
1 Hierarchies and Relationships

1.1 Traditional Record Structures

One of the most common ways to represent information with computers is
to use “records.” Records are stored in a file, with one record per line. Such a
file is called a flat file. A record consists of a series of data items, called “fields”
or “columns.” Here are some records from a health study (NHS 2004):

011500 18.66 0 0 62 46.271020111 25.220010
011500 26.93 0 1 63 68.951521001 32.651010
020100 33.95 1 0 65 92.532041101 18.930110
020100 17.38 0 0 67 50.351111100 42.160001

The actual records are considerably longer. It should be apparent that one
cannot have any understanding of the meaning of the records without some
explanation such as the following:

NAME LENGTH RANGE FORMAT MEAN OR CODES
instudy 6 MMDDYY
bmi 8 13.25-60.07 Num 26.03
obesity 3 0-1 Num 0=No 1=Yes
ovrwt 8 0-1 Num 0=No 1=Yes
Height 3 49-79 Num 64.62
Wtkgs 8 38.1-175.1 Num 70.2
Weight 3 84-386 Num 154.75

NAME LABEL
instudy Date of randomization into study
bmi Body Mass Index. Weight(kgs)/height(m)**2

4 1 Hierarchies and Relationships

obesity Obesity (30.0 <= BMI)
ovrwt Overweight (25 <= BMI < 30)
Height Height (inches)
Wtkgs Weight (kilograms)
Weight Weight (pounds)

The explanation of what the fields mean is called metadata. In general, meta-
data are any “data about data,” such as the names of the fields, the kind of
values that are allowed, the range of values, and explanations of what the
fields mean.

In this case each field has a fixed number of characters, and each record
has a fixed total number of characters. This is called the fixed-width format
or fixed-column format. This format simplifies the processing of the file, but it
limits what can be said within each field. If the text that should be in a field
does not fit, then it must be abbreviated or truncated. There are other file
formats that eliminate these limitations. One commonly used format is to use
commas or tabs to delimit the fields. This allows the fields to have varying
size. However, it complicates processing when the delimiting character (i.e.,
the comma or tab) must be used within a field.

The information in the record is often highly redundant. For example, the
obesity and ovrwt fields are unnecessary because they can be computed from
the bmi field. Similarly, the bmi field can be computed from the Height and
Weight fields. Another common feature of flat files is that the field formats are
often inappropriate. For example, the obesity field can only have the values
“yes” or “no,” but it is represented using numbers.

Each field of a flat file is defined by features such as its name, format,
description, and so on. A database is a collection of flat files (called tables)
with auxiliary structures (e.g., indexes) that improve performance for certain
commonly used operations. The description of the fields of one or more flat
files is called the schema.

A database schema is an example of an ontology. In general, whenever
data are structured, the description of their structure is the ontology for the
data. A glance at the example record makes it clear that the raw data record
is completely useless without the ontology. The ontology is what gives the
raw data their meaning. The same is true for any kind of data, whether
they be electronic data used by a computer or audiovisual data sensed by a
person. Ontologies are the means by which a person or some other agent
understands its world, as well as the means by which a person or agent com-
municates with others.

1.2 The eXtensible Markup Language 5

Summary

• A flat file is a collection of records.

• A record consists of fields.

• Each record in a flat file has the same number and kinds of fields as any
other record in the same file.

• The schema of a flat file describes the structure (i.e., the kinds of fields) of
each record.

• A schema is an example of an ontology.

1.2 The eXtensible Markup Language

Flat files are simple and easy to process. A typical program using and pro-
ducing flat files simply performs the same operation on each record. How-
ever, flat files are limited to relatively simple forms of data. They are not
well suited to the complex information of genomics, proteomics, and so on.
Accordingly, a new approach is necessary.

The eXtensible Markup Language (XML) is a powerful and flexible mech-
anism that can be used to represent bioinformatic data and facilitates com-
munication. Unlike flat files, an XML document is self-describing: the name of
each attribute is specified in addition to the value of the attribute. The health
study record shown above could be written like this in XML:

<Interview RandomizationDate="2000-01-15" BMI="18.66" Height="62".../>
<Interview RandomizationDate="2000-01-15" BMI="26.93" Height="63".../>
<Interview RandomizationDate="2000-02-01" BMI="33.95" Height="65".../>
<Interview RandomizationDate="2000-02-01" BMI="17.38" Height="67".../>

The basic unit of an XML document is called an element. It is analogous
to a record in a flat file, except that a single XML document can have many
kinds of element. One would need a large collection of flat files (or a database
with many tables) to represent the elements of a single XML document, and
even that would not capture all of it, because the kinds of element in an XML
document can be intermixed. Each kind of element is labeled by a name
called its tag. The example given above is an Interview element.

The fields of an XML element are called its attributes. Flat files generally
distinguish fields from one another by their positions in the record. XML

6 1 Hierarchies and Relationships

attributes can appear in any order, and an attribute that is not needed by an
element is not written at all.

An attribute in general is a property or characteristic of an entity. Linguis-
tically, attributes are adjectives that describe entities. For example, a person
may be overweight or obese, and the BMI attribute makes the description
quantitative rather than qualitative. The notion of attribute represents two
somewhat different concepts: the attribute in general and the attribute of a
specific entity. BMI is an example of an attribute, but one would also speak
of a BMI equal to 18.66 for a specific person as being an attribute. To avoid
confusion we will refer to the former as the attribute name, while the latter is
an attribute value.

