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A specific isomorphism is constructed via the trallsform domaiIls
between the analog signal space L2 (- 00, 00) and the digital signal
space [2. It is then shown that the class of linear time-invariaIlt
realizable filters is illvariallt under this isomorphism, thus demoIl-
stratillg that the theories of processing signals with such filters are
identical in the digital and analog cases. This means that optimi -
zatioll problems illvolving linear time-illvariant realizable filters
and quadratic cost functions are equivalent in the discrete-time
and the continuous-time cases, for both deterministic and random
signals. FilIally , applicatiolls to the approximation problem for
digital filters are discussed.
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I . INTI { ODUCTION

1 " he l ) arallel bet \ veen linear time - inval ' iant filtering theory in the

continuous - time and the discrete - time cases is readily observed . The

theory of the z - transform , developed in the 1950 ' s for the analysis of

sampled - data control systems , follows closely classical Fourier transform

theory jn the linear time - invariant case . In fact , it is common practice

to develol ) jn detail a particular result for a continuous - time problem

and to pay less attention to the discrete - time case , with the assumption

that the derivation in the discl ' ete - time case follo \ vs the one fol ' con -

tinuous - time signals \ vithout nluch change . Examples of this ( ' an be

found jn the fields of optimum linear filter and compensator design ,

system identification , and po \ ver spectrum measurement .

The main purpose of this paper is to sho \ v , by the construction of a

specific jsomorphism between signal spaces L 2 ( - co , co ) and l2 , that the

theories of processing signals , vith linear time - invariant realizable filters

are jdentical in the continuous - time and the discrete - time cases . This

will jmply the equivalence of many common optimization problems

iIlvolvjng quadratic cost functions . In addition , the strong link that is

developed between discrete - time and continuous - time filtering theory

\ viil enable the data analyst to carryover to the digital domain many of

the concepts , ~ . hich have been important to the communications and

control engineers over the years . In particular , all the approximation

techniques developed for continuous - time filters become available for

the design of digital filters .

In the engineering literature , the term digital filler is usually applied

to a filter operating on samples of a continuous signal . In this paper ,

ho \ vever , the term digital filter , viII be applied to any bounded linear

operator on the signal space l2 , and these signals , viII not in general

represent samples of a continuous signal . Fol ' example if { xn } and { Yn }

are two sequences , the recursive filter

Yn = Xn - 0 . 5 Yn - l

will represent a digital filter whether or not the Xn are samples of a

continuous signal . The important property is that a digital computer

can be used to implement the filtering operation ; the term nul1urical

filter might in fact be more appropriate .

II . P ! { ELIl \ IINAI1IES

The Hilbert space L 2 ( - ~ , 00 ) of complex valued , square integrable ,

Lebesgue measurable functions f ( t ) \ vill play the role of the space of
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l : f(T)a(t - T) dT,g( t ) = (3)

F ( s ) = l .i .m . 1Rf ( t ) e- st dtn-+~ - R
(7)

3

CoIltiI1UOus-tiIlle sigllms . The Hilbert space l2 of double -ended sequences
of complex numbers {fn}: =_(X) that are square summable will play the
role of the space of discrete -time sigIlals . A functioIl in L 2 ( - CX) , CX) )
will be called an analog signa], and a sequence in l2 " Till be called a dig-
ital signal . Similarly , a bounded lineal ' transformation A of L 2 ( - CX) , CX) )
will be called an analog filter , and a bounded linear transformation
A of l2 ,viII be called a digzlal filter . All analog filter ,,1 will be called
lime -invariant if

.ll : f ( t ) ~ g( t ) , f ( t ) , g(t ) E  2 ( - 00, 00) , ( 1)

implies
,,1 : f ( t + T) ~ g ( t + T) . (2 )

for every realllumber T. Time -illvariant analog filters call be represellted
by the COllvolutiOll illtegral

where aCt ) , the im })ulse re .';:;pOllse of the filter ,,1, lleed not belollg to

J.J2 ( - 00, 00) . Similarly , a digital filter A \vill be called iinLe-inl 'ariant if

.~ : {in } ~ {gn} , {fn} , {gn} E l2 , ( 4 )

implies .

.-\. : {fn +,,} ~ {gn+,,} ( 0 

for every illteger v. Time -illvariaIlt digital filters can be represented by
the COIlvolution summatioll .

{gn} = {it~ fi an-,} , (0)
where the sequellce {an}, the impulse response of the filter A, need not
belollg to l2 .

