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The Equivalence of Digital and Analog
Signal Processing®
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A specific isomorphism is constructed via the transform domains
between the analog signal space L2 (— e, ») and the digital signal
space L. It is then shown that the class of linear time-invariant
realizable filters is invariant under this isomorphism, thus demon-
strating that the theories of processing signals with such filters are
identical in the digital and analog cases. This means that optimi-
zation problems involving linear time-invariant realizable filters
and quadratic cost functions are equivalent in the discrete-time
and the continuous-time cases, for both deterministic and random
signals. Finally, applications to the approximation problem for
digital filters are discussed.
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I. INTRODUCTION

The parallel between linear time-invariant filtering theory in the
continuous-time and the discrete-time cases is readily observed. The
theory of the z-transform, developed in the 1950’s for the analysis of
sampled-data control systems, follows closely classical Fourier transform
theory in the linear time-invariant case. In fact, it is common practice
to develop in detail a particular result for a continuous-time problem
and to pay less attention to the discrete-time case, with the assumption
that the derivation in the discrete-time case follows the one for con-
tinuous-time signals without much change. Examples of this can be
found in the fields of optimum linear filter and compensator design,
system identification, and power spectrum measurement.

The main purpose of this paper is to show, by the construction of a
specific isomorphism between signal spaces I} (—, ©)and l, that the
theories of processing signals with linear time-invariant realizable filters
are identical in the continuous-time and the discrete-time cases. This
will imply the equivalence of many common optimization problems
involving quadratic cost functions. In addition, the strong link that is
developed between discrete-time and continuous-time filtering theory
wiil enable the data analyst to carry over to the digital domain many of
the concepts which have been important to the communications and
control engineers over the years. In particular, all the approximation
techniques developed for continuous-time filters become available for
the design of digital filters.

In the engineering literature, the term digital filler is usually applied
to a filter operating on samples of a continuous signal. In this paper,
however, the term digital filter will be applied to any bounded linear
operator on the signal space I, and these signals will not in general
represent samples of a continuous signal. For example if {x,} and {y.}
are two sequences, the recursive filter

Yo = X — 0.5 Yna

will represent a digital filter whether or not the x, are samples of a
continuous signal. The important property is that a digital computer
can be used to implement the filtering operation; the term numerical
filter might in fact be more appropriate.

II. PRELIMINARIES

The Hilbert space L? (— e, «) of complex valued, square integrable,
Lebesgue measurable functions f(¢) will play the role of the space of
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continuous-time signals. The Hilbert space I, of double-ended sequences
of complex numbers {f,}n-—» that are square summable will play the
role of the space of discrete-time signals. A function in L* (— o, =)
will be called an analog signal, and a scquence in I, will be called a dig-
ital signal. Similarly, a bounded linear transformation A of L’ (— w0, )
will be called an analog filter, and a bounded linear transformation
A of I, will be called a digual filter. An analog filter A will be called
time-invariant if

A ft)y > g),  f(t),9(t) € L' (=, @), (1)

implies

A f(t + 1) > gt + 1) " (2)

for every real number 7. Time-invariant analog filters can be represented
by the convolution integral

o) = [ f()ate — ») dr, (3)

where a(t), the impulse response of the filter A, nced not belong to
L’ (— o, «). Similarly, a digital filter A will be called time-inrariant if

Az {f) — {ga), {fa), {ga) € 1, (4)
implies

At {fan] = (o) ' (5)

for every integer ». Time-invariant digital filters can be represented by
the convolution summation

e = {5 nac), o
where the sequence {a,}, the impulse response of the filter A, need not
belong to ;.