<!ATTLIST molecule
title CDATA #IMPLIED
id CDATA #IMPLIED
convention CDATA "CML"
dictRef CDATA #IMPLIED
count CDATA #REQUIRED

>

Figure 1.1 Part of the Chemical Markup Language DTD. This defines the attribute
names that are allowed in a molecule element.

Just as a database is described by its schema, an XML document is de-
scribed by its Document Type Definition (DTD). The DTD specifies the at-
tribute names that are allowed for each kind of element. For example, in the
Chemical Markup Language (CML) (CML 2003), a molecule can have a ti-
tle, identifier, convention, dictionary reference, and count. Figure 1.1 shows
how this is specified in the CML DTD. A #REQUIRED attribute is one that
must be specified in every element of this kind; an #IMPLIED attribute is
optional. If a value is specified in the DTD, then it is the default value of the
attribute. For example, if no convention is specified, then it has the value
“CML.” CDATA means “character data” which means that the attribute value
can use any kind of text except for elements.

One enters or updates data for an XML element in the same manner that
one enters or updates data for a database table. An example of such a data
entry screen is given in figure 1.2.

XML reserves two characters for indicating the presence of markup. The
left angle bracket (<) is used by XML to mark the beginning of each element.

1.3 Hierarchical Organization 7

It is also used to show where an element ends. To include the left angle
bracket in ordinary text, write it as “<”. Writing a special character like
the left angle bracket as “<” is called escaping. The ampersand character
(&) is also reserved by XML, and it must be written as “&”.

Figure 1.2 Data entry screen for the molecule element of the Chemical Markup
Language.

Summary

• XML is a format for representing data.

• An XML element is analogous to a record in a flat file.

• An XML attribute is analogous to a field of a record.

• An XML DTD is a schema that describes the structure of the elements of
an XML file.

1.3 Hierarchical Organization

Modern biology and medicine, like much of society, is currently faced with
overwhelming amounts of raw data being produced by new information-
gathering techniques. In a relatively short period of time information has
gone from being relatively scarce and expensive to being plentiful and inex-
pensive. As a consequence, the traditional methods for dealing with infor-
mation are overwhelmed by the sheer volume of information available. The
traditional methods were developed when information was scarce, and they
cannot handle the enormous scale of information.

The first and most natural reaction by people to this situation is to attempt
to categorize and classify. People are especially good at this task. We are

8 1 Hierarchies and Relationships

constantly categorizing objects, experiences, and people. We do it effortlessly
and unconsciously. The very words we use to express ourselves represent
categories. It is only when a categorization is problematic that we notice that
we have been categorizing at all. Biology was the first discipline to engage
in systematic, large-scale classification because of the enormous complexity
of its domain.

Figure 1.3 A BioML document showing some of the information about the human
insulin gene. Boxes were drawn around each XML element so that the hierarchi-
cal structure is more apparent. XML documents normally indicate the hierarchical
structure by successive indentation, as in this example.

What makes XML powerful is the ability to organize data hierarchically.
XML elements are much more than just self-describing records; each element
can contain other elements, which can contain other elements, to arbitrary
depth. Figure 1.3 shows a small part of the genomic data for the insulin gene

1.3 Hierarchical Organization 9

represented using the Biopolymer Markup Language (BioML) (BioML 2003).
This XML document consists of a bioml element containing an organism
element. The organism element, in turn, contains chromosome elements,
which contain locus elements, which contain genes, which contain the
DNA sequence, domains, exons, introns, and so on. Along the way, the el-
ements also contain references to database entries that furnish the source
material for the genomic information. This example shows the organization
of information about biopolymers starting at the organism level and succes-
sively elaborating until one sees individual DNA bases.

Because of the hierarchical nature of an XML document, there is always
a “top” of the hierarchy called the root. In figure 1.3 the root is the bioml
element. The root is split into a series of branches, which in turn split into
branches, and so on, like the branching of a tree. The terminology of fam-
ily trees is commonly used for the relationships within the hierarchy. The
elements contained in an element are called its child elements, and the con-
taining element is the parent. The children of the same parent are siblings.
Note that this family tree is asexual: each element (except for the root) has
exactly one parent.

The tags and attributes occurring in an XML DTD constitute the vocabu-
lary of the ontology. When one is creating an ontology it is important to
choose the tags and attributes so that they correspond to how people use the
words. Ontologies should facilitate communication between people as well
as between computer systems. Because of this emphasis on communication,
ontologies are often referred to as languages. Ontologies are also important
for information retrieval from databases, and the terminology in an ontology
is called a controlled vocabulary in this context. An ontology is a specialized
language for communication in a particular domain. The communication
can be between people, between people and computers, or between comput-
ers. Ontologies based on XML are more specifically called markup languages
because of the historical origin of XML as a means of marking up text for
the purpose of typesetting documents. Thus the “ML” in BioML and CML
both stand for “Markup Language” even though neither of these ontologies
is concerned with typesetting.

Summary

• Classification is one way in which people organize a domain in order to
understand it more easily.

10 1 Hierarchies and Relationships

• Classifications are frequently organized in the form of a hierarchy.

• XML elements are hierarchical: each element can contain other elements,
that in turn can contain other elements, and so on.

1.4 Creating and Updating XML

This little example illustrates how statements can be much worse than just
being false: they can be meaningless. One of the main functions of a good on-
tology is that it limits what can be said, so that statements using the ontology
always make sense to a member of the community served by the ontology.
This is done by using constraints. Some constraints have already been dis-
cussed in section 1.2 where we saw that one can specify what attributes are
allowed for each kind of element. One can also specify which elements can
be contained in other elements as well as how many are allowed. These
constraints are especially useful when one is creating and updating XML
documents, and that is the topic of this section.

