
1 Introduction

If it is to interact intelligently and effectively with its environment , a
robot must recognize and locate objects in that environment . Stated
more informally , a robot often must use sensor data to determine what

objects are in its environment , and where they are in that environment

[Marr , 1982] . This holds true in a variety of tasks , including :

. identification of an object 's pose in a cluttered environment , in order

to pick it up and manipulate it , (for example , see Figure 1.1) ;

. inspection or gaging of an object , either to ensure that its components 
are present and correctly sited , or to measure and compare 

parts of an object against specifications , (for example , see Figure 

1.2) ;

. vehicle navigation and localization , in order for a mobile robot to

determine its position relative to a map of its world , (for example ,
see Figure 1.3) .

All of these tasks involve either the problem of recognition - deciding
which objects are present in the scene, or the problem of localization

- determining the position of each object with respect to the sensor,
or both . To determine what objects are where, that is to recognize and
locate objects , one must have information about the environment , but
simply acquiring sensory input is not sufficient in itself to solve this problem

. Sensory data usually only provides measurements about properties

of objects in an environment , for example , distances from the sensor to

points in the world , or the location of edges of objects relative to the

sensor. This alone is not sufficient to tell a robot what it is seeing. For
that , the robot must also interpret those sensory measurements , that
is, the robot must relate those measurements to knowledge it has about
objects in its domain of experience , in order both to identify instances
of such objects in the world , and to determine their location and orientation 

relative to the robot . This monograph describes an investigation

into the problem of sensory interpretation , and more specifically , into
the problem of object recognition and localization .

There are many aspects to the subject of object recognition , including 
the following :
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b.

Figure 1 .1

An example of a localization task . Given an image of a jumble of parts , as in part

(a) , a robot must determine if an instance of an object model exists in the data and

if so the position of the object , as shown in part (b ) . It must do so in the presence

of noisy data , occlusion of the object , and clutter (or spurious data ) in the scene .

Figure courtesy of Todd Casso- -
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what sensory cues are used to recognize candidate objects ?

how should one represent information about individual objects ?

how are large libraries of objects efficiently stored ?

what indexing methods are used for extracting candidate objects
from such libraries ?

what methods are used to establish a correspondence between sensory 
cues and features of an object ?

how do we deduce the position and orientation of an object from
sensory cues ?

how are new objects learned and added to the library ?

what role does attention play in selecting portions of the sensory
data on which to concentrate ?

what role does context or expectation play in aiding recognition ?

what role does an object 's function or use play in aiding recognition ?



j:~:~:~
::'c ~:~:~:~::

Chapter 1: Introduction4
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Our goal in this book is not to attempt a definitive answer to all of these
aspects of recognition , although we will touch on most of them to some
extent . Rather , our goal is to consider components of the recognition

problem while describing a detailed exploration of one aspect of object
recognition . Specifically , we want to investigate the following question :

Figure 1.3
An example of a navigation task . Given sensory data about a room , such as a
sequence of images of the form shown in part (a) taken as the robot spins in place, a
robot must interpret that data relative to a map of the world , to determine its global

position . Part (b) shows an example in which a sequence of stereo images have been
processed to obtain 3D information about the room , which has then been projected
into a 2D ground plane. This representation of the scene has been matched with
a model of the world that the robot has learned over time , in order to deduce the

robot 's location , as indicated in the figure . Figure courtesy of David Braunegg .
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. What is the role of geometric measurements and constraints in object 
recognition and localization?

What do we mean by geometric measurements and constraints ? We are

interested in understanding how the shapes of objects can be used to

determine which objects from a library of possible objects are actually
present in a scene, to determine the correspondence between data features 

and object features , and to determine the pose of the object in the

scene. The geometric measurements are intended to capture aspects of

an object 's shape as perceived by a sensor, and any changes in that perceived 
shape as the object is transformed in the scene. We will see some

instances of geometric measurements of shape in the simple example of
Section 1.2. We will be particularly interested in using measurements

of shape that are invariant under the set of allowed transformations ,
as these measurements will sharply constrain the solutions to all three

subproblems : the set of possible object models in the scene, the set

of possible correspondences between scene features and model features ,
and the set of possible poses of an object in the scene.

