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Chapter 1

PROBABILITY

George P . Wadsworth
Massachusetts Institute of Technology

Introduction

A common type of phenomenon observed in many areas of

human experience is characterized by the production of a series

of events which are rather definitely fixed as to their possible

distinct forms , but haphazard as to the order in which one form

follows upon another ; or , alternatively , by the generation of a

quantitative variable having a fairly well - defined range of possible 

values , but no consistent rule of progression . Despite the

absence of any discernible law of serial order , there usually

exists a striking similarity between the proportionate compositions 
of any pair of long records of the same phenomenon . The

observed regularity of proportion in random series is the

empirical basis for the so - called laws of chance , which are the

subject matter of the theory -<?! pr ~ my .
Controversies over the philosophical foundation of the theory

of probability have been going on for many years . Points of

view have ranged from the consideration of probability as a

mathematical property of an abstract system to the definition of

it as a measure of credibility or as an aspect of human psychology
. Notwithstanding this diversity of thought as to the philo -

sophical foundation there has been almost universal agreement

as to the mathematical superstructure . The essential mathematical 

properties which probability must possess ( and about

which there is no argument ) suffice to establish the theory of

probability on an axiomatic basis as a rigorous branch of pure

mathematics . Like the axioms of Euclidean geometry , those

of probability represent idealizations of practical experience

or extensions of eJ.ementary principles of logic .

~ he Relative Frequency Theory

The Relative Frequency Theory of probability is founded upon

an observational concept . A record is kept of the number of

times ( say nl ) that a certain event E occurs in n trials of an

appropriate experiment . The ratio nl / n is called the relative

frequency of the event E , and the complementary ratio ( n - nl ) 7n ,

the relative frequency of E . Denoting the two relative frequencies

by R ( E ) and R (E ) respectively , we see that each has a mathematically 

possible range of 0 to 1 and that R ( E ) + R ( E ) .= 1 . We

have previously made a point of the regularity of proportion in

random series . By this we mean the tendency of relative frequencies 
to stabilize at definite values as the number of trials

increases . This tendency has been verified experimentally on
numerous occasions and seems to be inherent in the nature of



random phenomena. Therefore, the existence of a limiting valuei!?. postulated, and the probability -:f)TE) of the event E is defined

4

n

P(E) :: Lirn2 == Lirn R(E)
n

n . . . oo n - oo

(1. 1)

Similarly ,

P(E) = 1 (1. 2)

Table 1. 1

as the limit approached by the relative frequency as the number
of trials increases indefinitely :

P (E ) =: Lim ( n - nl ) / n =: LimR (E ) and P ( E ) +
n - m n - m

Properties of Relative Frequencies-

The total number of occurrences of A is n 1 + nZ' and the total
number of occurrences of B is nl + n3" Hence , the corresponding 

relative frequencies are

n + nn + n

R (A } = ~ ; R (B } = _...!.n-.2 ( 1. 3)

It often happens that a sufficient condition for the occurrence
of some contingent result is the single or simultaneous occur -
rence of two events A , B . The composite event defined by the
occurrence of either A or B alone or both together is denoted by
the symbol A + B . (As an analogy , a joint meeting of two organizations 

is open to all who belong to either one , including , of
course , all who belong to both . ) Since the definition of A + B
is satisfied by each of the categories (A , B ), (A , B ), (A , B ),
the relative frequency of A + B is

n + n + n ( + )
R (A + B ) = 1 Z 3 - nl nZ (nl + n3) n- + 1nn - -nn

Property 1. For a single event E we have already noted that
R (E } is a real number lying somewhere in the range 0 to 1 and
such that R (E } + R (E } = 1.

Now consider two events A and B , which may exist simultaneously
. All possible results of a given experiment may be

classified under some one of four mutually exclusive categories :
(A , B ), (A , E ), (A , B ), (A , E ) - - representing the simultaneous
occurrence of A and B , the simultaneous occurrence of A and E ,
etc . Denoting the respective numbers of occurrences by nl ' nZ'
n3 ' and n4 and the total by n, we may summarize the results as
shown in Table 1. 1.

Category (A, B) (A,E) (A, B) {A, E) Total
Number of nn nn nOccurrences 1 2 3 4
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Hence ,

Property 2. R (A + B ) = R (A ) + R (B ) - R (A , B ) ( 1. 4 )

If the separate quantities nl ' n2 ' etc . were known , the most
direct method of calculating R (A + B ) would , of course , be simply
that which follows from the definition , namely (nl + n2+ n3)/ n.
The point of introducing the formula stated in Property 2 is that
most mathematical problems entail the expression of one variable
in terms of others , and the relative frequencies R (A ) , R (B ) ,
R (A , B ) are usually the ones most readily available either from
direct observation or theoretical considerations .

We now introduce the idea of conditional relative frequencies .
In the theory of probability , the word I' conditional " signifies
restriction to a special class as distinguished from the " unconditional" inclusion of all possibilities . An event E occurring

under condition Cisdenoted by the symbol Elc , read " E given
C . " A conditional relative frequency is calculated in the same
manner as an ordinary (unconditional ) relative frequency except
that the calculation is confined to those events which satisfy the
prescribed criterion ( condition ) . The conditional relative frequency 

of A given B , denoted by R (AIB ) , is simply the proportionate 
number of occurrences of A among all occurrences of B ,

hence the ratio of the number of simultaneous occurrences of A

and B to the total number of occurrences of B :

nl

R(AIB) = -_: .!-.- = --~ = R(A, B) (1. 5)
nl + n3 nl + n3 R (B )

n

By a similar argument we obtain the conditional relative frequency 
of B given A as

n

R (BIA ) = 1 = R (A , B ) ( 1. 6)
nl + n2 R (A )

Combining these statements into one chain of relationships , we
arrive at

Property 3. R (A , B ) := R (A )R (BIA ) := R (B )R (AIB )

Laws of Probability
A system of axioms for a subject can be formulated in more

than one way and yet have the same logical consequences . However
, the following three properties , suggested by the behavior

of relative frequencies , suffice for most purposes as an axiomatic
basis of probability . We call them properties rather than axioms
because , aside from formality of statement , a system of axioms
should be reduced to the fewest possible assertions ; whereas we
have chosen an extended form of expression of Property 3 in the
interest of convenience .

Property 1. (General Character of Probability ) The probability 
P (E ) of an event E is a real number in the range of 0 to 1.

The probability of an impossible event is 0 , that of an event certain 
to occur is 1, and , in general , P (E ) + P (' E) = 1.
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= P(A, C) + P(B, C) - P(A, B, C)

Therefore ,

and

exclusive or not . Let A , B , C be any three events , which need

not be mutually exclusive , and , as before , set S = A + B . Then

P { A + B + C ) : : : P { S + C ) = P { S ) + P { C ) - P ( S , C ) = P { A ) + P { B )

- P ( A , B ) + P ( C ) - P ( S , C )

Now the symbolS , C ) means that C occurs in conjunction with

A or B or both and has the same logical import as the expression 

( A , C ) + ( B , C ) , since the simultaneous occurrence of ( A , C )

and ( B , C ) implies nothing more nor less than the simultaneous

occurrence of A , B , C . Accordingly ,

P ( S , C ) : = P [ ( A , C ) + ( B , C )]

P ( A + B + C ) = P ( A ) + P { B ) +

When this result is extended by induction ,

is obtained .

Theorem 2 . ( General Law of Total Probability )

bility P { A + B + . . . + N ) equals the algebraic sum of the probabili -

ties of the events in all possible distinct combinations : singles ,

pairs , triples , . . . , N - tuple . The sign is plus for the odd combinations 

( singles , triples , etc . ) and minus for the even combinations 

( pairs , quadruples , etc . )

The probability of the simultaneous occurrence of two or more

events is called the compound probability , or synonymously , the

~ probability of the events . The relations stated by Property

3 can be generalized to any finite number of events . Thus , considering 

the simultaneous occurrence of three events A , B , C , let

X denote the simultaneous occurrence of A and B . Then

( A , B , C ) = ( X , C )

P { A , B , C ) = P { X ) p ( CIX ) = P { A ) P { BIA ) P ( CIA , B )

Since all permutations of the letters A , B , C have the same meaning 

as regards the simultaneous occurrence of the three events ,

there are six equivalent expressions of the foregoing type . For

example , we also have

P { A , B , C ) = P { B , C , A ) = P { B ) p ( CIB ) P ( AIB , C )

Continuing in the same vein , we may express the joint probability

of any finite number N of events A , B , C , . . . , M , N as the product

of N factors , the first of which is the unconditional probability of
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P{A, B) = P{A)P{B)

a

that it does not break down when one of the events has zero probability
. The reader ' s attention is called to the fact that mutually

exclusive events are not independent unless the probability of
one of them is zero , for , by definition , the probability of the
simultaneous occurrence of mutually exclusive events is neces -
sarily zero . In general , N events are independent if the probability 

of each event is unaffected by the occurrence or non -

occurrence of any of the others , either singly or in combination .
A formal definition is as follows :

their complements in any proportion (as ABC . . . N ; ABC . . . N ;
ABC . . . N ; . . . ; ABC . . . N ; . . . ; ABC . . . N) factors into the product
of the probabilitie s of the N components of the combination .