Viewing and updating an XML document may seem to be a formidable
task, but one rarely looks directly at an XML document any more than one
would look at the page source of an HTML (Hypertext Markup Language)
document. One uses an XML tool for creating, viewing, and updating. The
single term “editing” is used for all three of these activities. An XML editor is
a tool that supports the editing of an XML document. XML editors automat-
ically take care of routine tasks such as escaping special characters and mak-
ing sure that the document is consistent. There are many such tools available.
The examples in this book used Xerlin (Xerlin 2003), an open source XML ed-
itor that is available from the Apache project. XML viewers and editors make
good use of the hierarchical structure of an XML document. This structure
is analogous to a file folder or directory structure: The XML document is
viewed and updated in much the same way as files in a directory. In fig-
ure 1.4 one can see a typical file manager compared with an XML document
editor showing the BioML insulin gene document.

The DTD of an XML document specifies more than just the attributes of
each element. For example, in CML, a molecule contains an atomArray
and a bondArray, and they must occur in this order: the atomArray must
occur first, and the comma indicates that the bondArray must occur sec-
ond. An atomArray element contains one or more atom elements, and a
bondArray consists of one or more bond elements. The DTD would specify
this as follows:

1.4 Creating and Updating XML 11

Figure 1.4 File management vs. XML document management. The image on the
left used the Windows file manager. It shows disk drives, folders, and files on a PC.
The image on the right used the Xerlin XML document editor. It shows the elements
of a single XML document.

<!ELEMENT molecule (atomArray,bondArray)>
<!ELEMENT atomArray (atom+)>
<!ELEMENT bondArray (bond+)>

The ELEMENT statements above determine the content of these elements. A
specification such as (atom+) is called a content model. The ATTLIST state-
ment for molecule given earlier determines the attributes that can be in
an element. A DTD will normally have one ELEMENT statement and one
ATTLIST statement for each kind of element that can be in the document. A
more complete DTD for molecules is shown in figure 1.6. Because the same
attributes are allowed in many elements, a DTD can be very long. ENTITY
statements are a method for simplifying the writing of DTDs, by allowing
one to specify content and lists of attributes just once. In figure 1.7 two enti-
ties were defined and then used several times. Large DTDs such as CML use
a large number of entities. These are just two of the entities in CML.

12 1 Hierarchies and Relationships

Figure 1.5 Data entry screen for an element of an XML document. The window on
the left shows the hierarchical structure of the XML document in the same manner
as a file manager. A gene element is highlighted, indicating that this is the currently
open element. The attributes for the gene element are shown in the right window.
The window on the right acts like a data entry screen for viewing and updating the
attributes of the element.

<!ELEMENT molecule (atomArray, bondArray)>
<!ATTLIST molecule

title CDATA #IMPLIED
id CDATA #IMPLIED
convention CDATA "CML"
dictRef CDATA #IMPLIED
count CDATA "1"

>
<!ELEMENT atomArray (atom+)>
<!ATTLIST atomArray

title CDATA #IMPLIED
id CDATA #IMPLIED
convention CDATA "CML"

1.4 Creating and Updating XML 13

>
<!ELEMENT atom EMPTY>
<!ATTLIST atom

elementType CDATA #IMPLIED
title CDATA #IMPLIED
id CDATA #IMPLIED
convention CDATA "CML"
dictRef CDATA #IMPLIED
count CDATA "1"

>
<!ELEMENT bondArray (bond+)>
<!ATTLIST bondArray

title CDATA #IMPLIED
id CDATA #IMPLIED
convention CDATA "CML"

>
<!ELEMENT bond EMPTY>
<!ATTLIST bond

title CDATA #IMPLIED
id CDATA #IMPLIED
convention CDATA "CML"
dictRef CDATA #IMPLIED
atomRefs CDATA #IMPLIED

>

Figure 1.6 Part of the Chemical Markup Language DTD. This part defines the con-
tent and some of the attributes of a molecule element as well as the content and
some of the attributes of elements that can be contained in a molecule element.

<!ENTITY % title_id_conv ’
title CDATA #IMPLIED
id CDATA #IMPLIED
convention CDATA "CML" ’>

<!ENTITY % title_id_conv_dict
%title_id_conv;

14 1 Hierarchies and Relationships

’dictRef CDATA #IMPLIED’>

<!ELEMENT molecule (atomArray, bondArray)>
<!ATTLIST molecule
%title_id_conv_dict;

count CDATA "1"
>
<!ELEMENT atomArray (atom+)>
<!ATTLIST atomArray
%title_id_conv;
>
<!ELEMENT atom EMPTY>
<!ATTLIST atom

elementType CDATA #IMPLIED
%title_id_conv_dict;

count CDATA "1"
>
<!ELEMENT bondArray (bond+)>
<!ATTLIST bondArray
%title_id_conv;
>
<!ELEMENT bond EMPTY>
<!ATTLIST bond
%title_id_conv_dict;

dictRef CDATA #IMPLIED
atomRefs CDATA #IMPLIED

>

Figure 1.7 Part of the Chemical Markup Language DTD. This DTD uses entities to
simplify the DTD in figure 1.6.