Our program is to construct a specific isomorphism between the
analog signal space and the digital signal space via their isomorphic
transform domains. Hence, we now define the Fourier transform on the
analog signal space, mapping L? (— w, « ) to another space L*(—o, )
called the Fourier transform domain and denoted by FL? (— e, o).
We need the following key results (Wiener, 1933; Titchmarsh, 1948):

Tueorem 1 (Plancherel). If f(t) € L* (— o, «), then

F(s) = Lim. fRf(t)e_s‘ dt (7)
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exists for s = jo, and F(jw) € L* (— o, « ). Furthermore,

G0 = [P a = [ (R s, (8)
and
f(t) = Lim. _]:R F(s)e" ds. (9)

Analytic extension of F'(jw) to the rest of the s-plane (via (7) when it
exists, for example) gives the two-sided Laplace transform.
Tueoreym 2 (Parseval). If f(t), g(t) € L* (— o, ), then

o Joo
Go = [ f0rwa=s- [ Foews 0
The theory required for the analogous construction of a z-transform
domain for digital signals is really no more than the theory of Fourier
series. Consider the digital signal as a sequence of Fourier coefficients,
and consider the periodic function with these Fourier cocfficients as the
z-transform evaluated on the unit circle in the z-planc. The Riesz-
Fischer Theorem. (Wiener, 1933) then reads:
Tueoreym 3 (F. Riesz-Fischer). If {f,} € L, then

N
F(z) = Lim. D f,2™" (11)

N> n=—N

exists for z = 7, and F(&°T) € L} (0, 2x/T), where o is the inde-
pendent variable of L* (0, 2x/T), and this o is unrelated lo the w used in
lhe s-plane. Furthermore,

o«

2 1 ‘Zdz
Al i8) = 2 16F =L IFaFE,  (2)
and
f,= -1 ¢ P2 &, (13)
2my z

where integrals in the z-plane are around the unit circle in the counter-
clockwise direction. A

As in the analog case, the analytic extension of F(e™*”) to the rest
of the z-plane will coincide with the ordinary z-transform, which is
usually defined only for digital signals of exponential order.
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TueoreM 4 (Parseval). If {f.}, {g:) € b, then

() l8)) = = hoe’ = L FOG* @ E. ()

n=-— _z-.
We denote the space L* (0, 2/ T) of z-transforms of digital signals by 5le -

III. A SPECIFIC ISOMORPIISM BETWEEN THE ANALOG AND DIGITAL
SIGNAL SPACES

Intuitively, if we wish to connect the space of analog signals with the
space of digital signals in such a way as to preserve the time-invariance
and realizability of filters, we should somchow connect the jw-axis in
the s-plane with the unit circle in the z-plane. The natural correspondence
provided by the instantaneous sampling of analog signals matches e’
with 2, but is not one-to-one and hence cannot be an isomorphism.
The next natural choice is the familiar bilinear transformation

_z—1 _ 1+

71 _ . 15
STr¥1r T (15)

There is an additional factor required so that the transformation will
preserve inner products. Accordingly, the image {f,} € I, corresponding
to f(1) € L’ (—w, ) will-be defined as the sequence with the z-trans-

form
_ V2 /(z—1>
_»'c’--l—llr1 z+ 1/ (16)

Thus the mapping L* (— @, ©) — [, is defined by a chain which gocs
from L (—, ») to FL* (— o, ») to 512 to I> as follows:

2+ 1 2+ 1

The inverse mapping is ecasily defined, since each of these steps is
uniquely reversible:

wif(0) = F(s) — Y2 F(z - 1) _FG) = (6] (17)

et =@ - 25 (FE) < Py — s, ()

We then have
TueoreM 5. The mapping

,J,;L2 (—o, 0) =1

defined by (17) and (18) s an isomorphism.
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Proof: p is obviously linear and onto. To show that it preserves inner
product, let z = (1 4+ s)/(1 — s) in Parseval’s relation (10), yielding

(10 = o [ P06 @5 = 5 § 16 £

z (19)
= ({f.}, {ga})-

We can show that u is one-to-one in the following way: if f # ¢, then
(f—g,f — ¢) = ({f.} — {&, {fx} — {ga}) # 0; which implies that
{f.} = {g.}, and hence that u is one-to-one.

Wenotehere that under the isomorphisms g and p ' signals with rational
transforms are always matched with signals with rational transforms, a
convenience when dealing with the many signals commonly encountered
in engineering problems with transforms which are rational functions of
sorz.

