
from Thermionic

Introduction

In the majority of RF amplifiers that make use of electron beams,
the random emission of electrons at the cathode surface is the primary
source of noise. In these amplifiers the cathode may be operated
either in the " temperature-limited " region, wherein all emitted electrons 

are drawn to the anode, or in the " space-charge-limited " region,
wherein only a small fraction of the emitted electrons are dra,,'n to
the anode. In the temperature-limited type the noise properties of
the beam consist of a noise current which is pure shot noise and a noise
velocity ,,'hich is calculated as the deviation from the mean value of
the emission velocities, described by the Max" cellian distribution .
In space-charge-limited operation the velocity and current noises are
modified by the action of the potential minimum region. A large
.part of the Folio,ving discussion will be devoted to this phenomenon.

We ,viII treat only the problem of a one-dimensional diode consisting
of t ", o parallel planes of infinite extent- one plane being the cathode
,,'hich emits the electrons and the second plane being the anode ", hich
is maintained at a positive potentia.} " .ith respect to the cathode.
The d-c, or steady-state, conditions for space-charge-limited flow for
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this one-dimensional diode \\~ill first be considered by following the
\\Tork of r;"'ry and others .1- 4 This \\"ork , together with a discussion of
several fluctuation parameters associated \\~ith the Max \\"ellian distribution 

function , \\~ill serve as an introduction to the noise calculations .

I;"'or simplicity , \\~e \\~ill first discuss the noise in space-charge-limited
flow by using an approximate " single-velocity " model in order to gi \Te
some insight into the lo \\~-frequency region \\There the presence of the
potential minimum must result in noise current that is less than that

of shot noise. After this \ve \\"ill consider the actual multivelocity
flo \v problem \vith the aid of N orth 's5 solution , \\~hich again is limited
to the low -frequency case of short -transit angles from cathode to anode .

l\ thigher frequencies , \\~here the transit angles are no longer small ,
we make use of the equations for one-dimensional flo \v as given by
Lie \\"ellyn and Peterson .6 These equations are limited to problems of
electron flo \\T with only a single velocity at one given point in the beam
at a given instant of time . In the region near the potential minimum ,
the spread in transit time bet \veen electrons of different initial velocities 

may be an appreciable part of an Rv"' cycle and the single -velocity

approximations are severely strained . Because of the multivelocity
character of the be~m of this critical region , no rigorous analysis of the
noise has yet been obtained . The single -velocity equations are valid ,
ho\\Tever, if \ve accept as the input boundary a plane beyond the potential 

minimum \vhere the electrons have reached an average velocity

several times the value of their initial velocity o\\"ing to thermal energy .
The problem then becomes one of determining the noise fluctuations
in velocity and current at this input plane beyond \\Thich the single -
velocity equations can be used. Some approximations for the input
conditions have been obtained by Robinson ,7 Watkins ,S and " Thin-
nery .9 We \\Till discuss part of this \\~ork and show that it leads to

ans\vers that are reason ably close to those obtained from experiments .
It is believed , ho\vever , that the rigorous solution must be obtained
\\~ith the aid of a computer . Tien has \vorked out one problem \vith
this approach , using the " Monte Carlo " method , and a summary of
his results \vill be presented as the conclusion to this chapter .

1. Steady -State Conditions for
Space-Charge-Limited Flow

Single -Velocity Approximation

The simplest model that can be visualized for space-charge-limited
flow in a plane -parallel diode is that used by Child . lie neglected the
initial velocities of the electrons and used the " single -v"elocity " model
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to obtain the three - halves po \ ver la \ v of current versus voltage . We

shall \ vrite do \ vn the steps leading to Child ' s la \ v , since the more

rigorous treatment , \ vhich includes the multivelocity flo \ v , \ vill proceed

in a similar fashion . It \ vill also be evident that in many cases the

equation is a sufficiently good approximation for the potential distri -

but : on in a diode .