In addition to simplifying a DTD, there are other uses of XML entities:

• Entities can be used to build a large DTD from smaller files. The entities
in this case refer to the files being incorporated rather than to the actual
value of the entity. Such an entity would be defined like this:

1.4 Creating and Updating XML 15

<!ENTITY % dtd1 SYSTEM "ml.dtd">

To include the contents of the file ml.dtd, one uses %dtd1; in your DTD.
One can use a URL instead of a filename, in which case the DTD informa-
tion will be obtained from an external source.

• Entities can be used to build a large document from smaller documents.
The smaller documents can be local files or files obtained from external
sources using URLs. For example, suppose that an experiment is con-
tained in five XML document files. One can merge these files into a single
XML document as follows:

<?xml version="1.0"?>
<!DOCTYPE ExperimentSet SYSTEM "experiment.dtd"
[

<!ENTITY experiment1 SYSTEM "experiment1.xml">
<!ENTITY experiment2 SYSTEM "experiment2.xml">
<!ENTITY experiment3 SYSTEM "experiment3.xml">
<!ENTITY experiment4 SYSTEM "experiment4.xml">
<!ENTITY experiment5 SYSTEM "experiment5.xml">

]>
<ExperimentSet>

&experiment1;
&experiment2;
&experiment3;
&experiment4;
&experiment5;

</ExperimentSet>

Note that entities used within documents use the ampersand rather than
the percent sign. This example is considered again in section 11.6 where
it is discussed in more detail.

When one is editing an XML document, the DTD assists one to identify
the attributes and elements that need to be provided. Figure 1.5 shows the
BioML insulin gene document. The “directory” structure is on the left, and
the attributes are on the right. In this case a gene element is open, and so the
attributes for the gene element are displayed. To enter or update an attribute,
click on the appropriate attribute and use the keyboard to enter or modify the

16 1 Hierarchies and Relationships

attribute’s value. When an attribute has only a limited list of possible values,
then one chooses the desired value from a menu. Attributes are specified
in the same manner as one specifies fields of a record in a database using a
traditional “data entry” screen. An XML document is effectively an entire
database with one table for every kind of element.

In addition to attributes, an XML element can have text. This is often re-
ferred to as its text content to distinguish it from the elements it can contain.
In an XML editor, the text content is shown as if it were another child ele-
ment, but labeled with #text. It is also shown as if it were another attribute,
also labeled with #text.

Figure 1.8 The process of adding a new element to an XML document. The menus
shown were obtained by right-clicking on the gene element and then selecting the
Add choice. The menu containing dna, name, and so on shows the elements that are
allowed in the gene element.

1.5 The Meaning of a Hierarchy 17

The hierarchical structure of an XML document is manipulated by open-
ing and closing each element just as one opens and closes directories (folders)
when managing a collection of files. Unlike file management, the DTD of an
XML document can be very precise about what elements are allowed to be in
another element, as well as the order in which they must appear. Figure 1.8
shows how to add an element to the gene element of a BioML document.
Click (with the right mouse button) on the gene element and a menu ap-
pears that allows one to Add another element. Selecting this choice in the
menu displays another menu. This second menu shows all the kinds of child
elements that are allowed at this time in the parent element. In figure 1.9 a
note element was chosen. Figure 1.10 shows the result of making this se-
lection: the gene element now has a new note child element. The right
window now displays the attributes for the newly created element.

The elements that are allowed in an element depend on the editing context.
The molecule element must have exactly two child elements: atomArray
and bondArray. As a result, when a molecule is selected the first time, the
only choice for a child element will be atomArray. After adding such an
element, the only choice will be bondArray.

The file directory metaphor is a compelling one, but it is important to note
how XML differs from a directory structure. The differences are explained in
table 1.1. Just as a database schema is an example of an ontology, an XML
DTD is also an example of an ontology. However, unlike a database, an XML
document is self-describing. One can understand much of the meaning of
the data without recourse to the ontology. Indeed, there are tools which can
guess the DTD for an XML document that does not have one.

Summary

• XML documents are examined and updated by taking advantage of the
hierarchical structure.

• The XML DTD assists in updating a document by giving clues about what
attributes need to be entered as well as what elements need to be added.

1.5 The Meaning of a Hierarchy

Each kind of element in an XML document represents a concept. Concepts
are the means by which people understand the world around them. They
classify the world into units that allow comprehension. They also make it

18 1 Hierarchies and Relationships

Figure 1.9 Adding a new element to an XML document. A note element has been
chosen to be added to a gene element.

possible for people to communicate with each other. Individuals must have a
shared conceptual framework in order to communicate, but communication
requires more than just a shared conceptualization; it is also necessary for
the concepts to have names, and these names must be known to the two
individuals who are communicating.

Biochemistry has a rich set of concepts ranging from very generic notions
such as chemical to exquisitely precise notions such as Tumor necrosis factor
alpha-induced protein 3. Concepts are typically organized into hierarchies to
capture at least some of the relationships between them. XML document
hierarchies are a means by which one can represent such hierarchical organi-

1.5 The Meaning of a Hierarchy 19

Figure 1.10 Result of adding a new element to an XML document. A note element
has been added to a gene element. The active element is now the note element, and
its attributes appear in the window on the right side.

zations of knowledge.
Aristotle (384-322 BC) was the first who understood the difficulty of cat-

egorizing living organisms into classes according to their anatomical and
physiological characteristics (Asimov 1964). Since then, this tradition of clas-
sification has been one of the major themes in science. Figure 1.11 illustrates
a hierarchy of chemicals taken from EcoCyc (EcoCyc 2003). For example,
protein is more specific than chemical, and enzyme is more specific than pro-
tein. Classifications that organize concepts according to whether concepts
are more general or more specific are called taxonomies by analogy with bio-
logical classifications into species, genera, families, and so on.

