
Chapter 1

Introduction to Ontological
Semantics

This chapter introduces and briefly outlines ontological semantics. After placing the

theory in the context of its predecessors in this general part, the chapter goes into the

following sections:

0 Section 1.1 places the theory in a model of language-communication situation,

focusing on the division of labor between two intelligent agents: the discourse pro-

ducer and the discourse consumer.
0 Section 1.2 contains the initial sketch of ontological semantics. This is perhaps the

only section that is essential to read before skipping to part II, though sections 1.5

and 1.6 may also turn out to provide some useful preparation for such a reader.
0 Section 1.3 mentions briefly the relations of ontological semantics to the non-

semantic components of an NLP system. The only other place in the book where this

issue is touched on again is section 8.1.
0 Section 1.4 addresses the alternative architectures for an NLP system, such as the

stratified model, the flat model, and the constraint-satisfaction model, the latter being

largely adoped in ontological semantics.
0 Section 1.5 characterizes in more detail the functions (but not the actual pro-

cessing—see chapter 8 for that) of the dynamic sources of ontological semantics, the

analyzer and the generator. Of these two, the former gets the most attention in the

book (see also the book’s conclusion).
0 Section 1.6 discusses the function (but not the substance—see chapter 7 for that) of

the static sources in ontological semantics: the ontology, the lexicon(s), and their

derivatives.
0 Section 1.7 explains the role and integration of microtheories in ontological se-

mantics. The microtheories introduce the polymethodological nature of this enter-

prise and remove it from the realm of the (single) method-driven theories.
0 Section 1.8 traces the development of ontological semantics over the last decade

and a half and places the various earlier contributions to it both chronologically and

in the context of the pertinent applications. This section is largely of interest only to



readers who have kept themselves informed over the years about the activities of the

ontologial semantics community.

Ontological semantics is a theory of meaning in natural language and an approach

to natural language processing (NLP) that uses a constructed world model, or

ontology, as the central resource for extracting and representing the meaning of

natural language texts and for reasoning about knowledge derived from texts. This

approach also makes it possible to generate natural language texts based on repre-

sentations of their meaning. The architecture of an archetypal implementation of

ontological semantics comprises, at the most coarse-grain level of description,

0 A set of static knowledge sources, namely, an ontology, a fact repository, a lexicon

connecting an ontology with a natural language, and an onomasticon or lexicon of

names (one lexicon and one onomasticon are needed for each language)
0 Knowledge-representation languages for specifying meaning structures, ontologies,

and lexicons
0 A set of processing modules—at the least, a semantic analyzer and a semantic text

generator

Ontological semantics directly supports such applications as machine translation of

natural languages, information extraction, text summarization, question answering,

advice giving, collaborative work of networks of human and software agents, and so

on. For applications other than machine translation, a reasoning module is added

that manipulates meaning representations produced by the analyzer to generate ad-

ditional meanings that can be recorded in the fact repository and/or serve as inputs

to text generation for human consumption.

Any large, practical, multilingual computational linguistic application requires

many knowledge and processing modules integrated in a single architecture and

control environment. For maximum output quality, such comprehensive systems

must have knowledge about speech situations, goal-directed communicative actions,

rules of semantic and pragmatic inference over symbolic representations of dis-

course meanings, and knowledge of syntactic, morphological, and phonological/

graphological properties of particular languages. Heuristic methods, extensive de-

scriptive work on building world models, lexicons, and grammars, as well as a sound

computational architecture are crucial to the success of this overall paradigm. Onto-

logical semantics is responsible for a large subset of these capabilities.

The above generalized application architecture also includes an ‘‘ecological,’’ a

morphological, and a syntactic component, both in the analysis and in the generation

processes. In applications, such components have usually been developed quite inde-

pendently of the central ontological semantic component, though the knowledge

required for them was often (though not in every implementation) integrated in the

overall system lexicons. Thus, for instance, grammar formalisms have remained out-
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side the immediate scope of theoretical work in the ontological semantic model, and

indeed several di¤erent grammar formalisms have been used to support analysis and

generation in the di¤erent implementations. Due to this state of a¤airs, we do not

include grammar formalisms and actual rule sets in the core knowledge sources of

the model. The interaction between the ontological semantic processing and the rest

of the processing takes place in actual implementations through the specification of

the content of the input structures to the semantic analyzer and of the output struc-

ture of the semantics-based sentence-planner module of the generator.

Our theoretical work in semantics is devoted to developing a general semantic

theory that is detailed and formal enough to support natural language processing by

computer. Therefore, issues of text-meaning representation, semantic (and pragmatic)

processing, the nature of background knowledge required for this processing, and

the process of its acquisition are among the central topics of our e¤ort. Ontological

semantics shares the commitment to these foundational issues with a number of

approaches to processing meaning in artificial intelligence, among them conceptual

dependency, preference semantics, procedural semantics, and related approaches

(e.g., Schank 1975; Schank and Abelson 1977; Schank and Riesbeck 1981; Wilensky

1983; Wilks 1975a, 1975b, 1977, 1982; Charniak and Wilks 1976; Woods 1975, 1981;

Lehnert and Ringle 1982; Waltz 1982; Charniak 1983b; Hirst 1987). Moreover, the

influences go beyond purely computational contributions back to cognitive psy-

chology and cognitive science (Miller and Johnson-Laird 1976; Fodor, Beaver, and

Garrett 1974; see also Norman 1980). The foundational issues in this research para-

digm, in fact, transcend natural language processing. They include the study of other

perceptors (e.g., speech, vision) and e¤ectors (e.g., robotic movement, speech syn-

thesis) as well as reasoning (e.g., general problem solving, abductive reasoning, un-

certainty, and many other issues). Newell and Simon (1972) provide an influential

formulation of the overall paradigm that underlies all the above-mentioned work

as well as many contributions that were not mentioned (see also Newell, Shaw, and

Simon 1958; Miller, Galanter, and Pribram 1960; Newell 1973; Newell and Simon

1961, 1976; McCarthy and Hayes 1969; McCarthy 1977). This paradigm certainly

underlies ontological semantics.