This definition is , of course , both the necessary and sufficient

condition that the events are independent . If , however , the events
are independent , it follows that the joint probability is equal to
the product of the individual probabilities . Hence ,

Theorem 4 . (Law of Compound Probability for Independent
Events )

any particular one of the events chosen arbitrarily , the second ,
the conditional probability of any particular one of the remaining
events given the occurrence of the one first selected , and the
general term , the conditional probability of any particular one
of the remaining events given the occurrence of those already
chosen . In all there are N ! equivalent expressions for this same
joint probability . Putting this rule in the form of a theorem , we
have :

Theorem 3. (General Law of Compound Probability )

P (A , B , C , . . . , M , N ) = P (A )P (BIA )P (CIA , B ) . . . P (NIA , B , C , . . . , M )

A special case of great importance arises when the events are
independent . In the probability sense , two events A , B are said
to be independent when and only when neither one affects the
probability of the occurrence of the other . The formal definition
of independence is that

P (BIA ) = P (B ) ; P (AIB ) = P (A )

It turns out that each one of these equations implies the other ,
for if either holdsJ the joint probability assumes the symmetrical
form
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P{A, B, C, . . . , N) = P(A), P(B), P(C). . . P{N) (1. 9)

Since the IN possible N - fold combinations of A , B , C, . . . , Nand
A , B , C , . . . , N represent a complete system of mutually exclusive
categories , their total probability is necessarily equal to unity .
Moreover , the factorization of their probabilities in the case of
independence guarantees the analogous probability factorization
of all possible combinations of any subset of the initial N events
and hence the independence of any subset . (This fact may ~e
established by applying the law of total probability to a typical
subset . ) On the other hand , the independence of subsets does
not suffice for the independence of the entire system .
General Comments

Since the outcome of a contemplated action is often in doubt
prior to its performance , the major use of probability lies in
making judicious guesses , for probability represents the summary 

and generalization of experience . A considered decision
to pursue a stated course of action is usually reached by weighing 

the odds associated with various possible outcomes , insofar
as these eventualities can be foreseen . After the fact , the outcome 

of a particular action is uniquely determined ; therefore ,
with reference to a single situation the probability of any designated 

event is either one or zero , depending upon whether it does
or does not correspond to the actual result . Understood as a
ratio , probability has only this trivial interpretation as applied
to unique happenings , and we agree not to use the term probability 

in this sense . Hence , when we say that A has a probability
p of succeeding in a proposed enterprise , what we really mean

is that according to available records on comparable cases , the
relative frequency of success es is p. How pertinent the records
themselves are may be open to question , but improving the
estimate of probability by sharpening the classification is a project 

for research .
Practical applications of the theory of probability call for an

intelligent combination of empirical knowledge and mathematical
deduction . The basic probabilities are estimated by computing
the appropriate relative frequencies from observational data , or
in sufficiently clear - cut situations , they are inferred from
a priori considerations . The probabilities of various composite
events are then derived by applying the laws of probability to the
component events , single or joint . Separate estimates are
needed for joint probabilities unless the as sumption of independence 

is justified .

Bayes I Theorem

Given a set of mutually exclusive events B l ' Bl ' . . . , B ,let us assume that the occurrence of one or another of therR is
a necessary condition for the occurrence of an event ADepending 

on the circumstances , the B ' s may precede A in time or may
occur simultaneously with A . From the viewpoint of the logical
present , both types of association may be regarded as constituting 

joint events , and we shall denote the corresponding probabili -
ties by the same symbol P (Bi ' A ) , where Bi is a specific one of
the Bis .



10

From Property 3 we have

P (BiA ) = P (B .)P (AIB .) = P (A )P (B . IA )1 1 1 1

the conditional probability of Bi given A isTherefore ,

P (BiIA ) = P (Bi )P (AIB .)P (A ) 1

+ P(B )p(AIB )nn

P(B.)P(AIB.) .1 1
P(BiIA) = P(B 1)P(AIB 1)+ P(BZ)P(AIBZ)+. . . + P(Bn)P(A1B~)

(1. 10)

This conditional probability is understood to mean ( in elementary 
terms ) the proportionate number of times the antecedent 

( or concomitant ) of A is Bi . In connection with the use
of probability in deciding upon a course of action , we have previously 

noted an idiomatic contraction of the precise formulation 
of the probability statement , and a similar idiom is used in

this context . Thus , the following type of question is often propounded
: " Having observed A on a particular trial , what is the

probability that the antecedent was Bi ?" Taken literally , this
question refers to a unique situation and has only the trivial
answer of one or zero , as the case may be ; but it is really meant
to refer ( as it were ) to the relative frequency of Bi among all
situations characterized by the occurrence of A .

While the probability P (A ) could be estimated directly as a
relative frequency if records were available , it is often more
feasible to depend upon mathematical synthesis . For instance ,
one might have access to a large amount of data on the relative
frequencies of the B ' s , but comparatively little data on A . This
would be the case if A were a new development in the economic
world or perhaps a newly discovered symptom in medical
research . Under such circumstances it might be possible to
deduce the conditional probabilities P (A I Bi ) ( i = 1, Z , . . . , n ) from
theoretical considerations ( typically true of kinematic problems )
or to design small - scale experiments by which the conditional
probabilities could be estimated . When this is possible , P (A )
can be computed from the other information . Since the B ' s are
mutually exclusive , the event A is logically equivalent to the following 

sum of mutually exclusive events :

(Bl , A ) + (Bz , A ) + . . . + (Bn , A )

Hence , by Theorem 1,

P (A ) = P ( Bl , A ) + P (BZ , A ) + . . . + P (Bn , A )

which , by Property 3 , may be expressed as

P (A ) = P ( B 1 ) P (AIB 1) + P ( BZ )P (AIBZ ) + . . .

Therefore , sub ~tituting this result in the denominator of the

expression for P ( BiIA ) , we obtain what is known as Bayes '
Theorem :



1
P(AIB3) = C(4, 2)

11

1= b; P(AIB ) = C(3, 2)4 C(4,2) 1
= 2; P(AIBS) = 1

and therefore the required probability is given by Bayes '
Formula : 6 1P(B IA) = (Tb)(""6)3 , 6. ,1.. ,4 .,1.. ,1 . ,.. = 6 - 1(Tb)(""6)+ (Tb)(i)+ (-h) ( 1) 6+ 12+ 6 -"4
Geometrical Probability

Many problems of a probability nature present facets which
can be solved geo metric ally . For this reason . we shall now
discuss a simple example of geometrical probability . This subject 

introduces in a natural way a broader concept of probability
which goes beyond the elementary notion of the number of occur -
rences of discrete events.

In the nature of geometrical probability , all points under consideration 
lie within prescribed boundaries , and the probability

measure is so defined that the total probability of the admissible
region is unity , while that of all exterior space is zero . Since
any finite portion of space, no matter how small , contains an
infinite number of points , probability cannot be defined in terms
of the number of points included . Instead , it is defined in terms
of the geometrical measure appropriate to the dimensionality of
the admissible region : in one dimension , length ; in two dimensions

, area ; in three dimensions , volume . Although it is perfectly 
possible to define probability as a variable function of

position , in geometrical problems it is usually assumed that the
probability measure of any subdivision of the admissible region

Example An unbiased coin is tossed , and , if it comes up

heads , a black ball is placed in an urn , but if tails , a white

ball . This is done four times . Another person now samples

the urn by drawing out two balls simultaneously , which turn

out to be black . What is the probability that there were two

black and two white balls in the urn ? Because of the method

used in filling the urn , there exist five possibilities for the

final color distribution of the four balls , and the probability of

the . occurrence of each color combination can be computed .

They are as follows :

1

Four white ( B 1 ) : P ( B 1 ) = Tb

Three white and one black ( B2 ) : P ( B2 ) = - to

Two white and two black ( B3 ) : P ( B3 ) = - h

One white and three black ( B 4 ) : P ( B 4 ) = ior ;

1

Four black ( BS ) : P ( BS ) = Tb

Since in this case the event ( A ) cannot occur with antecedents

B 1 and B2 ' the conditional probabilities P ( A \ B . ) ( i = 1 , 2 ) must

equal zero . The other three conditional probatilities are computed 

as
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is directly proportional to the size of the subdivision . Thus , in

one dimension , if the admissible region is a line segment of

length R , the probability measure of any included segment of

length r is r / R , that of an infinitesimal se ~ ment of length dr

is dr / R , and that of the whole segment is R / R = 1 . The statement 

rIa point is chosen at random ' ! is a conventional expression

for the fact that the chosen point can be any point within the

region designated , and the probability of its falling within any

stated portion of that region is equal to the probability measure

of the portion itself .