Our program is to construct a specific isomorphism between the
analog signal space and the digital signal space via their isomorphic
transform doIllaiIls . Hence , \\-e no ,v define the Fourier transform on the

allalog signal space, mapping /..12 ( - 00, 00) to another space L 2 ( - 00, 00)
called the Fourier trmlsfoffil domain and denoted by b=L 2 ( - 00, 00.) .
.We need the following key re-"ults ( \Viener , 1933; Titchmarsh , 1948) :

TIIEORE~1 1 ( I>Iancherel ) . / ff ( t ) E L 2 ( - 00, 00) , then



NF(z) = I.i.m. L fnz-nN-+oo n=-N (11)

exists for z = eiWT, and F(e,oWT) E L2 (0, 211"/ T ), where (t> is the inde~
pendent variable of L 2 (0, 211"/ T ), and this (t> is unrelated to the (..J used in
th,e s-plane. Furthermore,

t I fn 12 = ~. I , F(z) /2 ~ ,n=-OO 27rJ :r z

f = ~ f F( ) n ~n 2. z z ,7rJ Z

({fn}, {fn}) = (12)

and

(13)

4

--

where integrals in the z-plane are around the unit circle in the counter-
cloclcwise direction .

As in the analog case, the analytic extension of F (eiWT) to the rest
of the z-])lane will coincide \vith the ordinary z-transform , \vhich is
usually defined only for digital signals of exponential order .

STEIGLITZ

exists for s = j "", and F(j ",,) E L 2 ( - co, co). J1"urthermore,

(f ,f ) = lac I f (t)j2 dt = 2~ . ljOO I F(s)12 ds, (8)-00 7rJ -100
and

jll

f (t) = l~~~. IjR F(s)e8t ds. (9)

Analytic extension of ji"(jU)) to the rest of the s-plane (via (7) when it
ex'ists, for exaJnple) gives the two-sided Laplace transfor}}],.

THEORE~I 2 (l>arseval). Iff (t), g(t) E L 2 ( - 00, co), then

(f , g) = l  Cf(t)g*(t) dt = 2-.!.-. 1~CX) }'(s)G*(t) dB. (10)-oc 1rJ -}:)Q

rl'he theory required for the analogous construction of a z-transform
domain for digital signals is really no more than the theory of v'ourier
series. CoIlsidel' the digital signal as a sequence of v'ourier coefficients,
and CoIlsider the periodic function \vith these v'ourier coefficients as the
z-transfornl evaluated 011 the unit circle in the z-plane. 1'he Iliesz-
Fischer Theorem (\Viener, 1933) then reads:

TIIEORE~13 (F. Riesz-li'ischer). Ij {fn} E [2, then
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E l2 , then

2-kf

(15)s
z - l 1+ 8z =
z + l ' 1 - 8'

1"here js an additional factor required so that the transformation ,viII
preserve jnner products. Accordingly, the image {in} E 12 correspondillg
tof (t) E L2 (- 00, 00) ,viII.be defined as the sequence ,vith tIle z-trans-
form

~ F (~-=-~)z+l z+l . (16)-

Thus the mapping L 2 ( - 00, 00) ~ /2 is defined by a chain
from  2 ( - 00, 00) to ~L2 ( - 00, 00) to ~l2 to /2 as follo\\ s:

,,-hich goes

( 17)-

steps is;ily defillcd , since

- 1

}1. : ( 18)-

The m.apping

defined by (17) and (18)

5

TIIEORE ~ I 4 ( Parseval ) . If { fn } , { gn }

oc

( { fn } , { gn } ) = L fn gn * = F ( z ) G * ( z ) c! . : . ( 14 )
n = - OC Z

TJTe denote the space  2 ( 0 , 211 "/ 11 ) of z - transforms of digital signals by bl2 .

III . A SPECIFIC ISO ~ lOIlPIIISl \ l BET ' VEI ~ ~ TIlE A ~ J:\ LOG AX ! ) l ) IGI ' l ' . \ I .J

SIGNAL SPACES

Intuitiv ' ely , if \ \ ' e , vish to connect the space of aIlalog sigllals \ vith the

space of digital signals in such a way as to preserve the time - invariance

and realizability of filters , \ , ' e should someho \ \ ' connect the jw - axis ill

the s - plane with the unit circle in the z - plane . The natural corre .'3pOndellce

provided by the instantaneous sampling of analog siglillls matches e8T

\ ' v' ith z , but is not one - to - one and hence canllot be all isomorpllism .