What sets this knowledge-based paradigm apart is the reliance on the glass-box

rather than black-box approach to modeling understanding. In other words, these

theories do not attempt to account for meaning in terms of fully observable (though,

interestingly, not necessarily correctly understood!) phenomena, namely, pairs of

inputs and outputs (stimuli and responses; see section 3.4.1) to a language processor,

understood as a black box. Instead they aspire to come up with hypotheses about

what processes and what knowledge is needed in order to recreate the human ability

to process language using computers. This is done by modeling the contents of the

black box, necessarily using notions that are not directly observable.

Introduction to Ontological Semantics 7



Ontological semantics subscribes to a version of this tenet, the so-called weak

AI thesis (see section 2.4.2.2), which avoids the claim that computer programs di-

rectly model human semantic capacity. Instead, this hypothesis suggests functional

equivalence—that is, that computer programs can attain human-quality results,

though not using the exact methods that humans use.

The tenets of ontological semantics overlap with the tenets of semantic theories

developed within the generative paradigm in linguistics (Fodor 1977; see also sec-

tion 3.5). There are also important di¤erences, along at least the following two

dimensions:

0 The purview of the theory (ontological semantics includes all of the following: lex-

ical and compositional semantics, pragmatics, reasoning)
0 The degree to which the theory has been actually both developed and implemented

through language description and computer-system construction

A number of di¤erences exist between the mandates of general semantic theory and

semantic theory for NLP. In what follows, we suggest a number of points of such

di¤erence (this list is an extension of the discussion in Nirenburg and Raskin 1986;

see also Raskin 1990—cf. chapter 4).

While it is agreed that both general and NLP-related theories must be formal, the

nature of the formalisms can be quite di¤erent because di¤erent types of reasoning

must be supported. A general linguistic theory must ensure a complete and equal

grain-size coverage of every phenomenon in the language; an NLP-related theory

must be su‰ciently flexible and robust to adapt to the purposes of any application.

The ultimate criterion of validity for a general linguistic theory is explanatory ade-

quacy; for an NLP-related theory, it is the success of the intended applications. A

general linguistic theory can avoid complete descriptions of phenomena once a gen-

eral principle or method has been established: a small number of clarification exam-

ples will su‰ce for its purposes. In NLP, the entire set of phenomena present in

the sublanguages of applications must be covered exhaustively. A general linguistic

theory has to be—and, actually, has occasionally been (see, for instance, Raskin

1985a, 1985b)—concerned about the boundary between linguistic and encyclopedic

knowledge. This distinction is more spurious in NLP-oriented semantic theories

because in order to make semantic (and pragmatic) decisions, a system must have

access equally to both types of data (Raskin 2000).

A general linguistic theory can be method driven—that is, seek ways of applying a

description technique developed for one phenomenon in the description of additional

phenomena (this reflects the predominant view that generalization is the main meth-

odology in building linguistic theories). But an NLP-related theory should be task

driven—which means that adequacy and e‰ciency of description take precedence

over generalization (Nirenburg and Raskin 1999).
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The research program of ontological semantics is shared to a large degree by the

work of Lenat and associates on CYC (e.g., Lenat 1995; Lenat and Guha 1990; see

also Mahesh et al. 1996b) and by John Sowa’s knowledge-representation e¤orts (e.g.,

Sowa 2000). While considerable di¤erences exist in the types of knowledge repre-

sented, size and coverage of various knowledge resources, intended applications, the

nature of systems implemented on the basis of each approach, and so on, Lenat’s and

Sowa’s work joins ontological semantics in assuming that the task of extracting and

formally representing knowledge about the world and language is a necessary con-

dition for attaining truly intelligent computer systems.

1.1 A Model of Language-Communication Situation for Ontological Semantic

Theory

Ontological semantics, as a mentalist approach to building NLP-related language-

processing theories, is centered around the metaphor of the model of an intelligent

agent.1 An NLP-related theory must account for such properties of intelligent agents

as goal- and plan-directed activity, of which language activity is a part—verbal

actions, together with perceptual, mental, and physical actions, comprise the e¤ector

inventory of an intelligent agent. Such a theory must also take into account the

knowledge of the agent’s attitudes to the entities in the world model as well as to

remembered instances of events and objects in its own episodic memory. Not only

are these attitudes often the subject of a discourse, but they influence the form of

discourse on other topics.

Building nontrivial natural language processing systems that manipulate mean-

ing is best done using the metaphor of modeling intelligent agents immersed in

a language-communication situation. In other words, we prefer to ground our

meaning-representation theory on cognitive premises rather than on purely logical

ones. In the most basic and simplified terms, we define our model of an intelligent

agent as follows. An intelligent agent is a member of a society of intelligent agents.

The agent’s actions are goal directed. It is capable of perception, internal symbol

manipulation, and action. Its actions can be physical, mental, or communicative.

The communicative actions are used for communicating with other agents. An

agent’s perceptual mechanism is a model of the perceptual mechanism of

humans. The peculiarities of the perception and action sides of the agent are less

central to a discussion of ontological semantics, so we will concentrate on the

agent’s resident knowledge and the processing environment for the treatment of nat-

ural language.

We model the communication situation as follows. It involves at least two in-

telligent agents—a discourse (text, speech) producer and a discourse consumer. The

communication situation also involves the discourse itself—in our case, a text. More
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precisely (though this is not a crucial distinction from the standpoint of text process-

ing), discourse producer and consumer are roles played by intelligent agents, because

each agent can play any of these roles at di¤erent times. The message conveyed by a

text can be viewed as an action that the discourse consumer perceives as a step in a

discourse producer’s plan to achieve one of his or her active goals.2 These plans take

into account the knowledge the producer has (or assumes it has) about the target

audience. A theory of discourse goals must, therefore, follow the prior introduction

of a model of a participant in a language-communication situation.