We solve the one - dimensional Poisson equation by specifying that

both the potential and the potential gradient are zero at the input

, , " hich is located at the cathode surface .

d2V - - ~ = ! - 5 ! - ( 1 . 1 )

a ; z - EO EOV

\ vhere J 0 is the current density , p is the charge density given by - J Iv ,

EO is the dielectric constant of free space , and v is the velocity of the

electron at point x . The energy equation tells us that

e

V2 = - 2 - V ( 1 . 2 )

m

where e , a negative number , represents the charge of the electron and

m denotes the mass .

If " ~ e multiply Eq . 1 . 1 by 2 ( dV fdx ) and use Eq . 1 . 2 , " e obtain .

after one integration ,

d V ( 4J 0 ) ~ -:\

- - V ~

dx - EO I ~ ( 1 . 3 )
\ lin

This can be written after a second integration :

4 ~ 2 TT :J-(' V :J-( '

J = ~ . = - e ~ = 2 . 33 X 10 - 6 - = ( 1 . 4 )

0 9 m X2 X2

Equation 1 . 4 is the familiar expression for Child ' s law , which describes

the variation of current in a model of a diode in " hich the electrons

have only a single velocity at a given point , and in , , : hich they leave

the cathode surface " ith zero initial velocity .

. Multivelocity Flow

In an actual diode the thermal energy of the electrons at the cathode

surface imparts initial velocities to the electrons that are distributed

according to Max \ vell ' s la \ v , and , as a consequence of this multivelocity 

type of flo \ v , there must be a negative potential gradient at
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the cathode . If it " ' ere other , , ' ise , all the emitted electrons , , ' ould

reach the anode , and the beam current " ould not be control  led by the

anode voltage . rl "' he potential profile in the diode must therefore be

some " hat as pictured in l ; ' ig . 1 . 1 . rl "' here is a negati " Te gradient of

potential bet " een the cathode and the minimum which is located at

xrn and has a potential V m .

V t Fig . 1 . 1 . Potential distribution in

parallel - plane diode , vith finite emission 

velocity .

We designate the initial velocity of emission at the cathode , which is

normal to the cathode surface , as v B , and the velocity at an arbitrary

point x by v . The value of v is a function of emission velocity v B '

We shall denote by Vrn the v Telocity at the cathode surface of that group

of electrons which just reach the potential minimum . The number

of electrons emitted per unit area and unit time in the velocity range

from Vs to zis + dvs may be called n ( vs ) dU B ' We see that n ( zis ) is the

distribution function giving the number of electrons in each velocity

class . r \ S one simple application of this distribution function we may

calculate the total number of electrons per unit area per unit time lV

from the relation

lV = h co n ( vs ) dvs ( 1 . 5 )

For our diode problem " e must evaluate the charge density in

order to apply Poisson ' s equation . . t\ t point x where the electrons

that left the cathode with v . elocity Vs travel at a velocity v " Te have

dp = en ( vs ) dvs ( 1 . 6 )
v



' Ve no\v use Poisson's equation, and \vith Eq. 1.7 \\'e can \\'rite for the

it  n(vs) dvs {V,  n(vs) dvspa = e + e .
Vz V Vz v

which in turn can be \ \~ritten

LvI  n(vs) dvs J:on(zis)Pa = 2e + e - dz"s
Vz v v ,  V

(1.8)

(1.9)

If "'"e multiply both sides of Eq.
dT! d2V2- -dx dX2

Since - mv2/2e + constant,11 =

(~ )2 = ~ (~n(VS) (v - 1,'ms) dvsd.r {J EO } 11m (1.10)
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li ' or the total charge density we must integrate Eq . 1 . 6 between the

proper limits . In the region bet \ \ Teen the minimum and the anode ,

\ \ Thich \ \ Till be called the { 3 region , \ \ '"e \ vill find only those electrons that

had an initial velocity great enough to overcome the retarding field

of the potential minimum . ' -rhus \ \ ' e must integrate Eq . 1 . 6 from vm

through 00 to obtain in the { 3 region

- jO  Q n ( v .~) dvs ( 1 . 7 )P .a - e 11m V

In the region bet \ veen the cathode and potential minimum , called the

a region , at point x the electrons moving a \ \ ' ay from the cathode

contain all velocity groups v8 from Vx to co , \ vhere Vx is the velocity

at the cathode of an electron that just reaches point x ( 0 < x < xrn ) .