Example The base x and altitudey of a triangle are

obtained by picking points X and Y at random on two line segments 

of length a and b respectively . ( See Fig . 1 . 1 ) What

is the probabilitY - that the - area of the triangle with base x and

altitudey is less than ab / 4 ? Since the area of the triangle is

given by xy / 2 , this quantity is required to be less than ab / 4 . Now

a

r - a - 1 y - b

0 b

1 - X ab

~ x ~ xy = 2

r - - - - - - -- b - - - - - - - -1

0 I Y x

~ y ~ 0 a

Fig . 1 . 1 Fig . 1 . 2

the hyperbola xy = ab / 2 divides the admissible area , which is a

rectangle with base a and altitude b , into two parts I and II .

( See Fig . 1 . 2 ) Pair  S - of values for x and y which fall in area

I will determine triangles with area less than ab / 4 , and , of

course , those points in II will determine triangles with areas

greater than ab / 4 . Therefore , the desired probability is

a

ab + S ~ dx
7 a 2x

" 2 I

P = ab = " 2 ( 1 + ln2 ) = . 85

Distribut ion Functions and Probability Densities

Up to this point , probability has been discussed from the point

of view of individual events . More generally , however , we are

dealing with the variables produced by the interplay of a complex

system of causes which exhibit irregular variations which are ,

to all intents and purposes , random . These variables which

elude predictability in assuming their different possible values ,

whether finite or infinite , are called random variables , or ,

synonomously , variates . Whether we are talking about a finite

number of possible outcomes , a set of numerably infinite ( but

discrete ) outcomes , or an infinite set of outcomes , we can speak

of a function F ( x ) which represents the probability that the random
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where f (x , y) is the joint proba -variables ,

y as

variable will take on this value of x or one which is less . This ,

of course , is under the assumption that these sets constitute an

exhaustive set of possibilities . F ( x ) is called the distribution

function defined over the region of definition of x - and , of

course , has the properties that F ( - oo ) = 0 and F ( oo ) = 1 . If

there exists a finite probability that the variate x will take on

a specific value , then , of course , the distribution function takes

a jump at this particular value , and , if we are dealing with a

variate which can take on only discrete values , then the distribution 

function consists entirely of jumps and that portion of the

function between these values consists of horizontal lines . ( See

Fig . 1 . 3 )

F ( x ) F ( x ) F ( x )

1 -

0 xO x 0 x

( a ) Continuous ( b ) Discrete ( c ) Combination of

Discrete and

Continuous

Fig . 1 . 3

Since F ( x ) is not defined at one of these jumps , we shall define

it such that F ( x ) = F ( x + 0 ) . In the particular case where F ( x ) is

continuous , or in the case where it is continuous over some

region of its definition , it is possible to differentiate this function 

over that region such that dF ( x ) = f ( x ) dx . In this instance

f ( x ) is called the probability density , and thus the probability

that the variate will take on a value between x and x + dx is

given by f ( x ) dx . In the case that there exists a finite probability

at the point xi ' the value will be denoted by f ( xi ) .

This description of distribution functions can , of course , be

applied to any number of random variables . For example , F ( x , y )

would represent the probability that x would take on some value

equal to or less than this value of x at the same time that y

would take on a value equal to or less than that value of y . By

our previous definition of independence , if F ( x , y ) = Fl ( x ) FZ ( Y ) '

where the two functions Fl and Fz represent the distribution

functions of x and y respectively , then x and yare said to

be independent . If F ( x , y ) is differentiable with respect to both

8ZF ( x y )
then ' = f ( x y )

8x8y "

bility density of the two variables and f ( x , y ) dxdy represents the

probability that x will lie between x and x + dx at the same

time that y lies betweeny and y + dy .

Utilizing our previous concepts of probability , it is now possible 

to define the total probability density of x in terms of the

joint probability density of x and ( 00 f ( x , y ) dy = gl ( x ) and

) - 00
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the same method would obtain gZ (Y) . Now , if x and yare
independent , then f (x , y ) = g l (X)gz (y ) , and this is a necessary and
sufficient condition for independence of the variables .

Again , using our concepts of conditional probability , we may
now define the probability density of y for a fixed value of x .
Thus the conditional probability of x would be defined as hl (ylx )

= ii ~ ( )) . The same argument gives us the conditional probabi -
gl x f (x y )

lityof x for a fixed value of y as hz (xly ) = ~_7..\ . Thus thegz \ y ,
same fundamental principles which were defined in the section
on probability apply to probability functions , and the same arguments 

can be extended to any number of variables .

Expected Value

Let F (x ) be any distribution function of a random variable x

and let <I>(x ) be any continuous function defined over the region
of definition of the random variable x . Then , the expected value

of <I>(x) is defined as E [<I>(x)] = I : <I>(x)dF(x). In this case we
are using an elementary definition of the Stieltjes integral . In

n

the case of a discrete variable this would be equal to . L <j>(xi }f (Xi } '
1 = 1

and , in the case that F (x } is a continuous function , then it would

become! : <j>(x}f(x}dx. In the case that F(x} is a combination of
discrete and continuous parts , then , of course , this integral consists 

of a combination of the two . It is interesting to note that ,

if <I>(x ) is set equal to a new variabley , then , since the probabil -

ity density g(y) = f [<I>-l(y)] I f [<I>-l(y)] I ' the expected value of
y foo<I>(x ) equals the expected value of y and equals yg (y )dy . Thus

- 00

the expected value of any function with respect to a given distribution 
function is the same as the average with respect to its own

distribution function . The mean and the variance of any distribution 
function are defined respectively as follows :

Mean = E (x ) = ( 00 xdF (x ) = J.L) - 00
( 1. 11)

Variance = E [(X-J.L)2] = (00 (x-J.L)2dF(x)) - 00

Statistical Models Involving Differential Equations

Example Events occur at random along a line infinite in
length . A distance x is chosen at random anywhere along this
line . On the basis of the following four assumptions , let us
find the probability of exactly n events occurring in this length
x : ( 1) Statistical equilibrium (This hypothesizes that the probability 

of n observations occurring in length x is exactly the

same irrespective of where x originates and thus depends only
on the value of x . ) ( 2) The probability that one observation will
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fall in an interval dx is proportional to dx . ( 3) The probability 
of two or more events in an interval dx is of higher order

than dx . (4 ) The probability is differentiable with respect to x .
In general ,

P (n , x + dx ) = P (n , x )P (o , dx ) + P (n - l , x )P ( 1, dx ) + P (n - 2 , x )P ( 2 , dx )

+ . . .

and

P (o , dx ) = 1 - P ( I , dx ) - P (2, dx ) - . . .

Then

P(nix+dx)-P(nix) = dP(nix) = P(I,dx)[p( _1 )-P( )] +dx dx dx nix nix . . .

Then , under assumptions ( 1) , (2) , ( 3) ,

dP ( n , x )
dx + kP (n , x ) = kP (n - l , x ) ( 1. 12)

This is a first - order differential equation with integrating
factor ek :x; therefore ,

kx J kx..--e P (n , x ) = k e 1:-' (n - l , x )dx + c

For n = 0 , we must have P ( - I , x ) equal to zero , and , therefore ,

- kx
P ( o , x ) = ce

0

with c equal to unity . Using the integral solution recursively ,0
we have

n

(kx ) - kx
P (n , x ) = I e ( 1. 13)

n .

The assumption of statistical equilibrium permits the origin
of x to be chosen arbitrarily without affecting the probability
distribution function . This discrete probability function is known
as the Poisson distribution .

Example We shall next find the corresponding probabilitY distribution when the density of events is changing with time.
Let k (t ) be the density of the events along the previous line .

k ( t) r::::::::~~~~~:::.~_..-
t

Fig . 1. 4

* cf . Fry , Probability and its Engineering Uses , Van No strand ,
1928 , p . 233 . - -



P (n ,"t + d 't', t ) = P (n ,~ , t )P (o , d7:, t + ' t ) + P (n - l , ~ , t )P ( I , dt ' , t + 1; ) + . . .

and

P (o , d "t', t + 't') = 1 - P ( I , d 't", t + 't") - P (2, d ~, t + 7: ) - . . .