1.1.1 Relevant Components of an Intelligent Agent’s Model

The following components in an agent’s model are relevant for its language-

processing ability:3

0 Knowledge about the world, which we find useful to subdivide into:

– An ontology, which contains knowledge about types of things (objects, processes,

properties, intentions) in the world

– A fact repository, an episodic memory module containing knowledge about

instances (tokens) of the above types and about their combinations; a marked

recursive subtype of this knowledge is a set of mental models of other agents (see,

for instance, Ballim and Wilks 1991, for an analysis of the ‘‘artificial believers’’),

complete with their own components—these models can be markedly di¤erent from

the ‘‘host’’ model
0 Knowledge of natural language(s), including, for each language:

– Ecological, phonological, morphological, syntactic, and prosodic constraints

– Semantic-interpretation and semantic-realization rules and constraints, for-

mulated as mappings between lexical units of the language and elements of the

world model of the producer

– Pragmatics and discourse-related rules that map between modes of speech and

interagent situations, on the one hand, and syntactic and lexical elements of the

meaning-representation language, on the other
0 Emotional states that influence the ‘‘slant’’ of discourse generated by an agent

(Picard 2000)
0 An agenda of active goal and plan instances (the intentional plane of an agent)

1.1.2 Goals and Operation of the Discourse Producer

The discourse-producer goals will be formulated in terms of these di¤erent compo-

nents. Thus, a producer may want to achieve the following types of interagent com-

municative goals:

1. Modify the discourse consumer’s ontology—for example, by giving a definition of

a concept
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2. Modify the discourse consumer’s episodic memory—for example, by stating a

fact, describing an object, or relating an event

3. Modify the discourse consumer’s model of the producer—for example, by

expressing its attitude toward some fact (e.g., Unfortunately, Peter will come too)

4. Modify the discourse consumer’s attitudes toward facts of the world

5. Modify the discourse consumer’s agenda—for example, by threatening, giving an

order, or asking a question

6. Modify the discourse consumer’s emotional state

A discourse producer can achieve these goals by choosing not only what to say, but

also how to say things. Usually, one element of discourse will achieve several goals at

the same time. For instance, if the producer has any authority over the hearer, the

fact of simply stating its own opinion about a fact (a goal of type 3) may very well

a¤ect the hearer’s opinions, thus achieving a goal of type 4 (e.g., Wilensky 1983).

Goal types are represented in the world model of an agent as postconditions (e¤ects)

of complex events (see Carlson and Nirenburg 1990 for the description of the for-

malism and the motivation behind it; cf. section 7.1.5—see also Moreno Ortiz, Ras-

kin, and Nirenburg 2002).

The producer’s processing during generation can be sketched as follows. Given an

input stimulus, the producer will activate a goal, choose a rhetorical plan to realize

that goal, and generate a text. This is done with the help of its knowledge about the

world, about the consumer, about the target language (at both the sentence and the

discourse level), and about the relevant pragmatic constraints.

1.1.3 Operation of the Discourse Consumer

The discourse consumer’s processing during analysis can be very roughly sketched as

follows. Given an input text, the consumer must first attempt to match the lexical

units comprising the text, through the mediation of a special lexicon, with elements

of the consumer’s model of the world. To facilitate this, it will have to analyze syn-

tactic dependencies among these units and determine the boundaries of syntactic

constituents. The next step is filtering out unacceptable candidate readings through

the use of selectional restrictions, collocations, and special heuristics, stored in the

lexicon. The consumer must then also resolve the problems of coreference by finding

referents for pronouns, other deictic lexical units, and elliptical constructions. Fur-

thermore, information on text cohesion and producer attitudes has to be determined,

as well as, in some applications, the goals and plans that lead the producer to pro-

duce the text under analysis.

Many additional processes are involved in interpretation. A semantic theory for

natural language processing must also account for their interaction in a compu-

tational model—that is, the overall architecture and control of the semantic and
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pragmatic interpretation process. Control considerations, we believe, must be an in-

tegral part of semantic theories for natural language processing, of which ontological

semantics is an example. However, many of the current semantic theories, notably

those relying on unification as the main processing method, essentially relinquish

control over control. A whole dimension of modeling is thus dispensed with, leading

to reduction in the expressive power of a theory and extra constraints on building

applications. Why not accept unification as one of a number of possible control

structures? And, for every processing module, choose a control structure most re-

sponsive to the peculiarities of the phenomenon treated? In AI, there is a long tradi-

tion of looking for the most appropriate representation of a problem, which will

‘‘suggest’’ the most appropriate algorithm for processing it. It is clear that di¤erent

representations must be preferred for di¤erent problems (see, e.g., Newell and Simon

1972). Adopting a single type of representation and a single control method for all

tasks means putting method before phenomena.

1.2 Ontological Semantics: An Initial Sketch

Like any semantic theory for natural language processing, ontological semantics

must account for the processes of generating and manipulating text meaning. An

accepted general method of doing this is to describe the meanings of words and,

separately, specify the rules for combining word meanings into meanings of sentences

and, further, texts. Hence the division of semantics into lexical (word) semantics and

compositional (sentence) semantics. Semantics for NLP must also address issues

connected with the meaning-related activities in both natural language understanding

and generation by a computer. While the semantic processing for these two tasks is

di¤erent in nature—for instance, understanding centrally involves resolution of am-

biguity while generation deals with resolution of synonymy for lexical selection—the

knowledge bases, knowledge-representation approaches, and the underlying system

architecture and control structures for analysis and generation can be, to a realistic

degree, shared. This view is a departure from our earlier views (Nirenburg and Ras-

kin 1987a, 1987c), brought about by practical experience in description and imple-

mentation of nontoy applications.

In ontological semantics, the meaning representation of a text is derived through

0 Establishing the lexical meanings of individual words and phrases comprising the

text
0 Disambiguating these meanings
0 Combining these meanings into a semantic dependency structure covering

– The propositional semantic content, including causal, temporal, and other rela-

tions among individual statements
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– The attitudes of the speaker toward the propositional content

– The parameters of the speech situation
0 Filling any gaps in the structure based on the knowledge instantiated in the struc-

ture as well as on ontological knowledge

It is clear from the above description that ontological semantics incorporates infor-

mation that in some approaches (e.g., Lascarides 1995; Asher and Lascarides 1995)

has been delegated to pragmatics.

The final result of the process of text understanding may include some information

not overtly present in the source text. For instance, it may include results of reason-

ing by the consumer, aimed at filling in elements required in the representation but

not directly obtainable from the source text. It may also involve reconstructing the

agenda of rhetorical goals and plans of the producer active at the time of text pro-

duction and connecting its elements to chunks of meaning representation.