' -fhe group that ha .s been returned and is no \ \ ' moving to \ \ ' ard the cathode 

had initial \ ' elocities from Vx to Vrn . We can then write



The velocity at point x, \vhich is at a potential 11, is related to the
initial velocity V,<; by

(1.11)

This

mJ.V (= kTc Vs exp mvS2)- ~ C (1.12)

r~ ( mvs2)- J I,'~ V Vs exp - 2kT-; dvlJv=r ~ (mv 2)J v.;; Vs exp - 2k*: dvs(1.13)

? 2 e
V- = V8 - 2 - l '

m

v du = V8 dv8

(1.14)

or

(1.15)

and Eq. 1.13 becomes(~l,,2 exp [- ~ (V2 + 2~ V)] dv- Jo 21~Tc mv =~. vexp [- ~(V2 + 2; V)] dv(1.16)
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where Vms is the velocity at the potential minimum of an electron
which left the cathode with a velocity VB.

Similarly for the a region \ve can integrate from x to Xm to obtain
from Eq . 1.8 (noting that the limits of integration are variable )

(dV) 2 2m [1~ Jvm ]-d = - n (zis) (v - vms) dzis + 2 V n (vs) dvsX a EO V,n Vz

Pro .perties of the Maxwellian Distribution

It is no\v necessary to discuss the distribution function n (vs) .
is simply Max \vell 's distribution la \v and can be \\"ritten

n (vs)

I Iere l~ is Boltzmann 's constant , and T c is the cathode temperature in
degrees Kelvin .

We wish to compute ,,"ith this particular distribution of electrons
the average velocity v at point x in the a region for all electrons moving
in the for ,,"ard' direct ion . It is a quantity that ,viII recur some,vhat
later , and it can be ,,"ritten
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(1.17)

and

(1.18)

to give

(1.19)
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which is evaluated with the aid of the integrals

1~ 1xe - x2 dx = -
0 2

r ~ 2 2 V ';
} 0 x e- X dx = 4

v = (~ )~22m

We wish to stress the significance of Eq . 1.19. It tells us that the
average velocity of the electrons moving a,,'ay from the cathode
remains constant as we move from the cathode to the potential
minimum . This is a consequence of the l \ Iax \, ' ellian distribution ,

together "v'ith the fact that the field at the surface of the cathode is
negative . This second condition is necessary in order that ' \~e may
al \\'ays integrate from 0 to 00 in the numerator of Eq . 1.16.

It is not difficult to see ,\~hy the average , Eq . 1.19, should remain
constant : Although each electron loses velocity as it moves from the
cathode , the more slowly moving electrons are continually sorted and
returned to the cathode . Later ' \'e shall use this property to show that

fluctuations in the magnitude of the potential minimum may smooth
out the fluctuations in emitted current but \\'ill not change the velocity
fluctuations .

The distribution function may equally ,veIl be written in terms of the

average velocity v, and in this form it \\~ill be useful later in a physical
interpretation of some of our noise equations . Thus ,\'ith Eq . 1.19
' \ ' e can write

7r N ( 7r Vs2)n(vs) = "2 "[;2 exp - "4 V2 (1.20)

We can easily see from Eqs . 1.20 or 1.12 that the normalizing factor N
is the total number of electrons emitted per unit area per unit time

and is given by Eq . 1.5.

Potential Distribution for the Multivelocity Diode

No \\' , to return to the problem of solving Poisson 's equation for the
potential distribution , ,ve can combine Eqs . 1.10, 1.11, and 1.12.
First , it will prove simpler to change the variable from Vs to v with the



1"'he upper sign is to be used in the a region , and the lo,'~er sign in the
{3 region . \Ve note that V1n is a negative number .

We " ,ish to convert to normalizedparameters ,,~hich serve to
measure both voltage and distance from the potential minimum .
We therefore define

8

aid of Eqs. 1.14 and 1.15.