The next natural choice is the familiar bilinear transformation

.u:f(t) --+ F(8) --+ ~ F (=--=--.!)z+l z+l
..

{fn} --+ F (z) --+ ~ F (!__:t-.!!)1- 8 1- 8

F ( z ) ~ { in } .

each of these

F ( s ) ~ f ( t ) .

, , ' e then have
THEORE~I 5.

.u: L 2 ( - 00, 00) - + l2

is an isomorphism .

The jn \'erse mapping is
uniquely reversible :
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1 Ijoo') .-1rJ -j~ ~f F(z)G*(z) ~. zF(s)a*(s) ds =(f , g) -

(19)
= ({ in }, {gn}).

dz
.

z
(~1)fn -

Lettillg z = - s) , this integral becomes

1 IjCX) V2 (1 + S)nin = ~ . . F (s) 1  + 1 - as. ( 22 )_ 1TJ - )~ s s

By Par~e\Tal'~ reIatioIl ( 10) this can be " Trittell in terms of time functions
a ~

(1 + 8)/ (1

l :fCl)AnCl) dt, (23)in =

6

Pr ~of : JL is obviously linear alld onto . To show that it preserves inllcr
product , let z = ( 1 + 8) / ( 1 - 8) in Parseva] 's relation ( 10) , yielding

1 1 V2 F (z - 1) n2;j Jz-+ 1 1 z-+I Z

,v c call show that J.L is Ollc-to -one in the follo " illg " ay : if f ~ g, thCIl

(f - g, f - g) = ( {fn} - {gn} , {fn} - !gn} ) ~ 0 ; ", hich implies that
{fn} ~ {gn} , ,1.nd hcncc that J.L is OllC-tO-OllC.

' \T e notchcrc that ullder the i~omorphisms J.L alld J.L- l signals " ith ratiolla .l
trall ~fol 'lllS arc al,,'ays I1mtched ,,"ith sigllals " .ith ratiollal trallSfol 'll1S, ,1
COIIVCllicllce whell dealing " ith the many signals commonly ellCoulltercu
ill cngillcering problems \\"ith trall ~forms \\Ohich ~lrc r~ltional functions of
s or z .

IV . ' I' lIE OIl1 "' lIO ~ On ~ IAL EXI ')..o\ KSIO ~ A Trr ...\ ClIED TO }J.

l "'he usual \, ay of defining an i:.;omorphism from L 2 ( - 00, 00) to l:! is
to map all al'bitrary functioll ill 1..12 ( - 00, 00) to the sequence ill l:! of
its coefficients in some orthollormal expansion . It comes as no surprise ,
then , that the Isomorphism JJ; eould have been so gellerated . This sectio1l
\,'ill be devoted to filldillg this orthonormal eXI)~l.ll .-;;ion .

\ \ re start \, ith the z-transfol 'lll of the digital ~ignaI {in} ,,-hich is the

image under J.L of an arbitrary aIlalog signal f ( t ) :

F(z) = ~ }"' (~ ) = n~~ f,~ z-'~. (20)
By ( 13) , the formula for the iIlverse z-transform , \\-e have
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et dnn1 ~ (tne-t),
rl ' he set of functions An( t ) , n = 1, 2 , 3 , . . . , is a complete ortllonormal

f' et on ( 0 , ~ ) and are called Laguerre functions . TheJr have been em -

ployed by Lee ( 1931 - 2 ) , \ Viener ( 1949 ) ., alld others for llet \vork synthe -

f' is ; and are tabulated in \ Viener ( 1949 ) , and , \vith a slightly different

normalization , in Head and Wilson ( 19 ;) 6 ) . The functions An ( t ) , n =

0 , - 1, - 2 , . . . , are similarly complete and orthonormal on ( ':'-- 00, 0 ) ,

so that the orthonormal expansion corresponding to ( 23 ) is

.. " "M
8

f (t) fnAn(t). (27)

 2 ( - 00, 00) l2

u:  2 ( - 00, 00) 5l2 =

(28)

1-,2(0, 27r IT )

7

,vhere the An(t) are given by the follo,ving inverse t,,-o-sided Laplace
transform

An(t) =  -1 [ ~ ( ffi ) "J . (24)

'Ve see immediately that, depending on ,,-hether n > o or n ~ 0, An(t)
vanishes for negative time or positive time. By manipulating a stalldard
transform pair involving Laguerre polynomials ,,-e find:

A (t) - { (- I ) n- lyze - t I.Jn-1(2t)u(t), n = 1, 2, 3, . . . (2~)n - (- 1)- nyzetL_n(- 2t)u(- t), n = 0, - 1, - 2, . . . ..)