Early AI-related natural language understanding approaches were criticized for

not paying attention to the halting condition on meaning representation (a criticism

of the same kind as Weinreich’s attack on Katz and Fodor—see section 9.3.5). The

criticism was justified to the extent that these approaches did not make a very clear

distinction between the information directly present in the text and information

retrieved from the understander’s background knowledge about the entities men-

tioned in the text. This criticism is valid when the program must apply all possible

inferences to the results of the initial representation of text meaning and not when a

clear objective is present, such as resolution of ambiguity relative to a given set of

static knowledge sources, beyond which no more processing is required.

It follows that text meaning is, in this view, a combination of

0 The information directly conveyed in the NL input
0 The (agent-dependent and context-dependent) ellipsis-removing (lacuna-filling) in-

formation that makes the input self-su‰cient for the computer program to process
0 Pointers to any background information that might be brought to bear on the un-

derstanding of the current discourse
0 Records about the discourse in the discourse participants’ fact repository

Additionally, text understanding in this approach includes detecting and representing

a text component as an element of a script/plan (in Schank-Abelson-Cullingford-

Wilensky’s terms—see Schank and Abelson 1977; Cullingford 1981; Wilensky 1983;

see also section 7.1.5) or determining which of the producer goals are furthered by

the utterance of this text component. We stop the analysis process when, relative to a

given ontology, we can find no more producer goals/plans that can be furthered by

uttering the sentence. But first we extract the propositional meaning of an utterance

using our knowledge about selectional restrictions and collocations among lexical
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units. If some semantic constraints are violated, we turn on metonymy, metaphor,

and other ‘‘unexpected’’ input-treatment means. After the propositional meaning

is obtained, we actually proceed to determine the role of this utterance in script/

plan/goal processing. In doing so, we extract speech-act information, covert attitude

meanings, and eventually irony, lying, and so on. The extant implementations of

ontological semantics make no claim about including all these features.

There is a tempting belief among applied computational semanticists that, in a

practical application such as MT, the halting condition on representing the meaning

of an input text can, in many cases, be less involved than the general one. The reason

for this belief is the observation that, when a target-language text is generated from

such a limited representation, one can, in many cases, expect the consumer to un-

derstand it by completing the understanding process given only partial informa-

tion. Unfortunately, since, without human involvement, there is no way of knowing

whether the complete understanding is, in fact, recoverable by humans, it is, in the

general case, impossible to posit a shallower (and hence more attainable) level of

understanding. To stretch the point further, humans can indeed correctly guess the

meaning of many ungrammatical, fragmentary, and otherwise irregular texts—for

example, Charniak’s (1983a, 159) example of ‘‘lecture, student, confusion, question.’’

This, however, does not mean that an automatic analyzer, without specially designed

extensions, will be capable of assigning meanings to such fragments—their semantic

complexity is of the same order as that of ‘‘regular’’ text.

1.3 Ontological Semantics and Nonsemantic NLP Processors

Ontological semantics takes care of only a part, albeit a crucial part, of the operation

of the major dynamic knowledge sources in NLP: the analyzer and the generator.

These processors also rely on syntactic, morphological, and ecological information

about a particular language. Syntactic processing establishes the boundaries and nest-

ing of phrases in the text and the dependency structures at the clause and sentence

levels by manipulating knowledge about word order and grammatical meanings car-

ried by lexical items. Morphological processing establishes the grammatical mean-

ings carried by individual words, which helps the syntactic processor decide on types

of grammatical agreement among the words in the sentence, which, in turn, provides

heuristics for determining syntactic dependencies and phrase boundaries. The ‘‘ecol-

ogy’’ of a language (Donald Walker’s term) includes information about punctuation

and spelling conventions, representation of proper names, dates, numbers, and so on.

Historically, the integration of all these steps of processing into a single theory and

system has been carried out in a variety of ways. Thus, the meaning-text model

(Apresyan, Mel’čuk, and Zholkovsky 1969, 1973; Mel’čuk 1974, 1979) dealt with

most of these levels of processing and representation, sometimes at a finer-grain size
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than necessary for ontological semantics. However, that approach did not focus on

semantic representation, and its computational applications (e.g., Kittredge, Iordan-

skaja, and Polguère 1988) did not address semantics at all, concentrating instead on

deep and surface syntax and morphology. Conceptual dependency (Schank 1975) did

concentrate on semantic representations but neglected to consider syntax or mor-

phology as a separate concern: most of the application programs based on concep-

tual dependency (and all the early ones) simply incorporated a modicum of treatment

of syntax and morphology in a single processor (e.g., Riesbeck 1975; Cullingford

1981). Ontological semantics, while concentrating on meaning, enters into a well-

defined relationship with syntactic, morphological, and ecological processing in any

application.

The most immediate and important element supporting the relations between

ontological semantics and the nonsemantic components of an NLP system is the con-

tent of those zones of the ontological semantic lexicon entry that support the process

of linking syntactic and semantic dependencies (see section 7.3). Specifically, what is

linked is the syntactic dependency and the semantic dependency on clause and phrase

heads. This essentially covers all words in a language that take syntactic arguments,

which suggests that their meanings are predicates taking semantic arguments. The

dynamic knowledge sources use this information to create and/or manipulate a text-

meaning representation (TMR). The dynamic knowledge sources, however, also use

morphological, syntactic, and other nonsemantic information in their operation.

1.4 Architectures for Comprehensive NLP Applications

The ideal state of a¤airs in NLP applications (as in all the other complex multi-

module software systems) is when each component produces a single, correct result

for each element of input. For example, a morphological analyzer can produce a

single citation form with a single set of inflectional forms for a given input word.

Thus, given the English lain, it produces ‘‘lie; Verb, Intransitive, past participle; ‘be

prostrate,’ ’’ while disambiguating it at the same time from ‘‘lie ‘to make an untrue

statement with intent to deceive.’ ’’

Unfortunately, this state of a¤airs does not always hold. For example, given the

Russian myla as input, a Russian morphological analyzer will (correctly!) produce

three candidate outputs:

1. mylo ‘soap’; Noun, Neuter, Genitive, Singular

2. mylo ‘soap’; Noun, Neuter, Nominative, Plural

3. myt ‘to wash’; Verb, Transitive, Past, Feminine

In context, only one of the multiple outputs will be appropriate. Conversely, the

English morphological analyzer will (correctly!) fail to produce a candidate for the
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input string mylo, because it is not a word in the English language. Or, to use another

example, a standard semantic analyzer for English will not be able to interpret the

English phrase kill the project if the lexicon entry for kill (reasonably) lists its mean-

ing as something like ‘‘cause not to be alive.’’ Indeed, because projects are not living

beings, the combination does not work.

