxjunbox operations.

To a lesser extent the register allocation performed by the compiler can influence

the speed of arithmetic .

Some Lisps attempt to improve the speed of arithmetic by clever encoding

techniques . In S-1 Lisp , for instance , the tag field is defined so that all positive

and negative single-precision fixed -point numbers consisting of 31 bits of data

are both immediate data and machine format integers with their tags in place .13

Thus, unboxing of these numbers is not needed (though type checking is), but

after an arithmetic operation on fixed -point numbers , a range check is performed

to validate the type. See [Brooks 1982b] for more details on the numeric data

types in S-1 Lisp .

MacLisp is noted for its handling of arithmetic on the PDP -19, mainly because

of PDL-numbers and a fast small-number scheme l Fateman 1973] [Steele 1977b].

These ideas have been carried over into S-l Lisp [Brooks 1982a].

A PDL -number is a number in machine representation on a stack . This

reduces the conversion to pointer format in some Lisps , since creating the pointer

to the stack -allocated number is simpler than allocating a cell in heap space. The

compiler is able to generate code to stack-allocate (and deallocate) a number and

to create a pointer to it rather than to heap-allocate it ; hence, arithmetic in which

all boxing is PDL -number boxing does not pay a steep number -CONS penalty . In

MacLisp there are fixed -point and floating -point stacks ; numbers allocated on

these stacks are only safe through function calls and are deallocated when the

function that created them is exited .

The small -number scheme is simply the preGONging of some range of small

integers , so that boxing a number in that range is nothing more than adding

13 The Vax Portable Standard Lisp implementation uses a similar scheme for immediate

fixed -point numbers .

�

 1 . 1 Levels of Lisp System Architecture 17

the number to the base address of the table . In MacLisp there is actually a

table containing these small numbers , while in INTERLISP - IO the table is in an

inaccessible area , and the indices , not the contents , are used . The MacLisp small -

number scheme gains speed at the expense of space .

 The range of numbers that a Lisp supports can determine speed . On some

machines there are several number - format sizes (single , double , and tetraword , for

instance) , and the times to operate on each format may vary . When evaluating

the numeric characteristics of a Lisp , it is important to study the architecture

manual to see how arithmetic is done and to know whether the architecture is

fully utilized by the Lisp .

A constant theme in the possible trade-offs in Lisp implementation design

is that the inherent flexibility of runtime type checking is often balanced against

the speed advantages of compile-time decisions regarding types. This is especially

emphasized in the distinction between microcoded implementations in which the

runtime type checking can be performed nearly in parallel by the hardware and

stock-hardware implementations in which code must be emitted to perform the

type checks. Stock-hardware implementations of Lisp often have type-specific

arithmetic operations (+ is the FIXNUM version of PLUS in MacLisp), while machines
with tagged architectures matched to Lisp processing may not support

special type-specific arithmetic operators aside from providing entry points to the

generic arithmetic operations corresponding to their names.

With arithmetic it is to the benefit of stock hardware to unbox all relevant

numbers and perform as many computations in the machine representation as

possible. Performing unboxing and issuing type specific instructions in the underlying
machine language is often referred to as open-compiling or open-coding,

while emitting calls to the runtime system routines to perform the type dispatches

on the arguments is referred to as closed-compiling or closed-coding.

A further complicating factor in evaluating the performance of Lisp on arithmetic
is that some Lisps support arbitrary precision fixed-point (BIGNUM) and

arbitrary precision floating-point (n I G F LO A T) numbers.

Denchmarking is an excellent means of evaluating Lisp performance on arithmetic
. Since each audience (or user community) can easily find benchmarks to

suit its own needs, only a few caveats will be mentioned.

Simple Lisp 'operations ,' i .e., simple , common subroutines such as MAPCAR,

ASSOC, APPEND, and REVERSE, are located above the instruction level . Each is

used by many user-coded programs .

If a benchmark uses one of these operations and if one implementation has

coded it much more efficiently than another , then the timings can be influenced

more by this coding difference than by other implementation differences . Similarly

, using some of these functions to generally compare implementations may be

misleading ; for instance , microcoded machines may put some of these facilities in
firmware .