Since P ( 1, d -r, t + "t' ) = k (t + 1")d ' t, we now have the differential
equation

16

dP(n, 't", t} + k(t+ 7:}P(n, 't', t} = k(t+'L'}P(n-l, "C, t}d't' ( 1. 14)

If we let ,

i Tk(t+'t')d't'0K(t ,i:} =

we can solve the above equation by using an integrating factor
eK (tir ) . The solution gives P (n , 7; , t ) in terms of P (n - l , 7; , t ) .
Using the facts that P ( - l , ' r , t ) = 0 and that the sum of the P for
all n is unity , we can show that :

P {nit ", t ) = ~ ~~:-: :n! (1. 15)

This is again the Poisson distribution , although for each ' t'
and t we must find K , and indicates great generality for purposes 

of application of this distribution .

Again , consider the case of a finite population of size N , where ,
on the average , a fraction K of the population are expected to
fail , and where failures occur at random . However , once a
member fails , it is no longer in the population , so that the
population is reduced continually . If N is very large and K is
small , we have the Poisson distribution . However , let us consider 

the situation where this is not the case .

Let P {n ' , 't', t ) = probability that n ' items fail in time "/;
following time t .

P {n ' , 1:, tin ) = probability that n ' items fail in time "t' , after
t given that n items failed in time t .

P(n',7:+d~ o) = P(n', ':', 0) [l -(N-n')Kd"t'- . . .]

+ P(n'- l , 7;, o)(N-n'+ l )kd1' + . . .

N = size of population at time O.
K = average fraction of failures per unit time .
We assume ( 1) The probability of one failure in time d " is

proportional to d"t' and to the size of the population = K (Nn )d1;:
(2) The probability of more than one failure is of higher order
than d1:. (3) The function P is differentiable with respect to ~ .
(4) Statistical equilibrium exists . Then

Thus the probability that an observation occurs between t and
t + dt is k (t )dt .

Let P ( n , 1:", t } = the probability of n calls occurring within a
time T after a beginning instant t . We wish to find this probability

. The following relations may be seen to hold .
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which yields

dP(n',-r, 0) +d'r (Nn ')KP(n', 1:,0) = (N -n '+ l)kP{n'- 1,"t, 0)
P(-lir ,O) = 0, and we now have as the solution

N! -NK'r K"C n'
(1\T _I\I_IIN I I II e (e -1)\J.~-n/.n.

For n ' = 0,

(1. 16)P(n' , 't' , o} =

To generalize the analysis , we may use the P {n ' , I: , 0) to obtain
P {n ' , "r, tIn ) by replacing N by Nn , and zero by t . Thus ,

P(n' "l' tin) = (N -n)! -(N -n)K"l' K'r n', , nl~(N-n-nl)~ e (e -1)
Since

n '
P (n ' , 7: , t } = ~ P(n' , "t' , Tin)P(n, t , 0)

n = o

which we can rewrite as

n'
- N! -NK(t+7')( K1: l)n' ~ (N -n')! ( K(t+'t") K'l:)n- n'!(N-n')! een !'N-n'-n\! e -en = 0 [J..\J.~-[J.-[J.J.
If we re CO R!}ize the sum as the binomial expansion of(l-eKT+ e~(t+1:))N-n', then*
P(n"Z':t) = N! (eK'r 1)n' -NK(t+?:)(1 K't' K(t+'t') N-n'" n'!(N-n'}! - e -e +e )

(1. 17)
Mathematical Models Involving Difference Equations

The probability of obtaining-exactly x success in t independent 
trials, assuming the probability of success on the kth

trial is Pk' can be found as the solution of the difference equation

Pxt = PtPx- l , t- l + qtPx, t- l

where Pxt is the probability that is required and the following

boundary conditions are specified .

Px , o = oX ) O , poo = l , Pot = qlqZ . . . qt t > o

* For a consideration of the case of the continuous density function

, see A . J . Lotka , Th ~ orie Ana1ytique des Associations

Biologiques , Vol . 2 , Actua1it ~ s Scientifiques et Industrie11es ,

No . 780 ( 1939 ) , Hermann et Cie , Paris .
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Assume a solution of the form

00

~

x = o

x
a.t(~) = Po,t + Pl,t't; + ... = Px,tl;

then
Q )

~

x = 1

xqtP x, t- 1 r;qtat-l(~) = qtPo, t-l +

00 x

 Ptat- l(t;) : ~ I Pt Px-lit - l 

Where , by the addition of these two expressions and with the
aid of the boundary condition , we have

a. t (.;) = (p t t; + qJ a. t - 1 ( ~ ) and a. (~) = 00
Therefore ,

a. t (f:;;) = (Pl~ + ql )(P2~ + q2). . . (Pt~ + qJ

If all the Pk are equal , we , of course , obtain the binomial distribution from the coefficient of SX in (p~ + q)t or

= (t)(t-I). . . (t-x+ 1) pXqt-x = C(t, x)pXqt-x (1. 18)Px,t x!
Example Two companies A and B , at the present time , have

an equal chance of obtaining any new customer who comes into
the market . By increasing the advertising budget , A can
increase its probability to p = . 75 . The executives do not wish
to proceed spending this money unless they are reason  ably sure
that they can obtain 100 new customers before the competition
can obtain 50 . We may compute this probability from the difference 

equation

P t = .75p _1 t + .25p t 1x, x , x, -

where p t is the probability that A will obtain his 100 customers
before ff 'lll S 50, where A has x to go to reach 100 and B has t
remaining to reach 50. The boundary conditions are

x >o

t > o
Poo = 0

00-~ 2:t- P C;ot = 0 x,ta (~)=p + p ~+ p ~2+x x, 0 x, 1 x, 2If . . .

then , as before ,

Px,   = 0
Po,t = 1
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o.x( ) = ~ o.X-l(';) and o.o(t; ) = ~
whence a. (5)= ~(.75)xx (1- 5)(1-. 25t;)x
and thus

P = PlOO, 50 = (.75)100 [l+l. (o 25) + (lOO)(i~Ol)(. 75)2 +

l
- - J

. . .

where

W( l :n;O, nZ' n3) = W(Z:n;nl ' 0, n3) = W(3:n;nl ' nZ' 0) = 0

W( l :n;n, 0, 0) = P Ia 11 n- l ; W(Z:n;On, 0) = pzaz: - l ;
n - l

= P3a33W(3:n;O, 0, n)

Let us now consider this probabilistic situation by considering
the following generating functions and remembering that one of
the categories ( 3 in this case ) is dependent :

Example Let us consider a sequence of trials which are the

result of correlated events and where the outcome for any trial

can result in the occurrence of anyone of three categories . The

next trial is related to the present outcome in a probability sense .

Let Pi equal the unconditional probability of the occurrence of

category i ( i = 1 , 2 , 3 ) such that PI + P2 + P3 = 1 . Also , Ail is the

conditional probability that category i will occur in the next trial

given that category j occurred in the present trial ( i , j = 1 , 2 , 3 ) .

The aij ' s are not all independent , since , of course ,

Pi = Piai 1 + PZaiZ + P3ai3 i = 1 , Z , 3

Let W ( i : n ; nl ' nz . ' n3 ) be the probability of exactly nl instances of

category 1 , n2 instances of cate1ory 2 , n3 instances of category 3
out of n trials , but where the n h trial belonged to category i

( i = 1 , 2 , 3 ) . Then the following difference equations hold with the

necessary boundary conditions , provided the notation is simplified

?,-

as W ( i : n ; n l ' nZ ' n3 ) = U ( i ) and . }: : : U ( i ) = U
1 = 1

( 1 ) W ( I : n + I ; nZ , n3 ) = a I I U ( I ) + a I Z U ( Z ) + a  I3  U ( 3 )

( 2 ) W ( Z : n + I ; n I ' nZ + 1 , n3 ) = all U ( 1 ) + a Z Z U ( Z ) + a Z3  U ( 3 )

( 3 ) W ( 3 : n + I ; n l ' nZ ' n3 + 1 ) = a31 U ( 1 ) + a3Z U ( Z ) + a33 U ( 3 )
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 ro n ':'nI nn nn

f(i) = ~ ~ ~ U(i)xllx22 X3
n = I n = 0 n = 0

2 1

where i = 1, 2, 3 are the corresponding generating functions for
the above situations so that

ron - nI n - nI n2 n
f (X I ' X2' X3) = f ( 1) + f (2) + f (3) = ~ ~ ~ UxI x2 x3

n = I n = 0 n = 0
2 1

and sum

Two more equations for the f (i ) ' s may be obtained by multiplying
nl nZ+ I n+ I

the second equation by xl Xz x3 and the last equation , where
. 3 b nl nZ n+ I d . . Sh1 = , Y Xl Xz x3 an summing again . 0, we aye

These equations can be solved for f ( l ) , f (2) , and f (3) , and the
determinant of the coefficients is

��

A =

a13x3 a32x3

which is different from zero in the neighborhood of xl = Xz = x3 = o.
In fact , it is equal to