The history of NLP can be viewed as the fight against these two outcomes: under-

specification—that is, being unable to cut the number of candidate solutions down to

exactly one—and failure to produce even a single candidate solution, due to over-

constraining or incompleteness of static knowledge sources. The big problem is that

it is di‰cult, if at all possible, to develop static knowledge sources (lexicons, gram-

mars, and so on) with information that is correct in all contexts that can be attested

in running text. Selecting an appropriate computational architecture is one of the

methods of dealing with these di‰culties as well as of improving the e‰ciency of the

overall process.

1.4.1 The Stratified Model

The most widely used NLP system architecture conforms to the stratified model (see

figures 1.1 and 1.2): the task is modularized, and the modules are run on a text one

by one, in their entirety, with the cumulative results of the earlier modules serving as

inputs to the later modules. This architecture has been a step forward compared to

the early architectures, which were not modular in that they heaped all the processing

knowledge together rather indiscriminately. (See, for instance, the early MT systems

or the early AI NLP systems, such as Margie (Schank 1975).) One of the reasons for

introducing the modularity is the di‰culty of acquiring static knowledge sources for

an ‘‘integral’’ system. Indeed, each of the analysis stages—the original ones of mor-

phology, syntax, and semantics and the later additions of pragmatics, discourse, and,

eventually, ecology—was (and still is) a complex problem that is di‰cult to study

even in isolation, let alone taking into account its connections with other language

analysis problems.

Input
text

Morphological
analysis

Semantic
analysis

Text-meaning
representation

Ecological
analysis

Syntactic
analysis

Discourse/pragmatic
analysis

Figure 1.1

Stratified model I: Analysis. A schematic view of a traditional pipelined architecture for the

analysis module of a comprehensive NLP system (e.g., an MT system). Results of each pro-

cessing stage are used as input to the next processing stage in the order of application.
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It is clear that this architecture was designed for processing without specification,

overconstraining, or knowledge lacunae. Indeed, it presupposes that each module can

successfully complete its processing before the later modules take over. While it was

not clear what could be done architecturally to counteract possible overconstraining—

or other reasons for a failure to find a solution for an element of input, such as lack

of necessary background knowledge—modifications were introduced to the archi-

tecture to deal with underspecification.

The most prominent deficiency of the strictly pipelined architecture is the system-

atic insu‰ciency of knowledge within a single module for disambiguating among

several output candidates. To try to alleviate this problem, the basic architecture can

be modified by allowing underspecification of the outputs of individual modules,

with the exception of the last one. Underspecification, then, essentially, amounts to

postponing decisions of a particular module by allowing it to produce, instead of

a single solution, a set of candidate solutions and subsequently using information

obtained through the operation of later modules to filter this set (or these sets, if

several instances of underspecification occurred). Figure 1.3 illustrates this kind of

architecture for the case of text analysis.

1.4.2 The ‘‘Flat’’ Model

The stratified architecture of language processing is, in many ways, constraining.

Thus, even in the model with feedback, such as that of figure 1.3, no use is made of

the fact that findings of each of the modules can contribute to text-meaning specifi-

cation directly, not necessarily through the operation of other (later) modules. In

addition, the individual results from any module can contribute to determining more

than one text-meaning element. Conversely, a particular combination of clues from a

variety of sources may make possible the determination of a text-meaning element.

None of the above is directly facilitated by the stratificational architecture. Under-

specification may be di‰cult to implement e‰ciently because, in the simplest case, it

necessitates carrying along possibly enormous amounts of intermediate data.

Text-meaning
representation

Lexical
selector

Morphological
realizer

Output
text

Text planner Syntactic
selector

Word-order
realizer

Figure 1.2

Stratified model II: Generation. A schematic view of a traditional pipelined architecture for the

generation module of a comprehensive NLP system (e.g., an MT system). Results of each

processing stage are used as input to the next processing stage in the order of application.
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A ‘‘flat’’ architectural model (see figure 1.4) represents a swing of the pendulum

back from pipelining but not back to the lack of modularity. In the flat module, all

processing modules operate simultaneously, without waiting for the results of an

‘‘earlier’’ module—for example, the semantic analyzer does not wait until the syn-

tactic analyzer finishes with an input element before starting to work on the latter. Of

course, in isolation, the analyzer modules will not be able to complete their process-

ing. However, they will succeed partially. For instance, morphologically uninflected

words will be found in the lexicon and the set of their senses instantiated by the se-

mantic processing module irrespective of the results of the syntactic analyzer. If only

one sense is recorded for a word in the lexicon, this sense becomes a strong constraint

that is used to constrain further the realization choices of other text components.

1.4.3 Toward Constraint-Satisfaction Architectures

One cannot rely on the partial successes of some modules in an unqualified manner.

There are many real-world obstacles for a constraint-satisfaction process of this kind.

First of all, lexicons can often be incorrect. In particular they may

0 Contain fewer senses for a word (or a phrase) than necessary for a task; this state of

a¤airs may cause the compositional semantic process of deriving text-meaning rep-

resentation to fail because of overconstraining—the process may find no candidates

that match the constraints specified in the meanings of TMR components with which

they must combine; for example, if in a lexicon only the furniture sense is listed for

the word table, the process will fail on the input The two last rows of the table had to

be deleted
0 Contain more senses for a word (or a phrase) than su‰cient for a task; dictionaries

compiled for human use typically contain more senses than should be included in the

lexicon of an NLP system; thus, for instance, Longman’s Dictionary of Contemporary

English lists eleven senses of bank; should an NLP system use such a dictionary, it

will have to be equipped with the means of disambiguating among all these eleven

senses, which makes computation quite complex (see section 9.3.5)

Input
text

Morphological
analysis

Semantic
analysis

Text-meaning
representation

Syntactic
analysis

Discourse/pragmatic
analysis

Tokenization

Figure 1.3

Stratified model modified: A schematic view of an enhanced pipelined architecture for the

analysis module of a comprehensive NLP system (e.g., an MT system). Thin arrows represent

knowledge from later modules that is used to disambiguate results of a prior module.
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0 Incorrectly interpret the senses or provide incorrect, that is, too relaxed or too

strict, constraints on co-occurrence

While the deficiencies of the lexicon are real and omnipresent in all real-size appli-

cations, much more serious di‰culties arise from the preponderance in natural lan-

guage texts, even nonartistic, expository ones, of nonliteral language—metaphors,

metonymies, and other tropes. In terms of the basic compositional-semantic pro-

cessing mode, nonliteral language leads to violations of co-occurrence constraints.