18

Comparing stock hardware with microcoded hardware may be difficult , since

a large variability between declared or type -specific arithmetic is possible in nongeneric

systems. To get the best performance out of a stock -hardware Lisp , one

must compile with declarations that are as detailed as possible . For example , in

MacLisp the code

(defun test (n)
(do ((i 1 (1+ i)))

((= i n) ())
<form)

compiles into 9 loop management instructions when no declarations aside from the

implicit fixed -point in the operations 1+ and = are given , and into 5 loop management
instructions when i and n are declared fixed -point . The 40% difference

is due to the increased use of PDL -numbers .

1.2 Lisp Operation Level

For example , consider the function DRECONC, which takes two lists , destructively

reverses the first , and NCONCs it with the second. This can be written

Different rounding modes in the floating -point hardware can cause the 'same'

Lisp code running on two different implementations to have different execution

behavior , and a numeric algorithm that converges on one may diverge on the

other .

 1.2 Lisp Operation Level

(without error checking) as

19

Cdefun
Cprog
b

dreconc
(next)

(current previous)

(cond
(setq

previous)))

(rplacd current previous)
(setq previous current current next)
(go b)))))))

With this implementation the inner loop compiles into 16 instructions in MacLisp.
Notice that NEXT is the next CURRENT, and CURRENT is the next PREVIOUS. If

we let PREVIOUS be the next NEXT, then we can eliminate the SETQ and unroll

the loop. Once the loop is unrolled, we can reason the same way again to get

(defun
(prog
b

(current previous)dreconc
(next)

With this definition the (unrolled) loop compiles into 29 instructions in MacLisp ,

which is 9.7 instructions per iteration , or roughly ~

structions . It pays an 80% code size cost .

the number of original in -

Such things as MAPCAR can be open-coded , and it is important to understand

when the compiler in question codes operations open versus closed. INTERLISP

uses the LISTP type check for the termination condition for M A Pping operations .

This is unlike the MacLisp / Common Lisp M A Pping operations , which use the

faster NULL test for termination . On the other hand , if CDR does not type -check,

then this NULL test can lead to nontermination of a MAP on a nonlist .

 null current) (return
next (cdr current))

(cond null current) (return previous)))
(setq next (cdr current))
(rplacd current previous)
(cond null next) (return current)))
(setq previous (cdr next))
(rplacd next current)
(cond null previous) (return next)))
(setq current (cdr previous))
(rplacd previous next)
(go b)))

1.3 Major Lisp Facilities

20

be wrong .

There are several major facilities in Lisp systems that are orthogonal to the

subroutine level but are important to the overall runtime efficiency of an implementation

. These include the garbage collector , the interpreter , the file system ,

and the compiler .

1.3 .1 Interpreter

Interpreter speed depends primarily on the speed of type dispatching , variable

lookup and binding , macro expansion , and call -frame construction . Lexically

bound Lisps spend time keeping the proper contours visible or hidden , so that

a price is paid at either environment creation time or lookup/ assignment time.

Some interpreters support elaborate error correction facilities , such as declaration

checking in S- l Lisp , that can slow down some operations .

Interpreters usually are carefully handcoded , and this handcoding can make

a difference of a factor of two . Having interpreter primitives in microcode may

help , but in stock hardware this handcoding can result in difficult -to-understand

encodings of data. The time to dispatch to internal routines (e.g., to determine

that a particular form is a COND and to dispatch to the COND handler) is of

critical importance in the speed of an interpreter .

Shallow binding versus deep binding matters more in interpreted code than

in compiled code, since a deep-binding system looks up each of the variables when

it is used unless there is a lambda -contour -entry penalty . For example , when a

lambda is encountered in S- l Lisp , a scan of the lambda -form is performed , and

the free/ special variables are cached (S-l Lisp is deep-binding).

The interpreter is mainly used for debugging ; when compiled and interpreted

code are mixed , the ratio of compiled to interpreted code execution speeds is the

important performance measure. Of course, the relative speed of interpreted to

compiled code is not constant over all programs , since a program that performs

90% of its computation in compiled code will not suffer much from the interpreter

dispatching to that code. Similarly , on some deep-binding Lisps , the interpreter

can be made to spend an arbitrary amount of time searching the stack for variable

references, when the compiler can find these at compile-time (e.g., globals).

Also , one's intuitions on the relative speeds of interpreted operations may

For example , consider the case of testing a fixed -point number for O.

 1.3 Major Lisp Facilities

There are three basic techniques :

21

(zerop n)
(equal n 0)
(= n 0)

1.3 .2 File Management

The time spent interacting with the programming environment itself has become

an increasingly important part of the ' feel' of a Lisp , and its importance

should not be underestimated . There are three times when file read time comes

into play : when loading program text , when loading compiled code (this code

may be in a different format) , and when reading user data structures . The time

for most of these is in the READ, PRINT (PRETTYPRINT) , and filing system , in

basic file access (e.g., disk or network management) , and in the operating system
interface .