(d y,r) 2d;

(1.21)

v - Vme(TT -=-- ~ = 11,605 ---~--~ Tc (1.22)'17 =

and

( 2m7r ) ~4 eJ 0 ~:! J ~2

~ = ( " 7T ) ~1 - ( X - Xm ) = 9 . 19 X 105 ~ ( X - X ) ( 1 23 )Iv c . EO TC ~4 . m .

'
; ; - - .

~e-X2 dx
2

err (x) = ~ (1.24)

and note that , for x   1, erf (x) = 1.
Equation 1.21 can now be evaluated ,,~ith Eqs. 1.22 and 1.23 to be

(d ) 2 ~ - 2 - /-~ = e" - 1 .:te" err V 1] .:t ~ v 1] (1.25)

Here again the upper signs apply to the a region bet \\'"cen 0 and xm,
and the lo \ver signs apply to the {3 region beyond xm.

Equation 1.25 cannot be integrated explicitly , but it has been tabulated
,1- 4 with the latest and most complete tables being given in

reference 10. In Fig . 1.2 there is sho\vn a plot of 77 vs . ~. " Te should
note that at the cathode ~c approach es a limit of - 2.55 for large
values Of77c. In order to determine \\'hat is meant by large values of
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This gives

2m21\T I~;O [ m ( e )]= ,r V2 exp - --:;-- V2 + 2 - V dvEo!I-Tc 0 2!I-Tc m
- 1;0 'i I' Vm exp [- ~T (V2 + 2 ~ V)] dv"2~(V'n- V) 2/1- c m
\' 2~: -=n

:!: r in V2 exp [ - -;- (V2 + 2!. V)] dV)) 0 2/cTc m

where J 0 = current density beyond the potential minimum .
\\1 e define the error function by the relation



eloci

. In Eq. 1.29 \\ce find that large values of 'rJc correspond to small values
of J oil . This then states that the limiting value of ~c = - 2.55 is
determined by the requirement that the current density passing
through the potential minimum is a small fraction of the emitted
current density.

Thus, since 7Jc is very large for small ,:-alues of J 0/ J , \ve can replace
erf (x) by 1, and Eq. 1.23 has the Folio\\Ting approximate form :

I
~

I
'

"
0

.
. . .

'
"

W
 

1 ] =
 

~
 

( V
 

- V
m

)

~
00

.
. . .

'
"

.
. . .

m

I

"
? ; ~

SHOT NOISE FROilf THE  Rllf  I ON I C CATHODES 9

77c, let us evaluate the current ,vhich is given by

J 0 = - e ( ~n(vs) dvs
Jvm

or

( eT Tm)J 0 = J exp - kT-:-

", here J = " current density at cathode .

11 -mand

(1.26)

(1.27)

rl"'heref ore

h~T c 1 J 0 Tc 1 ~ (1 28)-- 11- = 11 .e J 11,605 J
e11 m17c = lcT cII

I
.

. . -

;
: : i

~
I ~

(1.29)
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greater than 8, the solution of

68817~4

Equation 1.33 is the familiar Child 's la\\rEq . 1.4, for the diode
\\rhich is derived on a single-velocity basis. Ho\\ ever, the potential
difference and the diode spacing are now measured from the potential
minimum rather than from the cathode.

If we use the first t \\ o terms of Eq. 1.32 and note that \\ e must
square ~ to obtain the current density, \\ e obtain

10 C. F . QUATE

In the a region at the cathode surface ,

(d'17 )2 - j- 2 -;-ai = e'1c - 1 + e'1c err v 'l7c - ~ V 'l7c ~ 2e'1c(1.30)

In the {3 region at the anode (if we assume that Va is large) 7]a ,,"ill
be large, and Eq. 1.25 becomes

(~)2 = e'1a - 1 - e'1a err v;;: + ~ v;;: (1.31)

2

~ ~ V; ; : - 1

~ = 1.2551]~4 + 1. - 0.51- O.lG7717- ~4 + (1.32)
If ,ve use the first term of Eq. 1.32, ,ve find from Eqs. 1.22 and 1.23

that

Jo = 2.33 X 10-6 (V - Vm)~2(X - Xm)2 (1.33)