A = 6XIX2X; - X~[AIIX2+A22Xl+A33 Xl X2 J
x3(allxl +a22x2+a33) - 1+

where

nI + I nZ n + l

Multiply the first equation where i = I by xl Xz x3

over all indices and use the initial conditions to obtain

( allxlx3 - I } f ( I ) + a I Zxlx3f ( Z } + 3. 13 Xl  X3f ( 3 } = - Plxlx3

allxlx3-1

a Zlx Zx3

a12xlx3

a22x2x3-1

a13xlx3

al3xlx3

a33x3-1

a Z1x Zx3f ( 1) + (a Z  Zx  Zx3 - 1) f ( Z) + a Z3x1x3f ( 3 ) = - PZxZx3

and

a31x3f ( 1) + a3Zx3f ( Z) + ( a33x3 - 1) f ( 3 ) = - P3x3
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��

6 =

and Ali are the co factors .
Therefore ,

 (X1' Xl ' x3) =  ( 1) +  (l ) +  (3) = ~
where

Xl XZX; + X~ [Xl xZ(A33 -P3b.) + xI(AZZ-pZ b.) + xZ(A II -P I b.)]B = -

- (Plxl+Plxl+P3)x3
this reduces to
and the coefficient

If the events themselves are independent ,
the generating function for the multinomial ,
of xn is

(P I Xl+PZXZ+p3)n
In the case where the number of categories is reduced to two ,
we have

A xlx~+(Plxl+PZ)xZ
f (xl ' xZ) = Z- (a x + a Z Z)xZ+ 1A xlxZ 11 1

(1. 19)

f (x)00 = e

a13

a Z3

a33

all

a Z

a

all

all

a3l

When all of the events are independent and equal to the Pi ' s , we

have the generating function for the binomial so that the coefficient 
of x ~ is (PI x + pZ ) n

Thus the case oj dependence between the occurrence of the
success  es in the various trials can be determined . BO . Koopman *

obtained the equivalent to the Poisson distribution when acor -
relation r existed between subsequent trials . The limiting
value of the binomial with this correlation r is

- c ( I - r ) ( I - x )
I - rx

where c = np and is the limit of this product as n .... 00 and p - o.
Applications of Probability Theory

Example A seasonal article which must be ordered in advance
and stocked by a department store sells for $100 per unit and
costs the store $50 per unit irrespective of disposal; however,�
* Proco Nato Acado Scio Uo So Ao, 36, 202-207 (1950)
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P A = lO Oz + 35 (x - z ) S Ox = 6Sz

= S Ox

15x o < z < x

PB z :>x

x ,

x 00

= L; ( 65z - 15x )f (z ) + L;
0 x +

z = x

50xf (z ) = 50x + 65 ~ (z - x )f (z )
1 z = 0

An obvious method of arriving at the maximum profit would be
to evaluate this function at successive points until the maximum
is located . For illustrative purposes we have carried out this
calculation , with the results shown in Fig . 1. 5.

   P {x }

400

300

200

100

I lJJ 1-1-
0 5 10 15 20 25 30 35 40 x

Expected Profit P {x } Ys . Amount Stocked x

Fig . 1. 5

any article not sold during the season must be sold at a sacrifice 
to a special dealer for $ 35 per unit . Given that the distribution 

of customer orders for the item is f (z ) = e - 9 9z / z !

( z = 0 , 1, 2, . . . , 00) and that the number of orders during any
season is a random draw from this distribution , how many units
should be stocked in order to maximize the expected value of the
profit ?

Letting x denote an arbitrary number of units stocked , we
shall express the expected value of the profit as a function of x ,
say P {x } , and then determine x so as to maximize this function .
The profit function is
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To determine the optimum value of x , let us investigate
whether we would increase or decrease the expected profit by
increasing x by one unit . By substitution ,

x + 1 x

P {x + 1) = 50 {x + 1) + 65 ~ (z - x - 1)f {z ) = 50 {x + 1) + 65 ~ (z - x - 1)f {z )
0 0
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100( x < 200:

x

= 50 - 65 ~ f ( z ) = 50 - 65F ( x )

0

where F ( x ) is the value of the distribution function of z at z = x .

From the latter equation , it is clear that A P ( x ) will be positive

as long as F ( x ) < 50 / 65 ~ nd wi ~ be negative when F ( x ) > 50 / 65 ,

while , if F ( x ) = 50 / 65 , P ( x ) = P ( x + 1 ) . Therefore , the maximum

value of the profit will be obtained if we choose x ' to be the

smallest value for which AP ( x ) is zero or negative . For , in

case F ( x ) = 50 / 65 for an integral value of x , ' we would get the

same expected profit with x as with x + 1 , and the smaller

number has the advantage of smaller investment .

Example A company has a sole purchaser for its product . If

this purchaser on a particular day does not obtain the number of

items which he requests , he will merely buy them on the open

market , but his failure to obtain the necessary number from this

company does not affect any future course of action . The margin

of profit on the item is m dollars , and , since the item is

perishable , the loss is n dollars for any items not sold to this

single purchaser . This purchaser will buy either 100 , ZOO , or

300 items on a given day , with probabilities P I ' PZ ' 1 - pi - PZ

respectively . What should be the strategy of the company in

order to maximize its profits ?

Let x be the number of items the company produces . It is

clear that x will not be greater than 300 , since this is the

maximum number which can be sold . The profit will be given by

diffe : rent mathematical expressions , depending on whether x is

less than 100 , between 100 and ZOO , and between ZOO and 300 .

The following is the expected value of the profit ( P ) for each of

these ranges of x .

since (z-x - l ) = 0, when z = x + 1. Subtracting P { x) from P {x+ 1),
we find that the difference is

x
~ P (x) = P (x+ 1) - P (x) = 50 + 65 ~ [ (z-x - l ) - (z-x) ] f (z)0
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200 " x ~ 300:    Pz [ZOOm- n(x - ZOO]

E (P )

a 100 200 300 x

Number of items

fV
x

mx [1- fX

IX [ (m + n)v - nxJ f (v)dv +0
P{x) = mxf (v)dv

IV  (v}dvJ,or , rewriting rnxf (v )dv as

x 0
the expected value becomes

E(P) = PI [ I O Om-n(x- IOO)] +

+ ( I - PI - PZ)mx = ZOOm - IOO(m + n)PI

+ (x-ZOO) [m-(m+ n)(p I + PZ)]

Fig . 1. 6

In a simple case like this , one would guess without any analysis
that there are only three strategies capable of maximizing the
profit . The company would produce 100, 200 , or 300 items .
This is clearly shown in Fig . 1. 6, where the expected value of
the profit is plotted against x . In examining the equation for the
expected value of the profit in the range from x = 100 to x = 200,
we see that the slope is positive if PI < m / m + n, which means
that , if this inequality holds , 200 items should be produced as
the profit increases continuously from x = 100 to x = 200. If ,
however , the slope is negative , the company would , of course ,
make only the 100 items . If we now examine the equation for the
expected profit in the final range , that is from 200 to 300 , we
find that the slope is positive for this segment if p 1+ P2 < m / m + n,
which again gives the condition that the company should move to
the 300- item level . It is obviously impossible for the slope to be
negative in the middle range and positive in the final range .
Therefore , the best strategy out of a theoretically infinite number
of possible strategies is determined by comparing the probabilities
PI and Pl +P2 with the ratio m / (m + n) of marginal profit per item
to the sum of marginal profit per item and loss per item . The
same analysis holds for a continuous demand which has the
probability density function f (v)o < v < 00, since in this case the
expected value of the profit is



so the maximum average profit is reached if xthat
F x = m = unit profit( ) m+ n unit profit + unit loss

If m = $ 1 and n = $ 2, then x must be chosen so that the area
under f (v ) to its left will equal 1/ 3.

It might be interesting to ask the question , at this point , as to
what would happen if the loss of sales due to lack of the item
might also produce a los s to the company because of a good - will
factor . This loss of future profit could be taken into account
during the current year by assigning a net loss to the company
for each item for which there is a demand that cannot be supplied .
From a practical viewpoint , the loss per item might beproportionately 

greater in case there were many items which could not
be suppliedo However , for illustrative purposes , let us consider
that the loss to the company is a constant for each item that cannot 

be supplied . The integral for the expected value of the profit
would then be

This is a situation in which a sales forecast indicates that the
amount to be sold is s, but previous history indicates that there
is an error in estimating the sales and that this error is equally
likely to assume any value from - b to b. What is the additional
profit that would be realized by stocking the number which maxi -
mizes the profit rather than stocking the amounts which is the

25

(m + n ) 5x (V- X)f (V)dV0
P {x } = mx +

is so chosen

x fvP(x) =) [(rnt n)v-nx]  (v)dv t [rnx-a(v-x)]  (v)dv0 x
where a is the loss to the company for each item not available
to a customer . Differentiating this function with respect to x
we obtain

m+aF(x} = m+ a+ n
Therefore , the effect of the good - will factor in determining the
value of x for the best strategy is to add the loss per item due
to good will to the margin of profit per item in order to determine
an effective margin of profit .