Loading files involves locating atoms on the atom table (often referred to as

the oblist or obarray) ; in most Lisps , this is a hash table . Something can be learned

Where declarations of numeric type are used in compiled code , one expects that

ZEROP and = would be about the same and EQUAL would be slowest ; this is true

in MacLisp . However , in the MacLisp interpreter , ZEROP is fastest , then EQUAL ,

and finally = . This is odd because = is supposedly the fixed - point - specific function

that implicitly declares its arguments . The discrepancy is about 20 % from ZEROP

to = .

The analysis is that ZEROP takes only one argument , and so the time spent

managing arguments is substantially smaller . Once the argument is obtained , a

type dispatch and a machine - equality - toO are performed .

 EQUAL first tests for EQ , which is machine - equality - of - address , after managing

arguments . In the case of equal small integers in a small - number system , the

EQ test succeeds . Testing for EQUAL of two numbers beyond the small - integer

range (or comparing two unequal small integers in a small - number system) is

then handled by type dispatch on the first argument ; next , machine equality of

the values is pointed to by the pointers .

= manages two arguments and then dispatches individually on the arguments ,

so that if one supplies a wrong type argument , they can both be described to the

user .

22

by studying the size of the table , the distribution of the buckets , etc . One can time

atom hash table operations to effect , but getting a good range of variable names

(to test the distribution of the hashing function) might be hard , and getting the

table loaded up effectively can be difficult .

On personal machines with a relatively small amount of local file storage ,

access to files may require operation over a local network . Typically these are

contention networks in the 1- 10 megabit per second speed range (examples are

3-megabit Ethernet , la -megabit Ethernet , Chaosnet) . The response time on a

contention network can be slow when it is heavily loaded , and this can degrade

the perceived pep of the implementation . Additionally , the file server can be a

source of slowdown .

1 .3 .3 Compiler

Lisp compiler technology has grown rapidly in the last 15 years . Early

recursive -descent compilers generated simple and often ridiculous code on backing

out of an execution -order treewalk of the program . Some modern Lisp compilers

resemble the best optimizing compilers for algorithmic languages [Brooks 1982a] ,

[Ma sinter 1981b] .

Interpreting a language like Lisp involves examining an expression and determining

the proper runtime code to execute . Simple compilers essentially eliminate

the dispatching routine and generate calls to the correct routines , with some bookkeeping

for values in between .

Fancier compilers do a lot of open -coding , generating the body of a routine

in -line with the code that calls it . A simple example is CAR , which consists of the

instruction HRRZ on the PDP - IO . The runtime routine for this will do the HRRZ

and then POPJ on the PDP - IO . The call to CAR (in MacLisp style) will look like

move a , <arg >
pushj p , <car >
move <dest > , a

And CAR would be

hrrz a , (a)

popj p ,

if no type checking were done on its arguments . Open -coding of this would be

simply

hrrz <dest > , @<arg >

 1.3 Major Lisp Facilities 23

Other types of open - coding involve generating the code for a control structure

in - line . For example , MAPC will map down a list and apply a function to each

element . Rather than simply calling such a function , a compiler might generate

the control structure code directly , often doing this by transforming the input

code into equivalent , in - line Lisp code and then compiling that .

Further optimizations involve delaying the boxing or number - GONging of

numbers in a numeric computation .. Some compilers also rearrange the order

of evaluation , do constant - folding , loop - unwinding , common - sub expression elimination

, register optimization , cross optimizations (between functions) , peephole

optimization , and many of the other classical compiler techniques .

When evaluating a compiler , it is important to know what the compiler in

question can do . Often looking at some sample code produced by the compiler

for an interesting piece of code is a worthwhile evaluation technique for an expert .

Knowing what is open - coded , what constructs are optimized , and how to declare

facts to the compiler in order to help it produce code are the most important

things for a user to know .

A separate issue is " How fast is the compiler ?" In some cases the compiler is

slow even if the code it generates is fast ; for instance , it can spend a lot of time

doing optimization .