Hierarchies are traditionally obtained by starting with a single all-inclu-

20 1 Hierarchies and Relationships

File Manager XML Editor
A file or directory (folder) name An XML element tag is for
uniquely identifies it. Such a name specifying what the element
is not well suited for describing means, not how to obtain it.
the contents, or for specifying
what it means.
In a directory each file or other In an XML element one can
directory within it must have a have more than one child
unique name. element with the same tag.
There are essentially no constraints XML elements can only
on what names can be used, as long as have tags that are allowed
they are unique within the directory. by the DTD.
The attributes of files and directories XML elements can have any
are always the same, and serve only attributes that are allowed
for administrative purposes by the by the DTD.
operating system.
File names are sometimes case XML is case sensitive. Upper-
insensitive. Case insensitivity means and lower-case letters are
that there is no difference between different.
upper- and lower-case letters.

Table 1.1 Comparison of directory/file management with XML document editing

sive class, such as “living being,” and then subdividing into more specific
subclasses based on one or more common characteristics shared by the mem-
bers of a subclass. These subclasses are, in turn, subdivided into still more
specialized classes, and so on, until the most specific subclasses are identi-
fied. We use this technique when we use an outline to organize a task: the
most general topic appears first, at the top of the hierarchy, with the more
specialized topics below it. Constructing a hierarchy by subdivision is often
called a “top-down” classification.

An alternative to the top-down technique is to start with the most specific
classes. Collections of the classes that have features in common are grouped
together to form larger, more general, classes. This is continued until one
collects all of the classes together into a single, most general, class. This ap-
proach is called “bottom-up” classification. This is the approach that has
been used in the classification of genes (see figure 1.12). Whether one uses a

1.5 The Meaning of a Hierarchy 21

Figure 1.11 Chemical hierarchy (EcoCyc 2003).

top-down or bottom-up technique, it is always presumed that one can define
every class using shared common characteristics of the members.

There are many algorithms for constructing hierarchical classifications, es-
pecially taxonomies, based on attributes of entities (Jain and Dubes 1988).
Such algorithms are usually referred to as data-clustering algorithms. An ex-
ample of a hierarchy constructed by a data-clustering algorithm is shown in
figure 5.3. The entities being clustered in this case are a set of genes, and the
hierarchy appears on the left side of the figure. Such automated classifica-
tions have become so routine and common that many tools construct them
by default.

The notions of taxonomy and hierarchy have been an accepted part of
Western civilization since the time of Aristotle. They have been a part of
this culture for so long that they have the status of being completely obvious
and natural. Aristotle already emphasized that classifications must be “cor-
rect,” as if they had the status of a law of nature rather than being a means for
understanding the world. This attitude toward classification was not ques-

22 1 Hierarchies and Relationships

tioned until relatively recently, and is still commonly accepted. By the middle
of the nineteenth century, scholars began to question the implicit assump-
tions underlying taxonomic classification. Whewell, for example, discussed
classification in science, and observed that categories are not usually speci-
fiable by shared characteristics, but rather by resemblance to what he called
“paradigms.” (Whewell 1847) This theory of categorization is now called
“prototype theory.” A prototype is an ideal representative of a category from
which other members of the category may be derived by some form of modi-
fication. One can see this idea in the classification of genes, since they evolve
via mutation, duplication, and translocation (see figure 1.13). Wittgenstein
further elaborated on this idea, pointing out that various items included in a
category may not have one set of characteristics shared by all, yet given any
two items in the category one can easily see their common characteristics and
understand why they belong to the same category (Wittgenstein 1953). Witt-
genstein referred to such common characteristics as “family resemblances,”
because in a family any two members will have some resemblance, such as
the nose or the eyes, so that it is easy to see that they are related, but there
may be no one feature that is shared by all members of the family. Such a cat-
egorization is neither top-down nor bottom-up, but rather starts somewhere
in the middle and goes up and down from there.

This is especially evident in modern genetics. Genes are classified both
by function and by sequence. The two approaches interact with one another
in complex ways, and the classification is continually changing as more is
learned about gene function. Figure 1.12 shows some examples of the clas-
sification of genes into families and superfamilies. The superfamily is used
to describe a group of gene families whose members have a common evolu-
tionary origin but differ with respect to other features between families. A
gene family is a group of related genes encoding proteins differing at fewer
than half their amino acid positions. Within each family there is a structure
that indicates how closely related the genes are to one another. For exam-
ple figure 1.13 shows the evolutionary structure of the nuclear receptor gene
family. The relationships among the various concepts is complex, including
evolution, duplication and translocation.

The hierarchies shown in figure 1.11, 1.12, and 1.13 are very different from
one another due to the variety of purposes represented in each case. The
chemical hierarchy in figure 1.11 is a specialization/generalization hierarchy.
The relationship here is called subclass because mathematically it represents
a subset relationship between the two concepts. The gene families and su-
perfamilies in figure 1.12 are also related by the subclass relationship, but the

1.5 The Meaning of a Hierarchy 23

Figure 1.12 Some gene families. The first row below Gene in this classification con-
sists of superfamilies. The row below that contains families. Below the families are
some individual genes. See (Cooper 1999), Chapter 4.

individual genes shown in the diagram are members (also called instances)
of their respective families rather than being subsets. However, the nuclear
receptor gene diagram in figure 1.13 illustrates that the distinction between
subclass and instance is not very clear-cut, as the entire superfamily evolved
from a single ancestral gene. In any case, the relationships in this last dia-
gram are neither subclass nor instance relationships but rather more complex
relationships such as: evolves by mutation, duplicates, and translocates.