Thus , this monograph describes an extended series of experiments
into the role of geometric measurements in object recognition . This

description will include providing precise definitions of the recognition
and localization problems , as well as descriptions of the methods used to

address them . We will also examine the performance of these methods ,
both on control led synthetic data and real data , and we will provide
a formal analysis of our solutions to the problems . This analysis will
enable us to address implications of such methods .

Although we focus on the role of geometry in object recognition ,
this is not to imply that the methods discussed here are so restricted in

scope as to have no practical import . Indeed , the problems solved by the
described methods are of fundamental importance in many real applications

, and versions of the techniques described here are already in use in

industrial settings . Thus , while many questions remain to be solved before 
a completely general solution to the recognition problem is available ,

by exploring in detail the role of object shape in recognition and local -

ization we provide a framework for understanding both the strengths
and limitations of using object shape to guide recognition . This serves

both to provide a basis on which to build more complete recognition systems
, and a means of identifying which parts of the recognition problem

remain as the main stumbling blocks to such complete systems .
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1.1 A definition of the recognition and localization

problem

To set the stage for the discussion to follow , we first provide a definition

of the problem to be considered , and then provide a simple example

to illustrate the particular subproblem of using geometric constraints in

recognition and pose localization .

The goal of the recognition systems to be described is to identify

which objects are present in a scene , and to determine the pose of each

object relative to a sensor . By pose , we mean the transformation needed

to map an object model from its own inherent coordinate system into

agreement with the sensory data . Because this is a very broad problem ,

we will restrict our attention to a narrower , and more tractable , version

of the problem , as outlined below .

1 . 1 . 1 Rigid objects

To begin with , we will consider only rigid objects . By rigid , we mean

that the distance between any two points on the object remains the

same , as the object undergoes any legitimate transformation in the scene .

Other types of objects exist , for example , articulated objects , like a pair

of scissors , or flexible objects , like a snake , or deformable objects , like

modeling clay or jelly . We will focus most of our attention on the simpler

problem of recognizing and locating rigid objects , though in Chapter 16

we will consider extensions of the methods we develop to deal with some

types of articulated and deformable objects .

One consequence of concentrating on rigid objects is that the pose

of an object is constrained to a small number of parameters , e . g . the position 

and orientation of a distinguished point on an object , as measured

in a coordinate frame centered about the sensor .

For example , suppose we are considering flat rigid objects constrained 

to lie on a known support plane . For such objects , the pose

is determined by two translational parameters , one rotational parameter

, and possibly a scale factor , if the object is allowed to change overall

size ( see Figure 1 . 4 ) . If we are considering more general rigid objects ,

then three translational and three rotational parameters , as well as possibly 

a scale factor , are needed to specify the pose of an object ( see

Figure 1 . 5 ) .



1.1 A definition of the recognition and localization problem 7

�

}--

A second consequence of concentrating on rigid objects is that measurements 
of an object 's shape that are invariant under the class of legal

transformations (in this case rotations and translations ) are considerable
simpler to compute and apply , as we will see shortly .

1.1.2 Model -based recognition

Even if we restrict ourselves to rigid objects, we still must consider what
information we will use to characterize an object to be recognized. Since

Figure 1.5

The object model on the left is specified in the scene on the right by a transformation 
consisting of translation along three orthogonal axes, a three degree of freedom

rotation , and a scaling.



we are focusing on geometric measurements , we will assume that we have

shape information about particular objects available for comparison with
data from the scene. Thus , we will focus on the problem of model-based

recognition . This requirement restricts our problem domain to some extent
, since it requires a specific model for each object of interest . By

comparison , suppose we want our system to recognize chairs . Humans
are quite adept at identifying instances of an object with very different
appearances but similar function . As observers , we can easily identify a
chair as such, whether it be Chippendale or Louis XIV . To some extent ,
this identification is based on generic shape properties and their relationship 

to the function of the chair . By the problem definition given

above, in our investigation we must have a different model for each different 
shaped chair . Hence, recognizing a new kind of chair on the basis

of similarity of structure and function is beyond the scope of our system .
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1.1.3 Problem definition