In the above example without considering good will let us suppose 
that the probability density of sales can be represented by

1
 (v) = 2b (s-b::::: v ~s+b)

if we stock s

1 fs [ 1 (s+ bE{Ps) = 2b (m+ n)x-ns J dx + 2b)s-bs
estimated sale of the item ?

The expected value of the profit {P },



By choosing n sufficiently large in this formula , it is seen that
the expected profit may become negative . The possibility of this
situation is enhanced when b is almost as large as s. The
expression for the maximum expected value of the profit is given
by

lOOk(m-n)2 ~ 25k [1..!~~](m+ n) [4m-k(m+ n)] l+K
lO~ J~ Eim+n -
sm-ks(~ ) -
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1 (y 1 fS+bE(P max) = 2b) b [mx-n(s-x)] dx + 2b msdxsy

where
- m (s + b ) + n ( s - b )

y - m + n

Evaluating the maximum expected value of the profit by substituting 
this value of y in the integral for E (P ) , we obtain

max

E(P ) = ms - ~max m+n

The last approximate value is obtained under the as sumption that
k (mtn ) is small compared to 4m and with the notation that K
is the ratio of n to m . As an illustration , if we lose $ 2 for
every $ 1 ( the margin of profit ) so that K = 2 and the range of
error of the estimate of the sales forecast is t 25%, then the
percentage gain in profit is approximately 2%.- If , however ,
k = 3 in this instance , the gain is about 6%.

Example Raw material must be ordered ill the spring for sale in
a finished product in the fall . The cost of raw material is $ c I
per item . If this raw material is not used , it has a scrap value

which is $ cZ ' where cZ < cI ' The raw material may be processed

Even for b = s , this expression still remains positive for any n .

The net gain in profit by stocking the value y rather than the

value s is now obtained by subtracting the two expected profits
as

2

E ( P ) - E ( P ) = b ( m - n )
max s " 4 ( m + n }

This expression is equal to zero when m = n , but for m f n the

gain is always positive . The numerical unit of this calculated

difference is necessarily the total gain in dollars since b has

the unit of number of items and both m and n are in dollars .

This calculated difference is independent of s , but , of course ,

in most practical cases the range of error of forecasting is a

function of the value forecasted . If we assume a constant percentage 
error of estimate in the sales , then b = ks ( where k , in

this case , must lie between 0 and 1 ) and the percentage gain in

profit would be given by



It is tentatively assumed at this point in the analysis that there is
no restriction on the amounty which can be manufactured during
the season , and the integral for this expected profit can be differentiated 

first with respect to x and then with respect to y .
For this situation the derivatives with respect to the limits

on the integrals cancel each other in both equations because of
the continuity conditions that exist from one range of v to the
next . The only time that differentiation with respect to the limits
produces non - vanishing terms is when a setup charge or its
equivalent is introduced at a particular volume of sales so that
it occurs in one integral and not the other , which is not true here .
Therefore , we have for the two derivatives
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during the summer at a cost of g l (x ) dollars per item (that is ,
the unit cost ) , where x is the number to be manufactured . The
loss that is incurred on those completed products which are not
sold can be again expressed as the fact that the scrap value is
$ c3 per item . It is here assumed that the scrap value is less
than the cost incurred to produce the item . On the other hand ,
it is possible to produce W items during the fall season (thus at
the time that the demand is known ) at a higher rate of g2 (W )
dollars per item so that one never has to suffer the loss on
manufactured goods not sold , but merely on the raw material .
There is , however , a maximum total number (A ) which can be
produced during the season of sale itself because of limited
plant capacity . With a selling price of $ s per item , what is the
maximum amount of raw material to be ordered and how much
should be processed during the summer in order to maximize the
profit , assuming the probability of sales can be represented by a
density function f (v ) 0 <v < oo ?

Assuming that the total number of pieces of raw material is
made up of the x pieces which are to be manufactured during
the summer and y pieces which are to be produced during the
season if the demand is demonstrated , we have for the expected
value of the profit the following expression , where it must be
remembered that the function representing the profit differs in
the three ranges of the volume of sales , namely , o <v <x ,
x <v -<x + y , andx + y <v <oo.

Expected profit = E(P) = fx [sv-Cl(X+ y)-xgl(x)+ cZy+ C3(X-V)) f(v)dv
0

fx+y+ x [sv- C l (x+ y) -xg 1 (x)-(v-x)gZ(v-x)+ cZ(x+ y-v)] f(v)dv
CD

+5 [s(x+y)-cl(x+y)-xgl(x)-ygZ(Y)] f(v)dvx+y

oE(P) d fx+ yOX = - c 1 + c3 - -ax [ xg 1 (x)] + (cZ-c3) x f(v)dv

fX+Y d 00- d [(v-x)gZ(v-x)l f(v)dv + (S-C3)! f(v)dvx x J x+ Y
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oE(P) = -c + c + [S-C -~ [yg2(y)J] J (X) f(v)dvay- 1 2 2 d Y x+ Y
The integral involving ~ [ (v - x )gZ (v - x )] must be kept intact , since
this term involves v , which is the variable of integration ; whereas
the other coefficients of f (v ) in the several integrals are constants .

Following the usual technique , one would set these two derivatives 
equal to zero in order to obtain a stationary point as the

minimum . This would generate two equations in the two unknowns
x and y , which could then be solved by any of several methods

of successive approximations .
It must be noted that in this problem there are very definite

restrictions which have to be satisfied , and a stationary point may
not occur within these limitations . The total area under the
probability density f (v ) must equal unity , x and y must each be
equal to or greater than zero , and y cannot be greater than A .
Such minimization with bilateral restrictions is , of course , often
found in practical applications . In order to analyze the difficulties 

and to illustrate the solution of a problem in this category ,

we now simplify the above expressions by assuming gl (x ) and
gZ (W ) to be constants c4 and c5 respectively . Then

fX+Y(cZ- c3+ cS) x

00(S-C3}jx+y~~ = (-cl+ c3+ c4) +ax f (v )dv +  (v}dv

00
[S-cz-cs] fxty8E {P ) = - cl + Cz +- -ay - f (v}dv

If the expression for ~ is set equal to zero ,
we have

C -Cz(X) 1f f(v)dv = s-cZ-cSx+y
Since c 1:> cz and s >c 1 + cs by the conditions imposed upon the

problem , this integral is always positive and less than unity . It
therefore always uniquely determines the value of x + y if the
function f (v) is given , and thus the stationary point , as far as

~ is concerned , is also uniquely determined .

Substituting this value for the integral in ~ , we have

8E(P) 5x + y (s- c )(c - c )Ox. = (- cl + c3+ c4) + (cZ- c3+ CS) f (v)dv + 3 1 Zx s- cZ- cS

which gives the slope of the E(P) surface in the x direction .
. . . . . h t 8E(P)For a statIonary point to exist , it 1S necessary t a ax

change sign . This is not always the case, as one can see by
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letting c3 = c5 and cZ = 0 , which are possible values of these constants
. The sign of the derivative is then always positive , which

indicates that the profit is increasing with x , so that we should
not plan to produce any of the product after the season starts .
Since the value of x + y is known from the integral and y = 0 , we
have determined the amount of x to order . The exact opposite
conclusion would be the case if for some values of the constants ,
the derivative were always negative with , therefore , x = 0 and
thus y = x + y . This , of course , neglects the limitation on the
total amount of y possible . More generally , the fact that

Jx + y frof (v }dv is restricted to lie between 0 and 1 - f (v }dv means
x a E (p } x + y

that there are many situations where ax will not change sign
in the possible region of the integral , and the above argument
will again necessarily follow . For some ranges of the constants ,

the partial derivative ~ can be set equal to zero and a value

for r : + y f (v }dv determinid which is within its range of possibility .
In this case , we have a unig .ue stationary point and can calculate
the values of x and y .

After x and yare determined , we must now consider the
restriction that y ~ A . If y comes out les s than or equal to A ,
we have the final solution to the problem . If , howevery is
greater than A , it indicates that y should be as large as possible ,
namely , A . We cannot , however , assign the excess of y over A
to x , since this may not produce a maximum profit , but E (P } must
be again set up as a function of x alone as

J :
[ SV- c l {x + A ) - xg l {x )+ C ZA+ c3 {x - v )] f {v)dv

+

E(P) =

This function can now be differentiated with respect to x and the
derivative set equal to zero . Since the conditions of the problem
were such that a profit is possible , and the range of x is
between 0 and 00, this process will yield a stationary point and
therefore constitute a solution to the problem .