Although hierarchical classification is an important method for organiz-
ing complex information, it is not the only one in common use. Two other
techniques are partitioning and self-organizing maps. Both of these can be re-
garded as classification using attribute values rather than hierarchical struc-
tures. In partitioning, a set of entities is split into a specified number of subsets
(MacQueen 1967). A self-organizing map is mainly used when a large num-

24 1 Hierarchies and Relationships

Figure 1.13 The human nuclear receptor gene superfamily. A common ancestor
evolved into the three gene families. Unlabeled arrows represent evolution over time.
Labeled arrows indicate translocation between families or subfamilies. See (Cooper
1999), Figure 4.28.

ber of attributes for a set of entities is to be reduced to a small number of
attributes, usually two or three (Kohonen 1997). The attributes are then dis-
played using visual techniques that make the clusters easy for a person to
see. There are also many clustering techniques that combine some or all of
these techniques.

Summary

• Classifications can be constructed top-down, bottom-up, or from the mid-
dle.

• Classifications can be based on many principles: subclass (subset), in-
stance (member), or more complex relationships.

• It is even possible for a classification to be based on several relationships
at the same time.

1.6 Relationships 25

1.6 Relationships

Of course, most titles are like this, and the abstract quickly clears up the
confusion. However, it does point out how important such connecting
phrases can be to the meaning of a document. These are called relationships,
and they are the subject of this section.

The organization of concepts into hierarchies can capture at least some
of the relationships between them, and such a hierarchy can be represented
using an XML document hierarchy. The relationship in an XML document
between a parent element and one of its child elements is called containment
because elements contain each other in the document. However, the actual
relationship between the parent element and child element need not be a
containment. For example, it is reasonable to regard a chromosome as con-
taining a set of locus elements because a real chromosome actually does
contain loci. Similarly, a gene really does contain exons, introns, and do-
mains. However, the relationship between a gene and a reference is not
one of containment, but rather the referral or citation relationship.

One of the disadvantages of XML is that containment is the only way to
relate one element to another explicitly. The problem is that all the various
kinds of hierarchy and various forms of relationship have to be represented
using containment. The hierarchy in figure 1.13 does not use any relation-
ships that could reasonably be regarded as being containment. Yet, one must
use the containment relationship to represent this hierarchy. The actual rela-
tionship is therefore necessarily implicit, and some auxiliary, informal tech-
nique must be used to elucidate which relationship is intended.

Unfortunately, this is not a small problem. One could not communicate
very much if all one had were concepts and a single kind of relationship.
Relating concepts to each other is fundamental. Linguistically, concepts are
usually represented by nouns and relationships by verbs. Because relation-
ships relate concepts to concepts, the linguistic notion of a simple sentence,
with its subject, predicate, and object, represents a basic fact. The subject and
object are the concepts and the predicate is the relationship that links them.

One can specify relationships in XML, but there are two rather different
ways that this can be done, and neither one is completely satisfactory. The
first technique is to add another “layer” between elements that specifies the
relationship. This is called striping. A BioML document could be represented
using striping, as in figure 1.14. If one consistently inserts a relationship
element between parent and child concept elements, then one can unam-
biguously distinguish the concept elements from the relationship elements.

26 1 Hierarchies and Relationships

Striping was first introduced in the Resource Description Framework (RDF)
(Lassila and Swick 1999).

Figure 1.14 Using striping to represent relationships involving the human insulin
gene. The shaded elements in the figure are the relationships that link a parent ele-
ment to its child elements.

Another way to specify a relationship is to use a reference. A reference is an
attribute of an XML element that refers to some other data. The referenced
data can be anything and anywhere, not just XML elements and not just in
the same XML document. This technique is much more flexible and powerful
than striping. An example of a molecule with two atoms bound to each other
is shown in figure 1.15. The two atoms in the atomArray are referenced by
the bond in the bondArray. In general, a reference could be to anything that
has a URI.

Striping and references can be used in the same document. In RDF, the
two techniques can be used interchangeably, and they have exactly the same

1.6 Relationships 27

Figure 1.15 The use of references to specify a bond between two atoms in a
molecule. The arrows show the atoms that are being referenced by the bond element.

meaning. A relationship specified with either striping or a reference forms
a statement. For example, in figure 1.14 there is the statement “The human
insulin gene is cited by db entry 80129725.” Both striping and references help
organize XML documents so that relationships are explicit. They contribute
to the goal of ensuring that data are self-describing. References are com-
monly used in bioinformatics ontologies, but striping is seldom used outside
of RDF ontologies.

One feature of RDF that makes it especially attractive is that its semantics
have been formalized using mathematical logic. There are now a number
of ontology languages that extend RDF and that also have formal seman-
tics. The DARPA Agent Markup Language (DAML) is a DARPA project
that produced the DAML+OIL language. This language has recently been
superseded by the Web Ontology Language (OWL). OWL is a standard of
the World Wide Web Consortium (W3C). The RDF and OWL standards are
available on the W3C website (www.w3c.org). Both RDF and OWL will be
discussed in much more detail in the rest of this book.