1 .4 The Art of Benchmarking

Benchmarking is a black art at best . Stating the results of a particular

benchmark on two Lisp systems usually causes people to believe that a blanket

statement ranking the systems in question is being made . The proper role of

benchmarking is to measure various dimensions of Lisp system performance and

to order those systems along each of these dimensions . At that point , informed

users will be able to choose a system that meets their requirements or will be able

to tune their programming style to the performance profile .

24

1.4.1 Know What is Being Measured

The first problem associated with benchmarking is knowing what is being
tested.

Consider the following example of the T A K' function :

tak ' (x y
 not
(t (tak '

z)
y x))
(tak '
(tak '
(tak '

z)
(1-
(1-
(1-

If used as a benchmark , what does this function measure? Careful examination

shows that function call , simple arithmetic (small -integer arithmetic , in fact) , and

a simple test are all that this function performs ; no storage allocation is done. In

fact , when applied to the arguments 18, 12 and 6, this function performs 63609

function calls , has a maximum recursion depth of 18, and has an average recursion

depth of 15.4.

On a PDP-IO

instructions , data

compiler produces :

(in MacLisp) this means that this benchmark tests the stack

moving , and some arithmetic , as we see from the code the

moveia . (fxp)

push fxp . tt

pushj p . tak ' + 1

move d . - 3 (fxp)

subi d . 1

moveic . - 4 (fxp)

movei b . - 5 (fxp)

push fxp . d

moveia . (fxp)

push fxp . tt

pushj p . tak ' + 1

push fxp . tt

moveic . (fxp)

movei b . - 1 (fxp)

moveia . - 3 (fxp)

pushj p . tak ' + 1

sub fxp . [6 . . 6]

g1 :

sub fxp . [3 . . 3]

popj p .

(defun
(cond

y z)
z x)

x y))))))

tak ' :

push p . [O. . fixl]
push fxp . (a)
push fxp . (b)
push fxp . (c)
move tt . - l (fxp)
camge tt . - 2 (fxp)
jrst g2
move tt . (fxp)
jrst gl
g2 :
move tt . - 2 (fxp)
subi tt . l

push fxp . tt
moveia . (fxp)
pushj p . tak ' + l
move d . - 2 (fxp)
subi d . l

moveic . - 3 (fxp)
movei b . - 1 (fxp)
push fxp . d

x)

y)
z)

 1.4 The Art of Benchmarking 25

One expects the following sorts of results . A fast stack machine might do much

better than its average instruction speed would indicate . In fact , running this

benchmark written in C on both the Vax 11 / 780 and a Motorola 4 megahertz

MC68000 (using 16 - bit arithmetic in the latter case) , one finds that the MC68000

time is 71 % of the Vax 11 / 780 time . Assuming that the Lisps on these machines

maintain this ratio , one would expect the MC68000 to be a good Lisp processor .

However , in a tagged implementation the MC68000 fares poorly , since field extraction

is not as readily performed on the MC68000 as on the Vax . An examination

of all instructions and of the results of a number of benchmarks that have been

run leads to the conclusion that the MC68000 performs at about 40 % of a Vax

11 / 780 when running Lisp .

As mentioned earlier , the locality profile of this benchmark is not typical of

' normal ' Lisp programs , and the effect of the cache memory may dominate the

performance . Let us consider the situation in MacLisp on the Stanford Artificial

Intelligence Laboratory KL - IOA (SAIL) , which has a 2k - word 200 - nanosecond

cache memory and a main memory consisting of a 2- megaword 1 .5- / lsec memory

and a 256 - kiloword .9- / lsec memory . On SAIL , the cache memory allows a very

large , but slow , physical memory to behave reason ably well .

This benchmark was run with no load and the result was as follows :

cpu time = 0 . 595

elapsed time = 0 . 75
wholine time = 0 . 75

gc time = 0 . 0

load average before = 0 . 020

load average after = 0 . 026

where CPU time is the EDOX time (no memory reference time included) , elapsed

time is real time , wholine time is EDOX + MDOX (memory reference) times , GC

time is garbage collector time , and the load averages are given before and after

the timing run ; all times are in seconds , and the load average is the exponentially

weighted average of the number of jobs in all runnable queues . With no load ,

wholine and elapsed times are the same .

There are two ways to measure the effect of the extreme locality of T A K ' : one

is to run the benchmark with the cache memory shut off ; another is to produce

a sequence (called TAK ~) of identical functions that call functions T A Kj , TAK ~ ,

TAK ~, and TAK ~ with uniform distribution on j , k , l , and m .