,,"here u(t) is the Heaviside unit step function, and Ln(l ) is the Laguerre
polynomial of degree n, defined by

Ln(t) = ' n = 0, 1, 2, . . . (2G)

\Ve see that the values of the digital signal {in} for n > 0 correspond to
the coefficjents in the Laguerre expansion of f ( t ) for positive t ; aIld that
the values of {in} for n ~ 0 correspond to the coefficients in the Laguerre
expansjon of f ( t ) for negative t.

V. TIlE INDUCED 1\IAPPIXG FOIl FILTEnS

Thus far , we have explicitly defined four isomorphic Hilbert spaces as
follows



Therefore, the image ill 512 of .-\ and hence of A

(z - 1)_-\(z) = .11 z-+ l .

Sjmilarly , a tjme -jnvariant djgital filter
multipljcation by .-\ (z) , the z-transform
an image in L2 ( - 00, 00) gjven by

..4 = }J.- IA}J.~ ) ;

( - 00,

' Ve have therefore proved
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V2 (z - 1) (z - i)z-+1...1 z-+l F z+l .
(31)

(32)

and an image in }\-L 2 00 ) given by multiplication by

.4 (8) = .01 (!_.i~) .1-8 (33)

,,1 (:_-=-~)z + 1 ' (34)A(Z) -

8

 Therefore all analog or a digital filter as a bounded lillear transformatioll
has image transformations induced on the remaillillg three sp[tces.

A time-illvariant analog filter A, defined by the convolution integral
(3), has an image ill ~L2 (- 00, 00), ill 12, alld in 5l2. Its image in
~J..I2 (- 00, 00) is multip]icatioll by A (s), the l~"ourier transform of
aCt). Its im(;tge A ill 12 can be found in the foJlo\\ying way: let x be allY
digital f'ignal. There correspollds to x a unique an[tlog sign[tl .u-l(X).
The result of operating on this analog signal by the analog filtel' ..-1,
A.u- l(X), is also uniquely defilled. This new analog signal can thell be
mapped by .u into [t unique digital signal .uA.u-l(X), which we designate
as the result of operating by A on x. l "hus \ve define A to be the composite
Ol)erator

.-\. = .u.l1.u- l( ). (29)

To filld the image of the an[tlog filter A in 512 , notice that the Fourier
transform of the allalog signal .l1f is A (s )F(s) alld the z-transform of the
digi tal signal j.lAf is

(30)

is multiplication by

. \ has an jmage in ( ) ~ gi yen by

of the jmpulse response { an } ;

l "'IIEOREM G. Th~ isomorphism J.L always matches time-invariant analog
filters A with time-inziariant digital filters A. Furthermore .



implies that A{fn} = 0 for n ~ 0, by (23) . Hence .-\. is a realizable digital
filter . The same argument \yorks the other \yay, and this establishes :

TllEoREM 7. The mapping J.L always matches time-invariant realizable
analog filters with t1:me-invariant realizable dig1:tal filte1'S.
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and

A ( !__.=!=~) .1- 8A(s) (35)-

VI. OPTIMIZA TIO~ PROBLE~IS FOIl s\rSTE~IS \VITI[ DETEfll\IINISTIC
SIGNALS

a-
"

H (r + n )]2 dt

( 1961), this can be transformed by Parseval's

(3G)mIn .

As described by Cllang

~ "", 
"',

8 
8

H(R + N)}* ds[R H(R + N)][R (37)mIll .,--

" here R, H , and N are functions of s, and ( ) * means that s is replaced
by - so It can be sho\"\"n, using an adaptation of the calculus of variations ,
that the realizable solution for H (s) , say Ho(s) , is given by