Example In 1920 Rutherford , Chadwick , and Ellis studied the
emission of a - particles from a radioactive substance . It was
found empirically that the distribution of the number of particles
emitted during a time interval of 7. 5 seconds was adequately
represented by a Poisson distribution with IJ. = 3. 87 , or more
generally that the number of particles emitted in t seconds
was a Poisson variate with IJ. = pt , where p = 3. 87 / 7. 5 = . 516 .
Instrumentally , it is customary to clock the length of time
taken to register a fixed number of particles rather than to
count the number of particles emitted during a fixed
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Distribution of Waiting
Time for Emission of
n+ 1 a. - Particles

In particular , for the problem at hand ,
distribution is

n = 39, P = . 516 , and the

40
f(t) = 1~_~~~.- t39 e- (. 516)t (0 ~ t <00)

Therefore, the distribution of waiting time t for the emission of
n+ 1 particles is

n+ 1 t( ) - p n -pf t - r {n+ 1) te (0, 00)

interval of time. Let us find the distribution of the length of
time required to register 40 particles. In general, let G(t)
denote the probability that it will take more than t seconds for
the emission of n+ 1 particles. Clearly, this can happen in n+ 1
mutually exclusive ways, namely by the emission of any smaller
number of particles 0, 1, 2, . . . , n in t seconds. Hence, the
corresponding total probability,. obtained by summing the separate
probabilities of each number of particles as given by the Poisson
distribl.ltion, is

n y
G(t) = ~ e-1J. ~

y = 0 y.
and the latter sum can be expressed as an integral, which yields

fro
1 n -x

G(t) = r (n+ 1) IJ. x e dx

Now the distribution function F(t) is the complement of G(t),whence

1 if ./. n -xF(t) = 1 - G(t) = r (n+ 1) 0 x e dx
and the density function f(t) is given by

n+ 1
f( ) = ~ ill = ..<:!~ ~ = P tn - ptt dt df./. dt r (n+ 1) e

Further interesting deductions follow readily from this result .

Setting n = OJ we find that the distribution of waiting time for one

particle is gi yen by the exponential distribution

f ( t ) = pe - pt ( 0 ~ t < 00 ) ( 1 . 20 )

Example The mail arrives at Company A some time between

8 a . m . and 9 a . m . , and for practical purposes it is equally likely

to be any time within that hour . The office boy must have the

president ' s mail delivered to him by 9 a . m . The boy apparently

delivers the mail any time between its arrival at the company
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-15
Pl(n) = e (15)nn! (n = 0, 1, 2, . . . , 00)

and

n-x x
P2{xlil ) = C{nt x)(. 88) (. 12) (x = Ot 1, . . . , n)

The joint probability of n cars and x stops will thus be the
product of these two probabilities . The answer to our problem
is , of course , the marginal distribution of x , and this is obtained

and 9 a . m . , and again , the time of this delivery is equally likely
within the limits of the possible time interval . What is the probability 

that the mail will reach the president ' s desk between t and
t + d t ?

The probability that the mail will be delivered to the company
between T and T + dT is dT II (since the unit of time is an hour )
while the conditional probability that it will be delivered to the
president ' s desk between t and t + dt , knowing that it arrived at
the company in the neighborhood of T , is dt / (9- T ). By definition
the joint probability that the mail will arrive at the company
between T and T + dT and be delivered to the president between t
and t + dt is

P(Tit)dT dt = ~ (8<T<9; T<t<9)
Having obtained the joint distribution , the two margin  als can be
evaluated by means of integration . However , the marginal or
total probability of T is already known and the answer to our
question involves the marginal distribution of t , which is

St dTP l (t )dt = dt 9T = - In (9 - t ) dt ( 8 < t <9)
8 -

where again the unit of tirne is an hour . The area under the PI (t )
curve is , of course , unity .

Example The average number of cars per day that take a
country - road connection between two main roads is 15 . The only
building located on this road is an antique shop , and the percentage
of cars which go through this road that stop at the shop is . 12.
What is the chance that exactly x cars stop at the antique shop
on a given day ?

Since the average number of cars per day is given and no further
information regarding their destination or reason for traveling
the road is contained in the statement , the only reasonable assumption 

one can make is that the number of cars is Poisson distributed

on any given day . This would be equivalent to assuming that the
cars go through this road individually and collectively at random .
However , if it is known that n cars travel through this road on
a given day with a constant probability of . 12 of stopping , then
the conditional probability of exactly x stops out of n cars must
be binomially distributed . These two distributions are :



32

by summing over n . It is to be observed that n must be at least
as large as x or otherwise it would be impossible to have
available the x cars to stop at the antique shop . Therefore ,

By setting n - x = y and observing that the resulting summation
is merely the expansion for eZ, one obtains the result

Then

Nw(T) = NfTf (7:)d'1:[ l - fTg (tl 't-')dt]0 "t'

00 - 15 n
P3(x) = 2::; e - ,( 15) C(n, x)(. 88)n-x(. 12)'Xn.n = x

Nf ('t'} d 'l: = number who enter between "t" and1 : + d1:

fT g(t 1-C-}dt = fraction of those people who corne in at 7: andr leave between t ' and T .

1- iT g (tl7 :)dt = fraction who enter at ~ and are still in the store
't" at time T .

P3(X) = e-15(. ~2)x(15)~ ~ (15);~,. 88)Y = e-(15)(. 12) ((15)(. 12)J xx. Y .. I -xy =o . .
This result is very general, and, if the average number of cars
were A and the probability of a car stopping p, then the probability of exactly x stops on anyone day would be given by a
Poisson distribution with the parameter l.1. equal to Ap.

Example In a department store customers arrive in the time
interval from 9 a. m. to 5 p. m. according to some distribution,
which may be interpreted as a density function of time at arrival.
Thus the total number of customers entering the store between '?;"
and ~+ d"t: is Nf{"t)d 1:', where N is the total number of customers
in anyone day. The probability that a person corning in at time 't:"
will leave between t and t+ dt will, of course, be denoted by
g{t I'r')dt. What is the distribution of the number of people in the
store between the hours of 9 a. m. and 5 p. m. ?

If we change the scale so that 0 corresponds to 9 a. m. and 1
to 5 p. m. and redefine our notation accordingly, we have the condition that the integral of Nf{7:)d't;' from 0 to 1 is equal to N. We
also have the condition that the integral of the conditional distribution 

g{t I't')dt from"t: to 1 must equal unity. The average number of
people actually in the store at any time T is given by Nw{T), wherew{T) is the function to be determined. Now

which now permits w (T ) to be evaluated if f (' t ) and g(t \'t') are known .

Example In the inspection of light bulbs , vacuum tubes , condensers
, and many  other items , where a destructive test is necessary

in order to determine their life or other characteristics , it is
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 desirable often to simplify the testing techniques . For example ,
if one is testing electric light bulbs in order to determine the length
of life , out of n bulbs tested , it is possible that some of these will
continue to burn for a long while and that a test rack or shipment
will be held up for this period . One technique to overcome this
difficulty is to test a large number of items , but on the basis of the
time to failure of the first few , determine the characteristics of
the entire lot .

, where t is the mean life of

[~ {~- t / f 1 n- 2
e dt J [O<tl<mt2>tl= (~)(n-l) e [t 1 + (n-l)tZ]r dtldtZ

It must be true , of course , that

)~)~P(tl ' tZ)dtldtz = 1

tz- (n-l)t dtzp = n(n-l) fc/n-2t 0dtle

/ - c= 1 - e - c t ( 1+ = )
t

Assuming a very simple life curve for electric
1 -t/flight bulbs of the form p(t) = =et

a large lot, the probability that an individual bulb will burn out
between t and t+ dt is p(t)dt. For a fixed value of t , what is the
probability of obtaining a pair of values for tl and tz which would
be less probable than a given observed pair?

If n bulbs are placed on the test rack and the time to failure
observed in all cases, we would produce a series of times tI ' tz,
. . . , tn which we might consider in a sequence of order in which
t 1 is the smallest and tn the longest. The joint distribution of t 1
and tz may be obtained in the usual way as

- n! 1 -tIlt [ 1 -tZ/t J.P(tI ' tZ)dtIdtZ - I! I! (n-Z)! [Te dtIJ fe dtZ

-

e
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tz
(a, b)

0

Fig. 1. 7

f (v, c)dvdc = [lOdc] [ c2ve-CVdv]

g(v}dv =

P (v >9) =

dv

Since cisfixed by the observed value of the first and second
bulb to burn out , and if we know the value of t : then the area as
found from the above expression will give the probability that we
would observe by chance a sample which might be considered
" worse " than that which was observed .