Indeed, you do not really crush your opponent in an argument, or have the orchestra

...

Ecology Morphology Syntax Semantics
Pragmatics/
discourse

A n a l y s i s M o d u l e s

...

I n p u t T e x t

Meaning-
representation
rule 1

Meaning-
representation
rule 2

Meaning-
representation
rule N

T e x t   -   M e a n i n g      R e p r e s e n t a t i o n

Figure 1.4

In a ‘‘flat’’ model (illustrated here for the case of text analysis), all modules operate and record

partial results simultaneously. An intrinsic ordering remains because ‘‘later’’ modules often

need results of ‘‘prior’’ modules to produce results or to disambiguate among candidate anal-

yses. However, partial results are still possible even if an earlier module fails on an element of

input. The results of the individual module operations provide clues for the left-hand sides of

meaning-representation rules. Robustness of the system is further enhanced if the rules are

allowed to ‘‘fire’’ even if not all of the terms in their left-hand sides are bound (naturally, this

relaxation must be carefully controlled).
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play the composer Bach (e.g., Ballim, Wilks, and Barnden 1991; Martin 1992; see

also section 8.4.2).

One deficiency of the flat model, as sketched above, is that it does not benefit from

the intermediate results of its processing, namely, from the availability of the nascent

text-meaning representation. In fact, intermediate results of analysis—that is, ele-

ments of the nascent TMR—can provide reliable clues for the analyzer and must be

allowed as constraints in the left-hand sides of the text-meaning representation rules.

Thus, these rules can draw on the entire set of knowledge sources in comprehensive

NLP processing: the lexicons, the ontology, the fact repository, the text-meaning

representation, and the results of ecological, morphological, and syntactic process-

ing. Pragmatics and discourse-related issues are folded in the semantic processing

in current implementations of ontological semantics. This, however, is not essential

from the theoretical point of view: a single theory covering all these issues can be

implemented in more than one application module.

The modified flat model can be realized in practice using the so-called black-

board architecture (e.g., Erman et al. 1980; Hayes-Roth 1985), in which a public

data structure, a blackboard, is used to store the results of each processing module in

the system. This is one way to implement each module’s access to the results of every

other module (dynamic knowledge source) in the system. The blackboard also con-

tains control and triggering mechanisms to activate certain processes once an item is

posted on the blackboard. The actual control in blackboard systems usually uses the

agenda mechanism. An agenda is a queue of knowledge-source instantiations (KSIs),

each corresponding roughly to a rule—that is, a situation-action pair, where the sit-

uation is a combination of constraints. When all its constraints hold, a KSI can

‘‘fire’’ and produce some output to be posted on the blackboard. It is clear that

manipulating the positioning of the various KSIs on the agenda (or using multiple-

queue agendas) is, in this environment, the best method to improve the control be-

havior of the system. In fact, a significant amount of scholarship has been devoted to

developing intelligent control strategies for blackboard systems, resulting in imple-

mentations of metalevel rules and control heuristics.

A di¤erent approach to the realization of the modified flat model consists in

attempting to represent the entire problem as an interconnected graph of individual

choices with constraints imposed on the co-occurrence of local solutions. A method

has been developed of avoiding the need for manually constructed control heuristics

once the above representation of the problem is achieved (Beale 1997). This method

combines the idea of applying rules (KSIs) from any processing module, as soon as

all the constraints necessary for their application are established, with the idea of

underspecification. The KSIs will then be able to produce partial solutions in the

absence of some knowledge elements necessary for producing a single result. As a
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result, an implicit ordering of KSIs is established automatically through the avail-

ability of constraints.

All the control methods specified above rely on two crucial assumptions about the

constraints:

0 All constraints are binary—that is, they either hold or do not hold.
0 In a rule (a KSI), all constraints in the left-hand side must hold before the KSI can

fire.

In reality, some constraints are ‘‘hard’’—that is, inviolable (e.g., the English word

slowest can only be a superlative adjective, while uranium refers exclusively to a

chemical element). Some other constraints are ‘‘soft’’ or gradable (e.g., the constraint

on the filler of the empty slot in the context the city of may well be specified

as ‘‘name of a city’’; however, phrases like the city of Charlemagne or the city of light

are quite acceptable, too—cf. McCawley’s (1968) They named their son something

outlandish).

An extension to the control structure may allow a KSI to fire at a certain stage

in the process even if not all of the clauses among its conditions are bound or if

one of these constraints only partially satisfies the condition. This requires making

the processing architecture more complicated in two (interconnected) ways: first, by

introducing a confidence measure for all decisions, and second, by developing pro-

cedures for relaxing the constraints based, among other things, on the confidence

values of the knowledge used to make decisions.

The relaxation of constraints and the relaxation of constraint applications are

evoked when the process detects an instance of overconstraining or an instance of

residual underconstraining after all the modules have finished their processing. At

this point, the general approach reaches its limit, for a given set of static knowledge

sources. This means that finding an appropriate output in such a case can be

entrusted to a completely di¤erent method, not inherently connected with the spirit

of the main approach. In the case of residual lexical ambiguity, for example, many

systems resort to selecting an arbitrary—usually the first—sense in the lexicon entry.

Alternatively, a word that is more frequent in a corpus may be selected. All such

solutions are, in a way, similar to tossing a coin. Such solutions are quite acceptable

when a system based on an explanatory theory fails—not necessarily due to theoret-

ical deficiencies but often because of the low quality of some elements in the static

knowledge sources of the system. Indeed, more sophisticated corpus-based statistical

techniques can be developed and used in these ‘‘emergency’’ cases. We believe that

this is the best strategy for tightly coupled ‘‘hybridization’’ of NLP systems—that is,

for using knowledge-oriented and corpus-based techniques in a single computational

environment. Loosely coupled hybridization involves merging the results of the

Introduction to Ontological Semantics 21



operation of rule-based and corpus-based systems on the same input. (See Nirenburg

et al. 1994 and Frederking and Nirenburg 1994.)