9

Those time - invariant filters \ ~.hich are physically realizable in the

sense that they are nonanticipatory are of great importance in man ) "

fields . A time - invariant analog filter A \ \ . ill be called realizable if Af = 0

for t < 0 whenever f = 0 for t < o . Similarly , a time - invariarlt digital

filter A will be called realizable if A { fn } = 0 for n ~ 0 \ \ .henever { in } = 0

for n ~ o . It is all important property of the mapping . u that it preserves

the realizability of time - invariant filters . To see this , suppose first that

A is a time - invariant realizable analog filter . Let { in } be any digital

signa ] for which { in } = 0 for n ~ o . Then its analog image f ( t ) is such

thatf ( t ) = 0 for t < 0 , by ( 27 ) . Thus Af = 0 \ \ .hen t is llcgativ "e , \ \ "hicll

relation to the requirement

1
27rj

  We are no\"" in a position to see ho\\" some optimization problems (~an
be solved simultaneou ~ly for analog and digital ",ignals . Suppose, for
example , that a certaill one-sided analog r ( t ) is corrupted by a kno \vn
additive noise n ( t ) , and that \,"e are required to filter out. the noise with
a ",table , realizable time -invariant filter If whose Laplace transform is,
say, H (s) . If \ve adopt a least integral -square-error criterion , \VC require
that
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HoCs) = ~ [CR + .iV)*RJy y* 'LHP (38)

since J1, preserves norm . Hence 110 is the solution to the optimization
problem

II r - II (r + n ) 11 = min. (42)

10

where

yy * = ( R + N ) ( R + N ) * ( 39 )

Y has OIUY left - half plane poles and zeros , and Y * has only right - half

plane poles and zeros . The notation [ ] LHP indicates that a partial

fraction expansion is made and only the terms involving left - half plane

poles are retained .

The fact that a least illtegral - square - error criterion is used meallS

that the optimization criterioll ( 36 ) can be expressed within the axio -

matic framework of Hilbert space . Thus , in L 2 ( - 00 , 00 ) , ( 36 ) becomes

Ilr - H ( r + n ) ll = min . ( 40 )

If , ve now apply the isomorphism , u to the signal r - H ( r + n ) , we have

II r - H ( r + n ) II = II , u[ r - l ] ( r + n ) ] 11 = II r - II ( r + n ) II , ( 41 )

Furthermore , since Jl matches one - sided analog signals with one - sided

djgital sjgnals alld realizable time - invariant analog filters with realizable

time - invarjant djgital filters , " \ ve see that Ho is the solution to : 1 digital

problem that is completely analogous to the original analog problem .

Thus

( z - 1 ) Z [ ( R + N ) * RJ .

Ho ( Z ) = 110 = - , ( 43 )

Z + 1 Q zQ * in

where

QQ * = ( R + N ) ( R + N ) * . ( 44 )

No \ v R , N , and ] 10 are fullctions of z ; ( ) * means that z is replaced by

Z - I ; Q and Q * have poles and zeros inside and outside the unit circle

respectively ; and the notatioll [ ] in jndicates that only terms in ; ) .

partial fraction expallsion \ \ yith poles illside the unit circle have beell

retained .

III other optimizatioll problems \ \ ye may \ Vi ~ } l to 111illimize the Ilorm
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of some error signal \ \ "hile keeping the norm of some other system signal

\ \ rithin a certain range . In a feedback control system , for example , \ \ :re

may want to minimize the ! lOTI11 of the error \ vith the constraint that

the norm of the input to the plant be less than or equal to some pre -

scribed number . Using Lagrange ' s method of undetermined multipliers ,

this problem can be reduced to the problem of minimizing a quantity of

the form

II e 112 + k II i 112, ( 45 )

" here e is an error signal , i is some energy limited signal , and both e

and i depend on an undetermined filter II . Again , if II o ( s ) is the time -

invariant realizable solution to such an analog problem , then IIo ( Z ) is the

time - invariant realizable solution to the analogous digital l ) roblem

determined by the mapping , u.

i \ Iore generally , " e can state

TIIEOREM 8 . Let v be an is01norphism between L 2 ( - 00 , 00 ) . and l2 .

Fll1 ' ther , let the following optimization problem be posed in the analog

signal space L 2 ( - 00 , 00 ) : Find analog filters II 1 , II 2 , . . . , II n wh 'l~ h

171inimize S01ne given function of S01ne norms in a given analog signal

transmission system and which are in a class of filters X . Then if the class

of filters X is invariant under v , the corresponding digital 'problem is

equivalent to the original analog problem m the sense that , whenever one

can be solved , the other can be also . In partLCular , when v 1S , u, X can be

taken as the class of h1ne - invariant filters or the class of time - invariant

realizable filters . In this situation , the optin ~1.lm filters are 1'elated by

( z - 1 ) .Hi ( Z ) = Hi ; -+ 1 ' 1, = 1 , 2 , 3 , . . . , n . ( 4G )