IV. THE ORTHONORMAL EXPANSION ATTACHED TO u

The usual way of defining an isomorphism from L* (— e, «) to  is
to map an arbitrary function in I’ (— o, ) to the sequence in I, of
its coeflicients in some orthonormal expansion. It comes as no surprise,
then, that the isomorphism p could have been so generated. This section
will be devoted to finding this orthonormal expansion.

We start with the z-transform of the digital signal {f,} which is the
image under g of an arbitrary analog signal f(#):

() £ e
F(z)_z—l-ll 2+ 1 —,,;eof"z ’ (20)

By (13), the formula for the inverse z-transform, we have

f = L § V2 F(Z_1>z"flz—z. (21)

o fz+1 \z+1
Letting z = (1 4+ s)/(1 — s), this integral becomes
1" V2 (1+sY
= — g 29
f. 55 Lo F(s) T s (1 — s) ds. (22)

By Parseval’s relation (10) this can be written in terms of time functions
as

= [ ron a, (23)
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where the \,(¢) are given by the following inverse two-sided Laplace

transform
M(t) = 43“[ V2 (1 — S):I (24)

1 — s\l +4+s

We see immediately that, depending on whether n > 0 or n < 0, A\, (¢)
vanishes for negative time or positive time. By manipulating a standard
transform pair involving Laguerre polynomials we find:

_ (—'1)11_1'\/56—‘[1»—1(26)“(:)7 n=123--- =
“m‘{en”V%L44MM4L n=0-1-2...

where «(?) is the Heaviside unit step function, and L,(?) is the Laguerre
polynomial of degree n, defined by
e

sige (¢ n=012 (26)

L.(t) =
The set of functions \.(¢), n = 1, 2, 3, -+, is a complete orthonormal
set on (0, «) and are called Laguerre functions. They have been em-
ployed by Lee (1931-2), Wiener (1949), and others for network synthe-
sis; and are tabulated in Wiener (1949), and, with a slightly different
normalization, in Head and Wilson (1956). The functions \,(¢), n =
0, —1, =2, ---, are similarly complete and orthonormal on (= «, 0),
so that the orthonormal expansion corresponding to (23) is

F@&) = 2 fana(0). (27)

n=

We see that the values of the digital signal {f.} for n > 0 correspond to
the coeflicients in the Laguerre expansion of f(¢) for positive ¢; and that
the values of {f,} forn = 0 correspond to the coefficients in the Laguerre
expansion of f(¢) for negative ¢.

V. THE INDUCED MAPPING FOR FILTERS

Thus far, we have explicitly defined four isomorphic Hilbert spaces as
follows

L* (=, @)———1

SL* (=0, o) l. = L0, 2x/T)

2
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Therefore an analog or a digital filter as a bounded linear transformation
has image transformations induced on the remaining three spaces.

A time-invariant analog filter A, defined by the convolution integral
(3), has an image in §L* (—o, »), in k, and in 5. Its image in
SL? (—w, «) is multiplication by A(s), the Fourier transform of
a(t). Its image A in L can be found in the following way: let x be any
digital signal. There corresponds to x a unique analog signal 1(x).
The result of operating on this analog signal by the analog filter d,
A~ (x), is also umquely defined. This new analog signal can then be
mapped by u into a unique digital signal pdu Y(x), which we designate
as the result of operating by a on x. Thus we define A to be the composite
operator

= pdu”'( ). (29)

To find the image of the analog filter 4 in 5l , notice that the Fourier
transform of the analog signal Af is A(s)F(s) and the z-transform of the
digital signal pAf is

Fia(59) 7 (),
z—}—l1 +1Pz+l (30)
Therefore, the image in 5k of A and hence of A is multiplication by
z—1
A(z) = A (2 T 1>. (31)

Similarly, a time-invariant digital filter 4 has an image in 4h given by
multiplication by A(z), the z-transform of the impulse response {an);
an image in L’ (— o, =) given by

A =paul ); (32)
and an image in §L* (— =, ») given by multiplication by
A(s) = 4 (1 + 3). (33)
1 —3s

We have therefore proved
TueoreM 6. The isomorphism p always malches time-invariant analog
filters A with time-invariant digital filters A. Furthermore,

a(z) = A (Z __*__ i), (34)
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and