J 0 = 2.33 X 10-6 ~~-=-~ (1 ~)(x - Xm)2 + V;
J 0 = 2.33 X 10-6 ~~-=__~~2; [1 + 0.025T c~2](.1.: - xm) (V - 11 m)~2

(1.34)

or

(1.35)

Langmuir discuss es this approximation in reference 4, page 244, and
points out that it is an accurate representation of the actual 1] vs. ~
curve (Fig. 1.2) do\\'n to values of 1] = 1 \\~ith an error in ~ of about 2%.
Therefore, in most practical cases it is sufficient to use Eq. 1.35
together \\'ith the limiting value of - ~c = 2.55.

It may give us more insight into Eq. 1.34 and will be helpful in a
later discussion of noise if \ve re-express this equation in terms of the
average velocity rather than in terms of cathode temperature.

For positive ~, and for values of 17
Eq . 1.25 can be expressed in the form
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We can ,vrite from Eq. 1.19

11

lcT c 2 m -2- = - - Ve 7r e

and Eq. 1.35 becomes

[ 2m }22.66 - v1 + 7re(V - V m)}2(1.36)

K = constant = ~.19 X 105
l ' ~4c

}\ t the cathode , x = 0 , " ' e have

~c = - KJ o~:!xm

These t ,,'o equations can be combined to give

~a - ~c = KxaJ o~:!
and

(1.38)

(1.39)

J = (~a - ~c)2 (1 40)0 (I(xa) 2 .
1.40 ,vith respect to the emitted currentIf we differentiate Eq .

density J , \\~e obtain

a Jo- -
a J 2(~a - ~c) (~ - ~)(Kxa) 2 dJ dJ

, 

I

J 0 = 2.33 X 10-6 (V - V m)~~. (X - .1:m)2
rrhus " ~e see from Eq . 1 . 36 that a finite velocity of emission causes

an increase of the current by an amount expressed by the second term

on the right .

Dependence of Anode Current on Changes in Emission Current

In later sections , as we discuss noise , " e will be interested in the

change in anode current caused by fluctuations in the cathode current .

With the foregoing equations " e can 11 easily derive an expression

for the variation of anode current under the following restrictions .

We limit ourselves to small values of Jo / J so that Eq . 1 . 30 is valid ,

and to large v ' alues of anode voltage so that Eq . 1 . 31 holds . From

Eq . 1 . 23 evaluated at the anode , x = xa ,

~ a = K JO ~~ ( Xa - Xm )

( 1 . 37 )
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and, from Eq. 1.22,
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a ~a a ~a a17a- - - -
a.1 a17a a.J

a~a av m

and

(1.41)

and, from Eq. 1.31,

~ = 1

(1.42)

~ = exp ( - ~) - ~ exp ( - ~) ~cfJ I~T c lcT c kT c cfJ
or

~ = ~ ( ~ - ~ )a J eJo J a J
(1.43)

Equation 1.42 becomes

a J 0 ( 2 a ~a) 2J 0 a ~a"BY 1 + ~:-=~ ~ = J(~a - ~c)~ (1.44)

e- - - -
817ft 8.J 7.. rT'Ii, 1 C

017a
( 2 ) ~2~ V;;: - 1

Since 17c is large under our assumptions , " ce see that

o~co ~a
-  -
017c 017a

and Eq . 1.41 can be " critten

a Jo 2eJo a~aaVm- - - -
a J lcT c(~a - ~c) a1Ja a J

We can eliminate av mlaJ through the use of Eq . 1.27 :

a~c a~c a'l7c a~c av me- -- - -- - -- -a J a'l7c a J a'l7c a J l~T cTherefore we have. ,
a J 0 2eJ 0 (a~a a~c) av maT = lcT c(~a - ~c) ~ - a-;;: ay-

NOW we see, from Eq. 1.30, that
~ = ~exp (- ~17C)a17c 2 2



g = --~{..o-.- (~) (1 - ~ ~) Ji~a - ~c c177a e J 0 kT c
Since av m/ ava   1, we find for the above, with the aid of Eq. 1.46,