With these restrictions in mind , we can more formally characterize the

problem to be investigated . In our study , we will assume the following
information is available :

. A model (or library of models ) of the objects ) of interest . Each
model must describe the shape of an object , although , as we shall

see, this description need not be complete , nor need it be an exact

representation of the shape.

. A set of sensory measurements about the environment being examined
. These measurements are assumed to capture geometric

information about the position and orientation of pieces of surfaces
in the world .

Given such input , the recognition system is expected to produce the

following output :

. The set of "feasible interpretations " of the data with respect to

the objects ) . By an interpretation , we mean both an identification
of the correspondence between data elements and parts of the object 

model , and an estimate of the coordinate frame transformation
needed to transform the model from its own inherent coordinate

frame into the sensor coordinate frame . By feasible , we mean that

applying the transformation to the model would cause the elements
of the model to appear in the sensor coordinate frame in positions



Our goal is to understand how geometry (i .e. the shapes of objects ) can
be used to constrain the set of solutions to the recognition and localiza -

tion problems . To illustrate the role of geometric constraints in finding
poses of an object consistent with the available data , we provide the
following simple example . Suppose we consider the simple two dimensional 

object shown in Figure 1.6. Further , suppose we are given a set

of data features , such as the bounding edges shown in Figure 1.6. To
determine feasible poses of the object consistent with the data , we must

determine correspondences between the data edges and the model edges,
i .e. pairings of data edges with model edges.

4
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1.2 A simple example
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commensurate with the data elements identified with them in the

correspondence . Note that we ask for the set of feasible interpretations
, as there may be more than one feasible interpretation , either

because more than one object from a library is consistent with the
data , or because more than one pose of a single object is consistent
with the data .

Figure 1.6

On the left , a simple two dimensional object , described by its bounding edges. On
the right , a set of data edges, extract from some scene of an object . The goal is to
deduce the pairing between the data edges and the model edges .

In principle , we could simply consider all possible such correspondences ,

and determine if there is a coordinate frame transformation that maps

the model into the data in agreement with the correspondence . Even for

such a simple method , there are a number of possible variations . The
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most naive approach might be to correlate the model with the image .
By this we mean :

. Take all possible rotations of a model , sampled at some resolution
such as in increments of a degree;

. Then take all possible translations of those rotated models , sampled
at some resolution such as every pixel in the horizontal and vertical
directions ,

. Then overlay each such rotated , translated model on the image , and

count the number of edge points in the model that overlap an edge
point in the image

. Keep the rotated , translated model that has the highest overlap
with the image .

While this method is straightforward to visualize , for any realistic sized
problem , however , it is prohibitively expensive . For example , at the
suggested sampling rates , one would need

500 x 500 x 360 = 90, 000, 000

different overlays of a single model with an image , and for each of these,
one must still count the number of overlapping edge points . Thus , we
need more efficient ways of restricting our search for consistent corre-
spondences.

One way to do this is to focus on the features in the image . For
example , we could consider all possible ways of pairing data features Ii

with model features F j , and then testing the degree to which those corre-
spondences are consistent with the geometry of the objects . By pairing ,
we mean asserting that a data edge is a visible instance of a part of a

model edge, and by a correspondence we mean a collection of pairings ,
one for each data edge. While this will avoid some of the wasted computation 

of the simple correlation method (by avoiding situations with no

overlap between model and image features ) , it can still be expensive . If
we don 't know which side of a data edge is the inside of the object , then

each pairing Ii to Fj has two orientations , and hence there ~ re (2m ) d
possible correspondences to consider , where d is the number of data features

, and m is the number of model features . In the simple case shown

in Figure 1.6, there are 1728 different correspondences to consider . If

we do , in fact , know inside from outside (e.g. by measuring the contrast
across "an edge) , then there are only md cases to consider , but even in the

simple example of Figure 1.6 this still leaves 216 cases. Clearly , many
of these correspondences are not likely candidate solutions , since they



Table 1.1.