A(s) = a (1 + s) . (33)

1 —3s

Those time-invariant filters which are physically realizable in the
sense that they are nonanticipatory are of great importance in many
fields. A time-invariant analog filter A4 will be called realizable if Af = 0
for ¢ < 0 whenever f = 0 for ¢ < 0. Similarly, a time-invariant digital
filter A will be called realizable if A{f,} = 0 for n < 0 whenever {f,} = 0
for n < 0. It is an important property of the mapping u that it preserves
the realizability of time-invariant filters. To see this, suppose first that
A is a time-invariant realizable analog filter. Let {f,} be any digital
signal for which {f,} = 0 for n < 0. Then its analog image f(¢) is such
that f(¢) = 0for¢ < 0, by (27). Thus Af = 0 when £ is negative, which
implies that A{f,}] = 0forn = 0, by (23). Hence a is a realizable digital
filter. The same argument works the other way, and this establishes:

TueoreMm 7. The mapping p always matches time-invariant realizable
analog filters with time-invariant realizable digital filters.

VI. OPTIMIZATION PROBLEMS FOR SYSTEMS WITH DETERMINISTIC
SIGNALS

We are now in a position to see how some optimization problems can
be solved simultaneously for analog and digital signals. Suppose, for
éxample, that a certain one-sided analog r(¢) is corrupted by a known
additive noise n(¢), and that we are required to filter out the noise with
a stable, realizable time-invariant filter /7 whose Laplace transform is,
say, H(s). If we adopt a least integral-square-error criterion, we require
that

f r  H(r + n)]*dt = min. (36)
0

As described by Chang (1961), this can be transformed by Parseval’s
relation to the requirement

joo

zij [R — H(R + N)IIR — H(R + N)I* ds = min,, (37)

] J—j»

where R, H, and N are functions of s, and ()* means that s is replaced

by —s. It can be shown, using an adaptation of the calculus of variations,
that the realizable solution for H(s), say Ho(s), is given by
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oy _ 1R+ N)R
HO(S) - )7 l:——Y*——]LHP ’ (38)
where

YY* = (R + N)(R + N)* (39)

Y has only left-half plane poles and zeros, and Y* has only right-half
plane poles and zeros. The notation [ Jime indicates that a partial
fraction expansion is made and only the terms involving left-half plane
poles are retained.

The fact that a least integral-squarc-error criterion is used means
that the optimization criterion (36) can be expressed within the axio-
matic framework of Hilbert space. Thus, in L* (— 0, «), (36) becomes

| — H(r + n)|| = min. (40)
If we now apply the isomorphism u to the signal r — H(r 4 n), we have
|7 — H(@ +n)l| = | ulr — Her + 2)]l = llx — u(r + n)fl, (41)

since p preserves norm. Hence 1, is the solution to the optimization
problem

|t —u(r + n)|| = min. (42)

Furthermore, since x matches one-sided analog signals with one-sided
digital signals and realizable time-invariant analog filters with realizable
time-invariant digital filters, we sce that 1, is the solution to a digital
problem that is completely analogous to the original analog problem.

Thus
_ z—1) _ 2 (R + N)*R .
Ho(z) = IIo (m> = 6 [—Z—Q—*—_]in ) (43)
where
QQ* = (R + N)(R + N)*. (44)

Now R, N, and 1, are functions of z; ( Y* means that z is replaced by
2% Q and Q* have poles and zeros inside and outside the unit circle
respectively; and the notation [ Jin indicates that only terms in a
partial fraction expansion with poles inside the unit circle have been
retained.

In other optimization problems we may wish to minimize the norm
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of some error signal while keeping the norm of some other system signal
within a certain range. In a feedback control system, for example, we
may want to minimize the norm of the error with the constraint that
the norm of the input to the plant be less than or equal to some pre-
seribed number. Using Lagrange’s method of undetermined multipliers,
this problem can be reduced to the problem of minimizing a quantity of
the form

lel* + k1<l (45)

where ¢ is an error signal, ¢ is some energy limited signal, and both e
and 7 depend on an undetermined filter I7. Again, if Hy(s) is the time-
invariant realizable solution to such an analog problem, then 110(2) is the
time-invariant realizable solution to the analogous digital problem
determined by the mapping p.