\ TII . Il ..t \ NDOl \ :1 SIGNALS A ~ D STATISTICAL OPTI ~ IIZATIOX PROBLE1 \ IS

' Vhile the consideratioll of systems , , "ith deternlinistic signals is

important for many theoretical and practical reasons , it is often the

case that the engineer kllO " "S only the statistical properties of tIle input

and disturbing signals . For this reason the design of systems on a sta -

tistical basis has becolne increasingly important in recent years . 1 "he

method of connecting colltinuous - time theory , , "ith discrete - time theory

described above can be extended to the random case in a llatural , vay if

, ve restrict ourselves to random processes , , -hich are stational } '" , vith zero

mean , ergodic , alld have correlation functions of exponential order .

For our purposes , such processes , , - ill be cllaracterized by their second
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order properties . III the analog case these are the correlation fwlction
<t>Xy(t ) and its Fourier tmnsfol 'll1 <I>XY(s) . In the digital case these are the
correlation sequence <?Xy(n ) and its z-transfol 'll1 q)XY(z) .

We defille the nlapping J1. for correlation functions in the followillg
\yay , motivated by mapping the sjgnals in the ensembles by the iso-
morphism J1. for signals :

2z (z - 1)JL: c!>Xy(t ) -' ; <PXy(s) -' ; (z + 1)2 <pxy z-+ 1 = (i'Xy(z) -' ; G>xv(n ).

The inverse mappillg is

JL-l: <?Xy(n) -'; (i'XY(z) -';1 2 oJ <I)XY (11 + S) = <PXy(s) -'; c!>Xy(t).- s - - s

(47)

(-18)

12

'"The important invariallts ullder J.L :.lre the quantities

mld

\\yhicll col'l'eSpOlld to the illller products in the deterministic case. .t\ s
before , time -invariilllt filters are matched \ \Tith time -invariant filters ,

alld time -invariallt realiz :'lble filter ,':) are matched with timc -illvarim1t
realiz :'lble filters . Hence , \\ye have

TIIEORE~1 9. Let the following optimization pJ'oblem be posed for random
analog signals : Find analog filters III , 112, . . . , 11 n which minimize
SOlJZe gil 'en funct ion of the nzean-square values of some signals 'in an analog
signal transmission sysleJJ~ and which are in a class of filters X . Then if JC
is the class of tin ~e-invariant filters , or the class of time-inlt'an.ant realizable
filters , the corresponding digital probleJr~ 'is equivalent to the or'i'ginal analog
problem 'in the sense that, whenelt'er one can be solved, the other can be also.
If the correlation functions and power spectral densities are related blJ J.L,
the optiJnllJJ~ filters are again related by (46) .

III ::;ummary , \\"c have ShO\\11 that in the time -invariant case tl1e

tl1cory of proccs~il1g allalog sigllals and the theory of proces~ing digital
SiglltUS are the same.

" III , TIlE . \ PPIlOXIl \ IATIO ~ PIlOBI "E ~ I FOIl DIGI1 ' AL FII .JTEI1S

The mappil1g J.L call be u~ed to 1'educe the apI)roximation problem for
digital filters to that for allalog filtcrs (Stciglitz , 1962; Golden and
I ( aiser, 1964) . Suppose that \\ye wish to dCSjgll a djgital filter \vith a
ratjonal transform al1d :.1, desired magIlitude or phase characteristic :.1::5 a
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functioll of w, - 1r/ T ~ w ~ 1r/ T . Ii'or re:tl frequencies the transfor -
Illation J1, relates the frequency axes by

VJ = tan Cl>T / 2. (51)

We can therefore transform the desired characteristic to a function of (JJ

simply by stretching the abscissa according to (51) . This ne\v character -
istic can be interpreted as the frequency characteristic of an analog
filter , and \ve can approximate this with the rational analog filter A (8) .
A(Z) = A ( (z - 1)/ (z + 1) ) will then be a rational function digital
filter with the appropriate frequency characteristic . i\ Iany of the widely
used approximation criteria , such as equal -ripple or maximal flatness,
are preserved under this compression of the abscissa. Also , by Theorems
6 and 7 , the time - invariant or the time -invariant realizable character

of the approximant is preserved . Applications to the design of windows
for digital spectrum measurement are discussed elsewhere (Steiglitz ,
1963) .
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