26

With 100 such functions and no load the result on SAIL was

= 0 .27
= 0 .28

cpu time = 0 .602
elapsed time = 1 .02
wholine time = 1 .02
gc time = 0 . 0
load average before
load average after

which shows a 36% degradation. The question is how well do these 100 functions

destroy the effect of the cache. The answer is that they do not destroy the effect
very much. This makes sense because the total number of instructions for 100

copies of the function is about 3800, and the cache holds about 2000 words. Both

benchmarks were run with the cache off at SAIL. Here is the result for the single
function T A K' :

cpu time = 0 .6
elapsed time = 6 .95
wholine time = 6 .9
gc time = 0 .0
load average before = 0 .036
load average after = 0 .084

which shows a factor of 9.2 degradation. The 100 function version ran in the same

time, within a few percent.

Hence, in order to destroy the effect of a cache, one must increase the size

of the code to a size that is significantly beyond that of the cache. Also, the

distribution of the locus of control must be roughly uniform or random.

This example also illustrates the point about memory bandwidth , which was

discussed earlier. The CPU has remained constant in its speed with the cache on

or off (.595 versus .6), but the memory speed of 1.5 J.lsec has caused a slowdown

of more than a factor of 9 in the overall execution speed of Lisp.14

Some Lisp compilers perform tail recursion removal . A tail -recursive function

is one whose value is sometimes returned by a function application (as opposed to

an open-codable operation). Hence in the function T A K' , the second arm of the

COND states that the value of the function is the value of another call on T A K' ,

but with different arguments . If a compiler does not handle this case, then another�

14 With the cache off, the 4-way interleaving of memory benefits are abandoned, further

degrading the factor of 7.5 speed advantage the cache has over main memory on SAIL .

 1.4 The Art of Benchmarking 27

which assigns a number to the special variable x , n times . What does this program

do? First , it number -CO N Ses for each assignment . Second, of the 6 instructions

call frame will be set up , control will transfer to the other function (T A K ' , again ,

in this case) , and control will return only to exit the first function immediately .

Hence , there will be additional stack frame management overhead for no useful

reason , and the compiled function will be correspondingly inefficient . A smarter

compiler will re -use the current stack frame , and when the called function returns ,

it will return directly to the function that called the one that is currently invoked .

The INTERLISPD compiler does tail recursion removal ; the MacLisp compiler

handles some simple cases of tail recursion , but it does no such removal in T A K ' .

Previously it was mentioned that MacLisp has both small -number -CO N Sing

and PDL numbers . It is true that

T A K ' (X + n , y + n , Z + n) = T A K ' (x , y , Z) + n

and therefore it might be expected that if MacLisp used the small -number -CONS

in T A K ' and if one chose n as the largest small - integer in MacLisp , the effects of

small -number -CO N Sing could be observed . However , the PDP - IO code for T A K '

shown above demonstrates that it is using PDL numbers . Also , by timing various

values for n , one can see that there is no significant variation and that the coding

technique therefore cannot be number -size dependent (up to BIGNUMS) .

Thus analysis and benchmarking can be valid alternative methods for inferring

the structure of Lisp implementations

1.4 .2 Measure the Right Thing

Often a single operation is too fast to time directly , and therefore must be

performed many times ; the total time is then used to compute the speed of the

operation . Although simple loops to accomplish this appear straightforward , the

benchmark may be mainly testing the loop construct . Consider the MacLisp

program

(defun test (n)

(declare (special x) (fixnum _ i n x))
(do i n (1- i)))

 = i 0))

(setq x i)))

28

the MacLisp compiler generates for the inner loop , 4 manage the loop counter , its

testing , its modification , and the flow of control ; 1 is a fast , internal subroutine

call to the number -CO N Ser; and 1 is used for the assignment (moving to memory) .

So 57% of the code is the loop management .

1.4 .3 Know How the Facets Combine

push fxp , (a)

g2 : move tt , (fxp)

jumpe tt , g4

jsp t , fxcons

movem a , (special x)

sos fxp

jrst g2

g4 : moveia , ' ()

sub fxp , [1 , , 1J

popj p ,

To measure operations that require looping , measure the loop alone (i .e., measure

the null operation) and subtract that from the results .

As mentioned in the previous section , even here one must be aware of what

is being timed , since the number -CO N Sing is the time sink in the statement

(setq x i) .

In INTERLISPD and in 8-1 Lisp it makes a big difference whether you are

doing a global / free or lexical variable assignment . If x were a local variable , the

compiler would optimize the SETQ away (assignment to a dead variable) .