1.5 The Major Dynamic Knowledge Sources in Ontological Semantics

The interplay of semantic and nonsemantic knowledge sources, as suggested in our

general approach to NLP, is not, strictly speaking, necessary for the specification of

the ontological semantic theory. But we believe that the division of labor and the

application architecture we suggest are the most mutually beneficial for each module

in an NLP system, because knowledge from a variety of modules must be included

in the discovery procedures for the semantic processes. We also believe that it is not

appropriate to omit references to syntax, morphology, and ecology while developing

a semantic theory for the support of comprehensive NLP applications. It follows that

the knowledge sources in our approach transcend purely semantic concerns. The

following summarizes the components of the basic dynamic knowledge sources in

our model.

1.5.1 The Analyzer

A comprehensive text analyzer consists of

0 A tokenizer that treats ecological issues such as all special characters and strings,

numbers, symbols, di¤erences in fonts, alphabets, and encodings as well as, if needed,

word boundaries (this would be an issue for languages such as Chinese)
0 A morphological analyzer that deals with the separation of lexical and grammati-

cal morphemes and establishing the meanings of the latter
0 A semantic analyzer that, depending on the concrete NLP application, can contain

di¤erent submodules, including:

– A lexical disambiguator that selects the appropriate word sense from the list of

senses enumerated in a lexicon entry

– A semantic dependency builder that constructs the meanings of clauses

– A discourse-level dependency builder that constructs the meanings of texts

– A module that manages the background knowledge necessary for the under-

standing of the content of the text; this module centrally involves processing refer-

ence and coreference

– A module that determines the goals and plans of the speaker, the hearer, and the

protagonists of the text

– A module that tracks the attitudes of the speaker toward the content of the text

– A module that determines the parameters (indices) of the speech situation—that

is, the time, place, identity and properties of the speaker and hearer, and so on

– A module that determines the style of the text
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1.5.2 The Generator

Text generators vary significantly, depending on the application. A major di¤erence

is the type of input expected by the generator, which, in turn, determines the kind of

generation result possible. If the input to generation is a text-meaning representation,

then the most natural generation task would be to construct a text whose meaning is

similar to that of the input, in its entirety (e.g., for machine translation) or partially

(e.g., for text summarization). If the input to generation is a set of knowledge struc-

tures corresponding to the state of a world, the generator is probably incorporated in

a reasoning system and may be called on to create a text that analyzes the state of

a¤airs for a human user. One kind of task that the generator may perform is to ex-

press the output in the form of the response to a human query. If, for example, the

input is in the form of formatted numerical data, the generator is typically called on

to present this data as a text (e.g., Kittredge, Polguère, and Goldberg 1986). If the

input is a picture, the generator is typically required to describe it (e.g., McDonald

and Conklin 1982). Text generators can include the following modules:

0 A content-specification module that determines what must be said. The opera-

tion of this module, in its most general formulation, results in the specification of

meaning of the text to be generated. The content-specification module sometimes

includes

– A communicative-function specification module that decides to include certain

information based on the purposes of the communication

– An interpersonal-function module that determines how much of the input can be

assumed to be already known by the hearer
0 A text-structure module that organizes the text meaning by organizing the input

into sentences and clauses and ordering them
0 A lexical selection module that takes into account not only the semantic depen-

dencies in the target language but also idiosyncratic relationships such as collocation
0 A syntactic structure selection module
0 A morphological realizer for individual words
0 The clause- and word-level linearizer

1.5.3 World-Knowledge Maintenance and Reasoning Module

In the framework of ontological semantics, world knowledge is contained in several

static knowledge sources: the ontology, the lexicons, and the fact repository (see

chapter 7). World knowledge is necessary for lexical and referential disambiguation,

including establishing coreference relations and resolving ellipsis as well as for estab-

lishing and maintaining connectivity of the discourse and adherence of the text to the

text producer’s goals and plans.
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Di¤erent applications use the static knowledge sources di¤erently. While analysis

and generation of texts are basic processes used in any application of ontological se-

mantics, some applications require additional processes. In MT, analysis and gener-

ation account for most of the system processing because an MT system does not

always need to use as much world knowledge as such applications as information

extraction (IE) or question answering (QA). This is because the human consumer of

MT is expected to fill in any implicit knowledge present in the output text, thus

allowing some expressions that are potentially vague and/or ambiguous in the origi-

nal text to ‘‘carry’’ over to the target text. Thus, while good book is potentially am-

biguous in that it can mean a book good to read or a well-manufactured book (or

any number of other things; see also Raskin and Nirenburg 1998 and Pustejovsky

1995 as well as sections 7.3, 8.4.4, and 9.3.5), the text producer’s meaning is not

ambiguous in any given instance. And the text consumer, due to the fact that it

shares the same basic world knowledge with the producer, can readily recreate the

intended meaning. Of course, errors of miscommunication happen, but they are

much rarer than successful understanding, as is readily proved by the fact that mis-

communication errors are regular subjects of amusing anecdotes. More scientifically

(though less amusingly), this finding is sustained by the statistics of error rates in

communication gathered by researchers in linguistic error analysis (Fromkin 1973).

In most cases, languages seem to be universally lenient with respect to being able

to render vagueness and ambiguity, defined in this sense, either within a language or

across languages. For example, in translation, one can in most cases retain deictic

(here, now, this, and so on) or referential indices (he, them, the same, and so forth).

MT can gloss over these cases unless an indexical mismatch occurs, as for instance,

when a source language (say, English) does not have grammatical gender while the

target language (say, Hebrew) does, forcing a choice of forms in the translation: the

English them should be translated into Hebrew as otam (masc.) or otan (fem.), as

required.