From Eq. 1.27 "\ve kno\v that

eJoaVmg = - - -lc Tca Va
and Eq. 1.45 becomes

g [1 + ----~- (~)]~a - ~c 811a- 2J 0 ((J~a) lei- ~:-=-Tc &;;: kT:

From Eq. 1.28,
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The term d~a/d1Ja is not convenient to use, and we can easily express

this in terms of g, which is defined by

g = .!!!!! = 2(~a - ~c) [~ - (~ - ~ ) ~ ] Kd. V a (Kxa) 2 d1Ja d1Ja d1Jc d V a kT c

~ --~{~ (~ ) (1 - ~ ) Ji (1.45)~a - ~c d1Ja dva1 kT c

(1.46)

(1.47)

(1.48)

Equation 1.47 can be combined with Eq . 1.44 to give

a Ju kTc

ay = Wu

. Numerical Example for a Typical Diode

To conclude this section we will consider a numerical example to
determine the order of magnitude of some of the quantities that we
have been discussing . Consider a cathode operating at 1100oK with
a cathode emission of 2 amperes per cm 2 and an anode-current density
of 0.1 ampere per cm2. Thus J / J 0 = 20, and we can use the asymptotic 

value of - ~c = 2.55.

We find with Eq . 1.23 th ~ii

Xm = 2.55 Tc~"9.19 X 105 ~ = 0.0017 em

Vm = -~~~11,605 In 20 = 0.29 volt



eI ( eV)- kT: exp - kT:(JIo
O= W (1.50)-
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Now for a diode operating at 10 volts we have for the last factor of
Eq . 1.35, which is a correction to Child 's law ,

0 .025T C~2

1 + (V - 0.28) ~2 = 1.26

whereas , if V = 100 volts , the correction factor becomes 1 .08 .

Thus for the steady -state conditions the corrections to the single -
velocity (Child 's law ) expression are of importance only for lo \v-
voltage diodes . However , we shall find this multivelocity treatment
of great importance and indeed the starting point for the succeeding
calculations on noise in the presence of the potential minimum .

2. Noise Properties of an Electron Stream at the
Surface of the Cathode

We will discuss in this section the noise current and noise velocity
in a temperature - limited diode . The term temperature - limited is
used to describe the condition of operation wherein all the emitted
electrons are dra \vn to the anode . The resulting relations will be
valid for the input conditions at the surface of the cathode for space-
charge-limited flow which will be studied later . The diode will be
assumed to have a small cathode - anode distance so that transit time

effects can be neglected .

Shot Noise

The noise current in a temperature -limited diode , called shot noise ,

was first described by Schottky .lZ.13 Here we wish to give two arguments 
which have been used by Pierce14.1S that mayor may not make

the. shot -noise formula more plausible .

The first example considers a short diode consisting of two emitting
surfaces opposing each other . Both surfaces are assumed to be
identical , and the entire diode is held at the same temperature . If V

is the voltage of cathode 2 with respect to cathode 1, we then have ,
from Eq . 1.27, that the curr ~nt flowing to cathode 2, which is held at
- I vi with respect to cathode 1, is given by

10 = I exp (- ~) (1.49)
(note : e is a negative quantity ) where I is the total emitted current
of cathode 1 . The diode conductance is defined
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\ V e no \ \ " short - circuit the diode , and , since there are no external

sources of po , ver , the electric - energy flow in the lead connecting

cathode 1 to cathode 2 must be the Johnson noise attributable to the

resistance of the diode .

Johnson noise is given in the equation

i2 = 41cTg ~ f ( 1 . 51 )

where g is . the conductance of the noise element , /c is Boltzmann ' s

constant , ' 1;' is the temperature in degrees Kelvin , and Ai is the bandwidth 

of the measuring system in cycles per second . From Eq . 1 . 50 ,

when V = 0 ,

Jell

g = kT :

so that " ce may " crite for the short - circuited diode , using Eq . 1 . 51 ,

and the fact that the diode is at equilibrium temperature T c ,

" i2 = 41 ~ T c ~ ~ f
' ~ T c

i2 = 41elI ~ f

If V = 0 , a current flo \ vs from cathode 2 to 1 equal to that from

cathode 1 to 2 , so that the noise associated \ vith a current I 0 fto \ \ ~ing

from cathode 1 is giv ' en by

i2 = 21elI Af ( 1 . 52 )

This is recognized as the shot - noise formula .