Summary

• Relationships connect concepts to each other.

• XML has only one explicit kind of relationship: containment.

• Relationships can be specified in XML in two ways:

1. adding a new layer (striping),

2. using references.

28 1 Hierarchies and Relationships

• RDF and languages based on it allow one to use either striping or refer-
ences interchangeably.

1.7 Namespaces

So far, all of the examples of XML documents used a single DTD. It is becom-
ing much more common to use several DTDs in a single document. This has
the important advantage that markup vocabulary that is already available
can be reused rather than being invented again. However, simply merging
the vocabularies of multiple DTDs can have undesirable consequences, such
as:

• The same term can be used in different ways. For example, “locus” is an
attribute in the Bioinformatic Sequence Markup Language (BSML), but it
is an element in BioML.

• The same term can have different meanings. This is especially true of
commonly occurring terms such as “value” and “label.”

• The same term might have the same use and meaning, but it may be con-
strained differently. For example, the “Sequence” element occurs in sev-
eral DTDs and has the same meaning, but the content and attributes that
are allowed will vary.

Namespaces were introduced to XML to allow one to use multiple DTDs
or XML schemas without confusing the names of elements and attributes
that have more than one meaning. A namespace is a URI that serves as means
of distinguishing a set of terms. For example, reaction is used both in the
Systems Biology Markup Language (SBML) (SBML 2003) and in CML. The
SBML namespace is http://www.sbml.org/sbml/level2. The CML
namespace dealing with chemical reaction terminology is http://www.xml
-cml.org/schema/cml2/react. By using the namespaces one can en-
sure that any use of reaction is unambiguous.

Within an XML document namespaces are specified using an abbreviation
called the namespace prefix. For example, if one wishes to use both CML and
SBML reactions in the same document, then one must declare prefixes as
follows:

xmlns:cmlr="http://www.xml-cml.org/schema/cml2/react"
xmlns:sbml="http://www.sbml.org/sbml/level2"

1.7 Namespaces 29

These declarations are attributes that can be added to any element, but
they are most commonly added to the root element. Once the prefixes have
been declared, one can use the prefixes for elements and for attributes. For
example, the following document mixes CML, BioML and SBML terminol-
ogy:

<bioml:organism

xmlns:cml="http://www.xml-cml.org/schema/cml2/core"

xmlns:cmlr="http://www.xml-cml.org/schema/cml2/react"

xmlns:bioml="http://xml.coverpages.org/bioMLDTD-19990324.txt"

xmlns:sbml="http://www.sbml.org/sbml/level2"

>

<bioml:species>Homo sapiens</bioml:species>

<sbml:reaction sbml:id="reaction_1" sbml:reversible="false">

<sbml:listOfReactants>

<sbml:speciesReference sbml:species="X0"/>

</sbml:listOfReactants>

<sbml:listOfProducts>

<sbml:speciesReference sbml:species="S1"/>

</sbml:listOfProducts>

</sbml:reaction>

<cmlr:reaction>

<cmlr:reactantList>

<cml:molecule cml:id="r1"/>

</cmlr:reactantList>

<cmlr:productList>

<cml:molecule cml:id="p1"/>

</cmlr:productList>

</cmlr:reaction>

...

</bioml:organism>

There are several ambiguities in the document above. As we have already
noted, CML and SBML both use reaction. The meanings are the same, but
they are specified differently. For example, CML uses reactantList for
what SBML calls listOfReactants. A more subtle ambiguity is the use of
species by both SBML and BioML. Here the the meanings are different. In
SBML a species is a chemical species. In BioML it is an organism species.

One can use any prefix to designate a namespace within an XML element.
For example, one could have used xyz instead of bioml in the document
above. However, it is better to use prefixes that clearly abbreviate the name-

30 1 Hierarchies and Relationships

space URI. When an element name or attribute has a namespace prefix, it is
said to be qualified by the namespace.

One can also declare a namespace to be the default namespace. When there
is a default namespace, then unqualified element names belong to the default
namespace. The example above could be simplified somewhat by using a
default namespace as follows:

<organism

xmlns="http://xml.coverpages.org/bioMLDTD-19990324.txt"

xmlns:sbml="http://www.sbml.org/sbml/level2"

xmlns:cml="http://www.xml-cml.org/schema/cml2/core"

xmlns:cmlr="http://www.xml-cml.org/schema/cml2/react"

>

<species>Homo sapiens</species>

<sbml:reaction sbml:id="reaction_1" sbml:reversible="false">

<sbml:listOfReactants>

<sbml:speciesReference sbml:species="X0"/>

</sbml:listOfReactants>

<sbml:listOfProducts>

<sbml:speciesReference sbml:species="S1"/>

</sbml:listOfProducts>

</sbml:reaction>

...

</organism>

It is important to note that the default namespace applies only to element
names, not to attributes. Because of this limitation, many authors have cho-
sen to avoid using default namespaces altogether and to explicitly qualify
every element and attribute. This has the advantage that such documents
are somewhat easier to read, especially when one is using more than two or
three namespaces.