To make a decision in a case like the above, one must actually resolve referential

ambiguity in the source text. In applications other than MT, this capability is much

more necessary, because there is no expectation, for example, in information ex-

traction, that the results of input text processing will be observed and further dis-

ambiguated by a human. The background world knowledge is the single most

important basis for the disambiguation task. The more knowledge in the fact reposi-

tory about remembered event and object instances, the higher the chances of the

analyzer finding the quantum of information required for disambiguation. The above

means that the prototypical ontological semantic system is a learning system. To en-

hance the quality of future processing, the results of successful text analysis are not

only output in accordance with the requirements of a particular application but are

also recorded and multiply indexed in the fact repository.
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While MT can ‘‘go easy’’ on world knowledge, it still must extract and represent in

the TMR every bit of information present in the input text. The situation with IE is

di¤erent: it does rely on stored world knowledge, not only on the analysis of inputs,

to help fill templates, but it does not typically pay a penalty for missing a particular

bit of information in the input. This is because there is a realistic expectation that if

that bit is important, it will appear in some other part of the input text stream where

it would be captured. In other words, the grain size of the TMR varies somewhat

depending on the particular application.

1.6 The Static Knowledge Sources

The static knowledge sources of a comprehensive NLP system include the following:

0 An ontology, a view of the intelligent agent’s world, including knowledge about

types of things in the world; the ontology consists of

– A model of the physical world

– A model of discourse participants (‘‘self ’’ and others), including knowledge of the

participants’ goals and static attitudes toward elements of the ontology and toward

remembered instances of ontological objects

– Knowledge about the language-communication situation
0 A fact repository containing remembered instances of events and objects; the fact

repository can be updated in two ways: either as a result of the operation of a text

analyzer, when the facts (event and object instances) mentioned in an input text are

recorded, or directly through human acquisition
0 A lexicon and an onomasticon for each of the natural languages in the system;

the lexicon contains the union of types of information required for analysis and gen-

eration;4 the information in entries for polysemic lexical items includes knowledge

supporting lexical disambiguation; the same type of information is used to resolve

synonymy in lexical selection during generation; the entries also include informa-

tion for the use by the syntactic, morphological, and ecological dynamic knowledge

sources
0 A text-meaning representation formalism
0 Knowledge for semantic processing (analysis and generation), including

– Structural mappings relating syntactic and semantic dependency structures

– Knowledge for treatment of reference (anaphora, deixis, ellipsis)

– Knowledge supporting treatment of nonliteral input (including metaphor and

metonymy)

– Text-structure planning rules

– Knowledge about both representation (in analysis) and realization (in generation)

of discourse and pragmatic phenomena, including cohesion, textual relations, pro-

ducer attitudes, and so on
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1.7 The Concept of Microtheories

Decades of research and development in natural language processing have at least

taught the practitioners that it is futile to expect that a single comprehensive theory

can be developed to account for all the phenomena in the field. A realistic alternative

may be to develop a society of microtheories responsible for manageable-size chunks

of the overall set of phenomena. These components may be circumscribed on the

basis of a variety of approaches. There may be microtheories devoted to language in

general or particular languages; to parts of speech, syntactic constructions, semantic

and pragmatic phenomena, or any other linguistic category; to world knowledge

(ontological) phenomena underlying semantic descriptions; and to any of the pro-

cesses involved in analysis and generation of language by computer.

Examples of microtheories include those of Spanish prepositions, of negation, of

passive, of aspect, of speech acts, of reification of properties, of semantic-dependency

building, and many others. The working hypothesis here is that it is possible to

combine all these, sometimes overlapping, microtheories into a single computational

system that accounts for a totality of language phenomena for which it is supposed

to serve as a model. The number of microtheories, as described above, can be, of

course, very high. In practice, it is necessary to determine which subset of such

microtheories is the most appropriate for a particular task. At present, there is no

formal mechanism for doing this, and simple common sense is used to keep the

number of microtheories and overlaps among them to a possible minimum.

The microtheory approach facilitates the incorporation of fruitful ideas found in

linguistics, computational linguistics, cognitive science, AI, philosophy of language,

and corpus linguistics. Most linguistic descriptions are, in fact, microtheories, be-

cause they deal with fragments of the overall set of language phenomena. The di‰-

culty of combining two linguistic descriptions to form a coordinated single

description of the union of the phenomena covered by each individual description is

well known and stems from di¤erences in the premises, formats, and purpose. This

creates the need to integrate the microtheories by providing a computational archi-

tecture that allows the joint operation of all the processing modules based on these

microtheories in a particular NLP application.

The integration of microtheories can be carried out in several flat architectural

models, for instance, using a blackboard system or a system similar to Hunter-

Gatherer (Beale 1997). The nature of the process of adapting a microtheory to the

formalism and control conditions of a computational system is illustrated in Puste-

jovsky and Nirenburg 1988 with the example of the microtheory of aspect and in

Raskin and Nirenburg 1998 with the example of the microtheory of adjectives.

From the standpoint of processing architecture, an analysis-related microtheory

is thus defined as a set of rules whose right-hand sides are instructions for filling a
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particular slot in the TMR representation of a text. Figure 1.5 illustrates an archi-

tecture for combining a variety of microtheories. For instance, there might be a rule

for each possible value of the PHASE slot in an ASPECT frame in a TMR. The

left-hand sides of such rules contain a Boolean formula of a set of conditions for

assigning a particular value of PHASE to an input clause derived from a variety of

knowledge sources—the nascent TMR, morphology, syntax, semantics, pragmatics,

or discourse information. Microtheories supporting generation include rules whose

left-hand sides contain a Boolean formula of TMR values and prior lexicalization

(and other text planning) decisions and whose right-hand sides include instructions

for further lexical selection and other appropriate generation decisions.

1.8 Historical Record of Ontological Semantic Work

The ontological semantics project has been developed for almost two decades. Our

understanding of the issues, the metalanguage, and applications have evolved over

...

Ecology Morphology Syntax Semantics
Pragmatics/
Discourse

A n a l y s i s M o d u l e s

...
Microtheory 1 Microtheory 2 Microtheory N

I n p u t T e x t

T e x t   -   M e a n i n g      R e p r e s e n t a t i o n

Figure 1.5

When meaning-representation rules are bunched according to a single principle, they become

realizations of a microtheory.
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this time. Earlier publications may present an outdated view on a number of points

of theory and implementation. For the record, table 1.1 shows which NLP projects

the various earlier publications on ontological semantics should be attributed to. In

this book, we will refer to three implementations of ontological semantics: Dionysus,

Mikrokosmos, and CAMBIO/CREST. These implementations represent the major

stages in the development of the approach, dating from, roughly, 1992, 1996, and

2000.
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