Table of relative angles for the object in Figure 1.6. For each entry , the angle listed
is that required to rotate the edge identified by the row index into the edge identified
by the column index .

1.2 A simple example 11

First , we can capture part of the relative shape of two edges by considering 
the relative angle between them , which is an extension of the idea

used above. For example , we can build a table of relative angles for all
pairs of edges in the model . Such a table is shown in Table 1.1, where

�

don 't make geometric sense (i .e. there is no rigid transformation of the

model that would satisfy all of the pairings in the correspondence ) . We
would like to find a way to quickly remove them from consideration .

To do this , we will use geometric constraints on the matching process
. In particular , the relative shapes of subsets of the data clearly

preclude many possible correspondences . For example , if we match data
edge 11 to model edge F1 (in the case in which we know which side of

the edge is the inside of the object ) , then data edge 12 cannot possibly
match model edge Fs , because F1 and Fs are parallel , and 11 and 12 are
not . Thus , we should not bother considering any interpretations that
include both the pairing 11 : F1 and the pairing 12 : Fs , unless the data

is very noisy . In other words , the relative shape of data edges 11 and 12
is sufficiently different from the relative shape of model edges F1 and Fs

that the pairing 11 : F1 and the pairing 12 : Fs cannot both be part of
a consistent interpretation .

To illustrate how we can take advantage of these constraints on

relative shape, we sketch a simple set of geometric constraints , and show
their use in finding correspondences . The details of such methods will

be expanded upon in detail in the succeeding chapters .

FI F2 F3 F4 Fs F6

F1 0 ~ 0 ~ 7r .?:!:.
2 2 2

F2 .?:!:. 0 .?:!:. 0 ~ 7r2 2 2

F3 0 ~ 0 ~ 7r .?:!:.
2 2 2

.F:4 .?:!:. 0 .?:!:. 0 ~ 7r
2 2 2

D 7r 7r 0 7rr 's 7r - 7r - -2 2 2

1":6 ~ 7r ~ 7r .?:!:. 02 2 2



We need to find possible correspondences , using the information contained 
in these tables to restrict our search to viable possibilities . Suppose 

we begin by considering the first data feature 11, and we consider

the possibility that this data feature actually corresponds to each of the
model features , Fi , i = 1, . . . 6, in turn . For each such correspondence ,
we take the second data feature 12, and consider the possibility that it
corresponds to each of the model features in turn , F i , i = 1, . . . 6. This

is shown by the trees in Figure 1.7.

Now given these pairings , we can use our information about relative
shapes to constrain the search for interpretations . In particular , for each
node at the second level of the tree , we can use the indices for the two

model features to look up the relative angle between them in Table 1.1.
For the two data features , we can use their indices to look up their

relative angle in Table 1.2. If these two angles do not agree, then the
shapes are inconsistent , and we can drop this partial interpretation from

further consideration . By inconsistent , we mean that there is no rigid
transformation that will map the data into the model , since the relative

angle is an invariant under rigid transformations and must therefore be
maintained in both the data and the model edges. In other words , the
relative shape of the features constrains the possible matches . This is
shown in Figure 1.8, in which nodes inconsistent with this simple test

are crossed off . This reduction in the number of possible interpretations
has been achieved by using the geometric constraint that relative angles
between edges must be preserved in an object 's pose, i .e. the relative
angle between two edges is pose invariant for rigid objects .

12 Chapter 1: Introduction

the angle listed for each pair of edges is that angle needed to rotate the
edge labeled by the row index into the edge labeled by the column index .

We can build a similar table for the relative angles between the data
edges, shown in Table 1.2.