The namespace URI need not be the same as the location of the DTD
or schema. For example, the CML core has the namespace http://www.
xml-cml.org/schema/cml2/core, but the actual location of the schema
is www.xml-cml.org/dtdschema/cmlCore.xsd. Consequently, for each
namespace one needs to know the URI, the location and the most commonly
used abbreviation. The namespaces that are the most important for ontolo-
gies are

1.7 Namespaces 31

bioml: Biopolymer Markup Language
http://xml.coverpages.org/bioMLDTD-19990324.txt

cellml: Cell Markup Language
http://www.cellml.org/cellml/1.0

cmeta: Cell Meta Language
http://www.cellml.org/metadata/1.0

cml: Chemical Markup Language
http://www.xml-cml.org/schema/cml2/core

dc: Dublin Core Elements
http://purl.org/dc/elements/1.1/

dcterms: Dublin Core Terms
http://purl.org/dc/terms/

go: Gene Ontology
http://ftp://ftp.geneontology.org/pub/go/xml/dtd/go.dtd

mathml: Mathematics Markup Language
http://www.w3.org/1998/Math/MathML

owl: Web Ontology Language
http://www.w3.org/2002/07/owl

rdf: RDF
http://www.w3.org/1999/02/22-rdf-syntax-ns

rdfs: RDF Schema
http://www.w3.org/2000/01/rdf-schema

sbml: Systems Biology Markup Language
http://www.sbml.org/sbml/level2

stm: Technical Markup Language
http://www.xml-cml.org/schema/stmml

xmlns: XML Namespaces
http://www.w3.org/XML/1998/namespace

xsd: XML Schema (original)
http://www.w3.org/2000/10/XMLSchema

xsd: XML Schema (proposed)
http://www.w3.org/2001/XMLSchema

xsi: XML Schema instances
http://www.w3.org/2001/XMLSchema-instance

xsl: XML Transform
http://www.w3.org/1999/XSL/Transform

xtm: Topic Maps
http://www.topicMaps.org/xtm/1.0/

32 1 Hierarchies and Relationships

Summary

• Namespaces organize multiple vocabularies so that they may be used at
the same time.

• Namespaces are URIs that are declared in an XML document.

• Each namespace is either the default namespace or it has an abbreviation
called a prefix.

• Element names and attributes may be qualified by using the namespace
prefix.

• The default namespace applies to all unqualified elements. It does not
apply to unqualified attributes.

1.8 Exercises

1. A spreadsheet was exported in comma-delimited format. The first few
lines look like this:

element_id,sequence_id,organism_name,seq_length,type
U83302,MICR83302,Colaptes rupicola,1047,DNA
U83303,HSU83303,Homo sapiens,3460,DNA
U83304,MMU83304,Mus musculus,51,RNA
U83305,MIASSU833,Accipiter striatus,1143,DNA

Show how these records would be written as XML elements using the
bio_sequence tag.

2. For the spreadsheet in exercise 1.1 above, show the corresponding XML
DTD. The element_id attribute is a unique key for the element. As-
sume that all attributes are optional. The molecule type is restricted to the
biologically significant types of biopolymer.

3. Here is a relational database table that defines some physical units:

1.8 Exercises 33

name prefix unit exponent
millisecond milli second 1
per_millisecond milli second -1
millivolt milli volt 1
microA_per_mm2 micro ampere 1
microA_per_mm2 milli meter -2
microF_per_mm2 micro farad 1
microF_per_mm2 milli meter -2

A physical unit is, in general, composed of several factors. This was en-
coded in the relational table by using several records, one for each factor.
The microF_per_mm2 unit, for example, is the ratio of microfarads by
square millimeters.

This relational database table illustrates how several distinct concepts can
be encoded in a single relational table. In general, information in a re-
lational database about a single concept can be spread around several
records, and a single record can include information about several con-
cepts. This can make it difficult to understand the meaning of a relational
table, even when the relational schema is available.

Show how to design an XML document so that the information about the
two concepts (i.e, the physical units and the factors) in the table above are
separated.

4. This next relational database table defines some of the variables used in
the Fitzhugh-Nagumo model (Fitzhugh 1961; Nagumo 1962) for the trans-
mission of signals between nerve axons:

component variable initial physical_unit interface
membrane u -85.0 millivolt out
membrane Vr -75.0 millivolt out
membrane Cm 0.01 microF_per_mm2
membrane time millisecond in
ionic_current I_ion microA_per_mm2 out
ionic_current v in
ionic_current Vth millivolt in

The physical units are the ones defined in exercise 3 above. Extend the
solution of that exercise to include the data in the table above. Note that

34 1 Hierarchies and Relationships

once again, multiple concepts have been encoded in a single relational
database table. This exercise is based on an example on the CellML web-
site (CellML 2003).

5. Use an XML editor (such as Xerlin or XML Spy) to construct the examples
in the previous two exercises. Follow these steps:

(a) Cut and paste the following DTD into a file:

<?xml version="1.0">
<!DOCTYPE model [

<!ELEMENT model (physical_unit*,component*)>
<!ELEMENT physical_unit (factor)*>
<!ATTLIST physical_unit name ID #REQUIRED>
<!ELEMENT factor EMPTY>
<!ATTLIST factor

prefix CDATA #IMPLIED
unit CDATA #REQUIRED
exponent CDATA "1">

<!ELEMENT component (variable)*>
<!ATTLIST component name ID #REQUIRED>
<!ELEMENT variable EMPTY>
<!ATTLIST variable

name CDATA #REQUIRED
initial CDATA #IMPLIED
physical_unit IDREF "dimensionless"
interface (in|out) #IMPLIED>

]>
<model/>

(b) Open the file with your XML editor.

(c) Create the elements and enter the attributes shown in the two database
tables in the two previous exercises.

(d) Save the file, and open it with an ordinary text editor.

(e) Verify that the resulting file has the data as shown in the answers to the
exercises above.