More generally, we can state

TueoreM 8. Let v be an isomorphism between L} (— e, w)-and I, .
Further, let the following optimization problem be posed in the analog
signal space L’ (—, «): Find analog filters Hy, Hy, ---, H, which
minimize some given function of some norms in a given analog signal
transmission system and which are in a class of filters X. Then if the class
of filters X s invariant under v, the corresponding digital ‘problem s
equivalent to the original analog problem wn the sense that, whenever one
can be solved, the other can be also. In particular, when v 1s p, X can be
taken as the class of tume-invariant filters or the class of time-invariant
realizable filters. In this situation, the oplimum filters are related by

Hi(z) = H; (Z _T_ i) ’ t=123,---,n (46)

VII. RANDOM SIGNALS AND STATISTICAL OPTIMIZATION PROBLEMS

While the consideration of systems with deterministic signals is
important for many theoretical and practical reasons, it is often the
case that the engineer knows only the statistical properties of the input
and disturbing signals. For this reason the design of systems on a sta-
tistical basis has become increasingly important in recent years. The
method of connecting continuous-time theory with discrete-time theory
described above can be extended to the random case in a natural way if
we restrict ourselves to random processes which are stationary with zero
mean, ergodic, and have correlation functions of exponential order.
For our purposes, such processes will be characterized by their second

11
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order properties. In the analog case thesc are the correlation function
b2, (t) and its Fourier transform &.,(s). In the digital case thesc are the
correlation sequence &.,(n) and its z-transform ®4,(z).

We define the mapping u for correlation functions in the following
way, motivated by mapping the signals in the ensembles by the iso-
morphism p for signals:

 baa(8) = Buyls) = — 2 @(“*)ﬂnua (). (47)
M Pay y\ S G+ 1p W \y F = Pnyl2 $zy(n).

The inverse mapping is

()
;ﬂwamawﬁaarfga(%§§=¢Mwemwx<w>

The important invariants under g are the quantities

¢:(0) = E[z(t)y(?)], (49)

$=(0) = Efxayal, (50)

which correspond to the inner products in the deterministic case. As
before, time-invariant filters are matched with time-invariant filters,
and time-invariant realizable filters are matched with time-invariant
realizable filters. Hence, we have

TueoreM 9. Let the following optimizatlion problem be posed for random
analog signals: Find analog filters Iy, Hy, --+, H, which minimize
some given function of the mean-square values of some signals in an analog
signal transmission system and which are in a class of filters X. Then if X
is the class of time-invariant filters, or the class of time-invariant realizable
filters, the corresponding digital problem is equivalent to the original analog
problem in the sense that, whenever one can be solved, the other can be also.
If the correlation functions and power spectral densities are relaled by u,
the optimum filters are again related by (46).

In summary, we have shown that in the time-invariant case the
theory of processing analog signals and the theory of processing digital
signals are the same.

and

VIII. THE APPROXIMATION PROBLEM FOR DIGITAL FILTERS

The mapping 1 can be used to reduce the approximation problem for
digital filters to that for analog filters (Steiglitz, 1962; Golden and
Kaiser, 1964). Suppose that we wish to design a digital filter with a
rational transform and a desired magnitude or phase characteristic as a
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function of w, —7/T £ o = w/T. For real frequencies the transfor-
mation u relates the frequency axes by

w = tan 07/2. (51)

We can thercfore transform the desired characteristic to a function of w
simply by stretching the abscissa according to (51). This new character-
istic can be interpreted as the frequency characteristic of an analog
filter, and we can approximate this with the rational analog filter A (s).
A(z) = A((z — 1)/(z + 1)) will then be a rational function digital
filter with the appropriate frequency characteristic. Many of the widely
used approximation criteria, such as equal-ripple or maximal flatness,
are preserved under this compression of the abscissa. Also, by Theorems
6 and 7, the time-invariant or the time-invariant realizable character
of the approximant is preserved. Applications to the design of windows
for digital spectrum measurement are discussed elsewhere (Steiglitz,
1963).
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