Sometimes a program that performs two basic Lisp operations will combine

them nonlinearly . For instance , a compiler might optimize two operations in such a

way that their operational characteristics are interleaved or unified ; some garbage

collection strategies can interfere with the effectiveness of the cache.

One way to measure those characteristics relevant to a particular audience is

to benchmark large programs that are of interest to that audience and that are

large enough so that the combinational aspects of the problem domain are reason-

ably unified . For example , part of an algebra simplification or symbolic integration

system might be an appropriate benchmark for a group of users implementing and

using a MACSYMA-like system .

 1.4 The Art of Benchmarking 29

The problems with using a large system for benchmarking are that the same

Lisp code mayor may not run on the various Lisp systems or the obvious translation

might not be the best implementation of the benchmark for a different

Lisp system . For instance , a Lisp without multidimensional arrays might choose

to implement them as arrays whose elements are other arrays , or it might use

lists of lists if the only operations on the multidimensional array involve scanning

through the elements in a predetermined order . A reasoning program that uses

floating -point numbers 0 :::; x :::; 1 on one system might use fixed -point arithmetic

with numbers 0 :::; x :::; 1000 on another .

Another problem is that it is often difficult to control for certain facets in

a large benchmark . The history of the address space that is being used for the

timing - how many CO N Ses have been done and how full the atom hash table is,

for example - can make a difference .

1.4 .4 Personal Versus Time -shared Systems

The most important and difficult question associated with timing a benchmark

is exactly how to time it . This is a problem , particularly when one is

comparing a personal machine to a time -shared machine . Obviously , the final

court of appeal is the amount of time that a person has to wait for a computation

to finish . On time -shared machines one wants to know what the best possible time

is and how that time varies. CPU time (including memory references) is a good

measure for the former , while the latter is measured in elapsed time . For example ,

one could obtain an approximate mapping from CPU time to elapsed time under

various loads and then do all of the timings under CPU time measurement . This

mapping is at best approximate , since elapsed time depends not only on the load

(number of other active users) but also on what all users are and were doing.

 Time -sharing systems often do background processing that doesn't get

charged to anyone user. TENEX, for example , writes dirty pages to the disk

as part of a system process rather than as part of the user process . On SAIL

some system interrupts may be charged to a user process. When using runtime

reported by the time -sharing system , one is sometimes not measuring these necessary

background tasks .

Personal machines , it would seem, are easier to time because elapsed time and

CPU time (with memory references) are the same. However, sometimes a personal

30

�

15 This factor is not necessarily expected to hold up uniformly over all benchmarks.

machine will perform background tasks that can be disabled , such as monitoring

the keyboard and the network . On the Xerox 1100 running INTERLISP , turning

off the display can increase Lisp execution speed by more than 30 % . When using

elapsed time , one is measuring these stolen cycles as well as those going to execute

Lisp .

A sequence of timings was done on SAIL with a variety of load averages . Each

timing measures EI30X time , EI30X + MBOX (memory reference) time , elapsed

time , garbage collection time , and the load averages before and after the benchmark

. For load averages . 2 ~ L ~ 10 , the elapsed time , E , behaved as

E = { C (l + K (L - 1)) , L > 1 ;C , L ~ 1 .

That is , the load had a linear effect for the range tested . The effect of load averages

on elapsed time on other machines has not been tested .

The quality of interaction is an important consideration . In many cases the

personal machine provides a much better environment . But in others , the need

for high absolute performance means that a time - shared system is preferable .

1 . 4 . 5 Measure the Hardware Under All Conditions

In some architectures , jumps across page boundaries are slower than jumps

within page boundaries , and the performance of a benchmark can thus depend

on the alignment of inner loops within page boundaries . Further , working - set size

can can make a large performance difference , and the physical memory size can

be a more dominating factor than CPU speed on benchmarks with large working -

sets . Measuring CPU time (without memory references) in conjunction with a

knowledge of the approximate mapping from memory size to CPU + memory time

would be an ideal methodology but is difficult to do .

An often informative test is to take some reason ably small benchmarks and to

code them as efficiently as possible in an appropriate language in order to obtain

the best possible performance of the hardware on those benchmarks . This was

done on SAIL with the T A K ' function , which was mentioned earlier . In MacLisp

the time was .68 seconds of CPU + memory time ; in assembly language (heavily

optimized) it was . 255 seconds , or about a factor of 2 . 5 better . 15