11 12 13

11 0 ~ 7r

f 37r 0 7r2 2 "2

13 7r ~ 0

_..; angles for the data edges shown in Figure 1.6.
Table 1 .2 .

Table of relativf



 1.2 A simple example
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For the remaining interpretations , we can now consider the third

data edge, and its possible assignment to each of the model edges. As
before , we can subject the resulting interpretations to our geometric
constraints , where now the pairing of the third data edge with a model

edge must be consistent with both the pairing of the first data edge to
some model edge and with the pairing of the second data edge to some
model edge. The resulting set of consistent nodes is shown in Figure 1.9.
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Figure 1 . 7

For the first data feature , h , we consider all possible pairings of it to each model

feature, Fi , i = 1, . . .6. For each such pairing, we consider the aiisignment of the
second data feature, 12, to all possible model features, Fi , i = 1, . . .2. This is shown
in the diagrammed tree structure, where each node at the second level defines a
matching for the first two data features. The node identified by the circle corresponds
to the pairing of data and model features shown in the expansion.

:: ~ ~ ~ ~ ~ ~
Figure 1.8
Any nodes at the second level of the tree that are inconsistent with the partial
geometric shape constraints are removed from further consideration.
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As one can see, just using this simple measurement on the relative 

angle between edges has dramatically reduced the set of possible

interpretations of the data , from 216 to 12, in this particular case.

Although the use of relative angle dramatically reduces the search
involved in finding a solution , we can do more than this . Suppose we also
consider distance constraints , that is, information about the distances

between pairs of edges. As in the case of angle information , we can

compute a table of relative distance information for the object model .
Table 1.3 lists the range of squared distances between pairs of model

edges, for example , the shortest distance between points on face F 1 and

F3 is 2(= A ) and the longest distance between points on face FI and
F3 is 2v' 2( = ~ ) . We use the square of the distances rather than the
distances themselves simply for convenience of representation .

Chapter 1: Introduction14
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Table 1 . 3 .

Table of ranges of squared distances between edges of the model in Figure 1.6. Each

entry lists the minimum and maximum squared distance between any two points on

the indicated edges .-

A similar table holds for the range of squared distances between pairs

of data edges, shown in Table 1.4.

Figure 1 . 9

The set of nodes defining an interpretation for all three data edges that are consistent

with relative angle constraints are shown circled , those inconsistent are crossed off .

FI F2 F3 F4 Fs F6

FI [0, 1] [0, 5] [4,8] [5, 13] [9, 13] [0, 10]

F2 [0,5] [0,4] [0,5] [1, 10] [1, 10] [1, 10]

F3 [4,8] [0, 5] [0, 1] [0,2] [1,5] [1,8]

F4 [5, 13] [1, 10] [0,2] [0, 1] [0, 5] [4, 13]

Fs [9, 13] [1, 10] [1, 5] [0,5] [0,4] [0, 13]

F6 [0, 10] [1, 10] [1,8] [4, 13] [0, 13] [0,9]
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We can add these new constraints to our search, by applying them
in a manner similar to that used for the angle constraints . That is, for
a given pair of data -model pairings , we can look up the range of feasible

distances for the model edges from Table 1.3, and look up the range of
distances for the data edges from Table 1.4. In order for these pairings
to be consistent , the range of data distances must be contained within

the range of model distances . By applying these constraints , we reduce
the search tree to that shown in Figure 1.10.�

F3 ~
�

15

�

Table 1.4.

f1 F1

f2

f3

Figure 1 .10

The set of nodes defining an interpretation for all three data edges that are consistent

with relative angle constraints and with relative distance constraints .

F2

Table of ranges of squared distances between the data edges of Figure 1 . 6 .

This further restricts the set of feasible interpretations . Note , however ,
that these geometric constraints serve only to hypothesize feasible interpretations

. We must still determine the pose associated with each

interpretation and verify that it is globally consistent . In fact , of the

5 interpretations obtained in Figure 1.10, only 3 of them are actually
globally consistent , as shown in Figure 1.11. We will consider how to

use the geometric information implicit in the pairings of data and model
features in an interpretation to deduce global consistency and to find
the actual pose of an object in later chapters .