Example The selling price of a specific article to the public
will vary somewhere between $. 25 and $. 35 per item , depending
upon the final cost of production as determined from the initial
run . It is assumed that any price within this range is equally
likely to occur . However , the volume of the sales as a probability
density function is dependent upon this final retail figure and ,
expressed in millions of pieces , is of the form f (vlc ) = (cZv )e- CV
O<v <ro , where c is the cost per piece in dollars . The effect of
substituting values of c ranging from . 25 to . 35 in this equation
is gradually to move the mode of the curve toward the y axis ;
thus increasing the price reduces the volume of sales . What is
the probability that the sales will exceed 9 million pieces ?

Since the probability that the price will lie between c and c+ dc
is lOdc and the conditional probability of vlc is as indicated above ,
the joint probability may be directly computed as

From this expression the marginal distribution of v can now be
obtained by integrating over the variable c. Thus



Let us assume that time is an equally likely variable over any
range and therefore its density function can be represented by
g(t ) = liT 0 <: t <T . Find the conditional distribution of t for a
fixed value of x .

The joint probability that x emanations will be observed and
the corresponding time t ' falls between t and t+ dt is
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Example Particles are emanating from a radioactive source at
an average rate of a impulses per unit of time . Since these
pulses occur at random , they can be described by a Poisson distribution 

which , for a given time period , t , gives the following
probability for exactly x emanations :

P(xlt) = (at)x eatx! (x = 0, 1 , 2,- . . . , (X) )

 1 (x, t)dt = E!- (at)x eatT x!
Since this joint distribution is a function of x and t , it is now
possible to integrate t over the appropriate limits and obtain
the marginal distribution of x (the marginal distribution of t ,
of course , is known ) as

T
f2(x) = .! ( (at)xe-atdtT ) ..IX0 .

We know , however , that the required conditional probability
w (ttx )dt can be obtai .ned by dividing the joint probability fl (X' t )dt
by the marginal distribution fZ (x ) . Thus

w(tlx)dt = (at)xe-atdtTS (at)x -at0 e dt
It is now possible to let T ~ ro , thus permit  ting the denominator of

the above expression to be evaluated as a Gamma function . Thus

the final probability that t ' will lie between t and t + dt at the

same time that x ( the number of emanations ) assumes a given

fixed value is given by

x - at

w ( tlx ) dt = a ( at ) Ie dt ( O < t < oo )

x .

which is the same answer as previously derived .

Example The number of orders n per day for a certain

chemical is Poisson distributed ( parameter fJ . ) , and the weight in

lbs . per order is exponentially distributed ( parameter ( 3 ) .

Assuming that the weights from order to order are independent ,

find the distribution of total weight of orders per day .

Denote the weight of the ith order in a day by Yi and the total

weight of n orders by w . Since w - = 0 if n = 0 , and the latter
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event has a finite probability of occurrence (e - jJ.) , the distribution
function of w is discontinuous at zero . Thus , for w = 0 , we have ,

P {w = 0) = P {n = 0) = e - jJ.

However , a density function exists for w > O .

Consider a fixed number of orders n > O . Then , if

w = Yl + Y2 + . . . + Yn , the conditional distribution of w becomes

<I>(Win) = 1 wn-lew /1313 nr(n) (0, 00)

Since n is an integer ,
the joint distribution of

we may replace r (n} by (n- l )! and write
nand w for n > a as follows :

n

 (n, w) = e- fJ.~ lwn - lew / f3
n. f3n(n- l )!

1!:::!!: n - 1

~ - /J. - w/ f3 ( f3 ) (n = 1, 2, . . . , 00;
= f3 een ! (n - l )! O<w <oo)

(X) J!::!!' k

h(w) = }::; f(n,w) =~e-lJ.e-w/ l3; ( 13)
n = 1 13 k = 0 k ~ (k + 1) ~

(o <w <oo)

where k = n - 1 .

We recognize this series as the modified Bessel function of the

first kind of order unity . The latter function (symbol Il (u)) may
be expressed as follows :

lk
u

u ro (""2;")
II (u) = "2 ~ k 1/1_-'- 1 \ 'k+ 1

k = 0 ~ . \ ~ T .1. / -

l

Substituting T = (7) , we thus obtain

h(w) = e-JJ. ~ w-1/lew/13 Il(lN ) (0 <w<ro)

<j>(win) = 1 na.+n-l -w/f3na. + n wef3 r(na.+ n) (o <w < ro )

Therefore , the marginal distribution of w in the range w >O
becomes

and this density function , together with the equation P (w = 0 ) = e - fJ.
defines the distribution of w .

In the more general case in which the weight per order is a
Gamma variate (parameters a. , f3) we would still have P (w = 0) = e - fJ.,
while for n > 0 the conditional distribution of w would be given by
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and the marginal density function would be

/ 00 n no.+ n - l
h (w ) = e- fJ. e - w f3 ~ fJ. w (0 <w <. oo)no. + n

n = 1 n ! f3 [' (no.+ n )

In this case , however , the series expansion for the marginal density 
does not reduce to a Bessel function .
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N{m) = 1 3 8 14 18 56

PROBLEMS FOR CHAPTER 1

1. The random variables x and yare jointly distributed as
follows :

f (x , y) = 120x (y - x )( 1- y), 0 ::: x -  y ; 0 ~ y ~ 1

(a) Find the conditional distribution of x for a fixed value of y.

(b) Derive the distribution of the quotient u = x/ yo

2. A noise source has an amplitude of v volts which has a probability 
density f (v) = e - v , v ?; O. The noise is fed into a circuit which

subtracts one volt and squares the remainder . What is the distribution 
of the output ?

3. A manufacturer wishes to estimate the mean IJ. of a certain
attribute x of his product by computing the sample mean x of
a set of n independent observations of x . The cost C of the
sampling process is composed of one part proportional to the
sample size and one part proportional to the magnitude of the
error of the estimate :

c = { fn + 161x - IJ.\

If x is assumed to be normally distributed with unit variance ,
find the value of n which minimizes the expected value of the
cost .

  4. In the joint distribution of two independent unit normal variates
x , y show the probability that a random point will fall within the
square enclosed by the lines x = - a, x = a, y = - a, y = a is less

than the pro ~ability that it will fall within the circle of equal area
defined by x + yl = 4al / rr. With this fact in mind , prove the
inequality

- L fa - xl / ld -< vc : ; ; ; - ;

- lal /rre x - - e
~ - a

5. An owner of five overnight cabins is considering having TV
sets to rent to cabin occupants . He finds that about a half of his
customers would be willing to rent a set , on the average . If he
buys three sets , what fraction of the evenings (when all cabins are
occupied ) will there be more requests than TV sets ? What rental
must he charge to make it worth while to have three sets ? A
count of 100 evenings shows that the number of evenings when m
cabins were occupied were :

N (m ) = Number of evenings (in 100) when m cabins were occupied
m = O 123 4 5



What fraction of all evenings will three TV sets satisfy requests ?
How often will the third set be needed ? Decide first whether

occupant arrivals are random and what the " average demand "
for cabins is at this location . Estimate the fraction of time a
sixth cabin would be occupied , if a sixth were built .
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6. In a building with n lamps lighted the same time per day ,
a bulb is replaced immediately when it burns out . The costs for
replacing one bulb consis of purchasing cost a I ' the cost a Z of
changing the bulb (i . e. taking out the old and putting a new one
in the lamp ) and all the costs a3 for bringing the bulb , ladder ,
and other necessary things to the required place . Another alternative 

is to change all the bulbs at the Sari:le time periodically
with time period T , but still change a bulb when it burns out .
When all the bulbs are to be changed together , the costs al and
a Z are the same per bulb , but instead of a3 ' we now have a total
cost a4 for bringing all the bulbs and other materials to the place .
Determine T such that the average cost per unit of time the bulbs
are lit becomes a minimum . The lifetime of a bulb is unknown ,
but we shall assume that its probability density is

1
f(t) = K (0 < t < K)

7. A man has a string of m Christmas tree lights on a circular
cord . They have the property that if one bulb burns out , the
entire string fails . In his search for the faulty bulb , the man is
twice as likely to test the bulbs successively around the circle as
he is to try them at random , forgetting after each trial which
bulb he had tested . Given that he finds the defective bulb on the
second trial , what is the probability that he in fact used the systematic 

(cyclic ) procedure ?

8. Three separate cages are arranged in a circle with connections 
between them . A mouse is free to move from one cage to

another in either direction , but the average time that he stays in
anyone cage is different from the others . At time t = 0 he is
observed in a particular cage and obviously as t increases the
probability that he is in this cage approach  es the steady - state
probability . What is the relationship that exists between the
various rates of leaving and arriving from one cage to another ,
so that the probability at time t that he is in the same cage is on
the borderline between a pure exponential decay and a damped
oscillation as the type of approach to this steady - state probability ?