The point of this example is to illustrate the role of geometric constraints 
in reducing the search for feasible interpretations of the data .

The goal of this work is to study the effects illustrated in this simple

11 12 13

11 [0, 1] [1,5] [1,2]

12 [1,5] [0, 1] [1,5]

13 [1,2] [1,5] [0, 1]
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Figure 1 . 11

If the model on the top left is matched to the data on the top right , there are several

feasible interpretations , as shown in the bottom set of figures .

example in detail . In particular , we will examine a variety of possible ge -

ometric constraints , and their effectiveness in isolating correct instances

of objects and their poses .

It is important to note that one can separate the issue of how the

tree of interpretations is search ( e . g . depth first , breadth first , best first ,

beam search , etc . ) from the role that the tree plays in defining consistent

correspondences to consider . We will return in later chapters to methods

of searching the tree . For the purposes of our example , we simply concentrated 

on the role of the tree in providing a method for exploring all

possible solutions , while at the same time allowing geometric constraints

to reduce wasted work .

1 . 3 What constitutes a good solution ?

To conclude our introduction to the problem , we need to step back from

the details . Our goal is to find feasible interpretations of data relative

to a library of object models . We have suggested a basic approach to

the problem in our simple example above , in which we tried to match

data edges to model edges by searching through consistent interpreta -
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environments . Why is this a hard problem for a computer , and what

are the key difficulties to overcome ?

When given perfect sensor data about an isolated object , there are

many techniques that can identify an object and its pose . In realistic

situations , however , there are three additional aspects of the problem

that require careful consideration :

. occlusion ,

. nOIse ,

. and spurious data .

In most unstructured environments , recognition must proceed even when

only some portion of the object 's surface is visible , and when much of the

data available from the scene does not come from the object of interest ,

i .e . one must be able to deal with both occlusion and spurious data .

Thus , a good recognition system must both identify what data arises

from the object of interest , and must use that data to determine the

pose of the object . This implies that there are three separate parts to

the process of interpreting sensor data :

. determining what object is present ;

. determining the subset of the data to be matched with the object

model ;

. and determining the actual transformation that maps the model to

this data subset , i .e . the pose of the object .

Thus , the example of Section 1 .2 is simplistic in that all of the sensory

data are assumed to have come from the object of interest , although the

example does not assume that all of the object is visible in the data .

The recognition process is further complicated by the fact that in

most realistic situations , the sensory data is corrupted by significant

amounts of noise . The recognition process must show graceful degradation 

in the presence of bounded amounts of error . As a consequence ,

many methods that work well when confronted with perfect data from

isolated objects do not extend well to real situations , and in evaluating

approach  es to recognition it is important to consider how well they deal

with these factors . Again , the example of Section 1 .2 is overly simplistic

in that the sensory data are assumed to be perfect , so that we can compare 

angles between data edges and model edges exactly . In general , we

must extend our methods to ensure that noise in the data measurements

does not preclude our ability to recognize and locate an object .
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1.5 A view of things to come

Thus , in exploring the use of geometric constraints in object recog-
nition , we focus on several factors :

. how can geometric constraints on relative shapes of object parts be
used to control the search for consistent interpretations ?

. how well do methods based on geometric constraints perform in the
presence of noise, occlusion and spurious data ?

. can we identify those situations to which such methods are well
suited , and those situations in which poorer performance implies

the need for additional or alternative techniques ?

Our goal in this book is to explore aspects of the problem of recognition
and localization using geometric features . As we will see, there are many
components of this problem in which there are several different means of

solution , each trading off different advantages and disadvantages . Part
of the goal of the book is to explore those tradeoffs , and to provide
a framework in which to understand the impact of those choices. In

exploring this area, we will consider a number of questions , including :

. how does establishing a correspondence between data and model
features solve the recognition and localization problems ?

. what are the choices of features to use?

. how can they reliably be extracted from raw sensory data ?

. how does the relative geometry of features constrain the possible
interpretations of them as instances of an object ?

. how do we find correspondences of data and object features , and
can we find them efficiently ?

. how do we ensure that our solutions are correct ?

We stress that recognition is an immense problem , and in the space of
this book we cannot possibly deal adequately with all of it . Hence, this
book should be read not so much as a manual for building an intelligent
machine that can recognize objects with the same versatility as humans ,
but rather as an exploration of an important and useful subclass of that
broad problem . In particular , we will focus on the use of local features

and the constraints that the geometry of those features bring to bear
on the recognition and localization of rigid objects . We feel that this is
an important component of object recognition , and systems that solve
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1.5.1 A roadmap

We begin our exploration of the role of geometric constraints in Chapter
2, where we expand on our simple example of this chapter , by considering 

alternative methods of searching for instances of an object in the

data . Having explored alternatives and their tradeoffs , in Chapter 3

we concentrate on the constrained search approach , as exemplified by
the example of Section 1.2. This chapter lays out a general framework
for constrained search, and in Chapters 4 and 5, we provided details of

different types of geometric constraints that can be plugged into that

framework . Chapter 6 considers the problem of actually finding the
pose of an object associated with an interpretation , and verifying that
the interpretation is globally consistent .

this problem can be of considerable utility despite the fact that they
only solve part of the general recognition problem . At the same time ,
however , it is clearly only one component . There are many other aspects
of recognition that are only touched on in this book .

In exploring the role of geometry in recognition and localization , the
discussion will focus mainly on research performed by the author over
the past seven years , partly in collaboration with Tomas Lozano- Perez

and partly in collaboration with Daniel Huttenlocher , as well as research

performed by other members of the author 's research group , especially
David Braunegg , Todd Cass, David Clemens , Gil Ettinger , and David

Jacobs. We are not alone in approaching recognition through geometric
constraints , however , and throughout the book we try to indicate other

alternatives that fit within the same framework and their relationships
to that framework . Indeed , several strong research programs in geomet -

rically constrained recognition have evolved contemporaneously with our
own , and we wish to acknowledge the strong influence the work of Bob

Bolles and collaborators at SRI , and the work of Olivier Faugeras and
collaborators at INRIA . Although each of these efforts germinated independently

, we especially feel that these efforts were the first to layout

a clear framework for recognition from geometric constraints , and much
of the growth of this area follows from that seminal work . While our

discussion in this book will focus on our own particular variation of this
approach , interested readers are urged to explore the other variations
discussed in the text .
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One of the main problems in constrained search approach es to recognition 
is controlling the inherent combinatorial explosion associated with

the search. Variations on the search method used to find interpretations
, and their effect on the combinatorics , are considered in Chapter 7.

In Chapter 8 we consider other methods for controlling this explosion ,
mainly by restricting the portions of the search space to be explored .

Empirical data summarizing the effects of these choices are given in
Chapter 9. The first 9 chapters constitute the first part of the book ,
and provide a detailed exposition of a variety of search methods for
utilizing geometric constraints in recognition .

The utility and practicality of the methods developed in the first
part of the book have been demonstrated on a variety of real data , as

summarized in Chapter 9. To explore the generality of these results ,
however , we also need a formal way of examining these methods , and
we do this in the second part of the book . In particular , Chapters 10- 13

develop a formal model of the recognition method , and derive analytic results 
on the complexity of constrained search approach es to recognition .

These results carry some implications concerning the relative difficulty
of different parts of the recognition problem , and these are discussed in
Chapter 14.

The final part of the book deals with various extensions of the basic

methods developed in the first part , and analyzed in the second part .
Chapter 15 deals briefly with the problem of recognition from libraries
of objects , Chapter 16 discuss es extensions from rigid objects to broader

classes of objects , Chapter 17 discuss es briefly the role of grouping in
recognition , and Chapter 18 explores the idea of sensing strategies . Finally

, Chapter 19 briefly describes some representative applications of

these recognition methods .