The second argument , " hich may make Eq . 1 . 52 appear reasonable ,

begins by considering a periodic procession of electrons , one electron

every T sec . These electrons ( carrying a charge e ) form a series of

current impulses , and the spectrum of current flo , v is made up of a

number of harmonics spaced by

1

Af = T ( 1 . 53 )

The peak amplitude of each harmonic is given by

. = ~ ( 1 "' 4 )
'Lx T . , )

We assume there to be many such periodic processions of electrons ,

each producing its 0 \ \ 7n set of harmonics , and this large number of

electrons produces a net harmonic component at a given frequency of
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peak amplitude im . '-fo this " .e add one more periodic procession of

electrons carrying a current " ith a peak harmonic amplitude ix and

phase e " ith respect to im .

The square of the total current I is given by

1[ 21 = {- ( im + ixejO ) ( im + ixe - jo ) ( 1 ,55 )I

1 ( ' 2 + . 2 + 2 . ' e)= 7}; tm 1-x 1-m1-x COS

If 8 is chosen at random , the result of a large number of additions

of ix , \,ill just as likely have negative values of 8 as positive values ,

and the third term of Eq . 1 .55 does not contribute to the total current .

1."herefore , by adding a current ix at a random phase , ' \ ' e increase 1112

by an amount ix2 .

1."hus , for p sets of electrons per see , the mean - square value ~ for

each harmonic , \"ill be , from Eq . 1 .54 ,

":2 P ( 2e ) 2 e2Z = "2 T = 2p ~ ( 1 .56 )

The average current is given by

10 = p ~ ( 1.57 )

and therefore , from Eqs . 1 .53 , 1 .50 , and 1 .57 , " e obtain

i2 = 2lellol ::.f ( 1.58 )

,\ "hich is again the shot - noise formula .

Noise -Velocity Parameters of the Temperature -Limited Diode

Let us no \\" turn our attention to a second noise parameter \\ hich

\ \"ill appear frequently in our discussions ; namely , the mean square

de \Tiation of the \ ' elocity , B; 2 .

Just as in Section 1, \\ "here \ \ c calculated the average velocity from

the l \ lax \\ cllian distribution , \ \"e can no \\ calculate the square of the

deviation from this average . I .Jet

OV2 = ( _) 2

and thus - v - v ( 1 .59 )~ ~ ( mv2 )(v - V)2V exp - r dv- 0 21cTcOV2 = ~~ (mv2 )V exp - - dv0 21~Tc
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or

1 [~OO ( 2)-"2 2 mv
QV =100 ( mv2) 0 v vexp - 2kT; duv exp - ~T du0 2/c C

(00 ( mu2) (00 ( mv2) ]- 2D)o vuexp - 2k1;;: du + V2)O vexp - 2kT; du(1.61)

With Eq. 1.13 this can be written

~ = ~ - ii2
l;'rom Eq. 1.19 "Te have -2 7rlcTv =---9-2m
and further ~~ ( mv2 )V3 exp - - 'dv- 0 21~T c .- j~~ v exp (-~) dvV2

~ 211:1'1, = - - =
m

(1.63)
rl"'h us " "e ha vc

-"? 11; T c )'fJv- = - (4 - 7r2m (1.64)

~I8l,18- -v = I (1.65)

We can find the fluctuation in v due to the fluctuation LlI .c: = i .~ in

(1.66)

(1.62)

(1.19)

X ow we must consider ho \\'" this is related to the mean - square

fluctuation of velocity \ \ 'hich is created by shot noise in the emission

current . Suppose \ \ ' e have a current Is \\ 'hichforms part of a current I

and leaves the cathode \\ ' ith a v"elocity VI)' Then the average velocity

v \ \"ill be

the current Is as

( 1 dIVs ) .A Vs = - PdL ~Isvs + I 1-s

Since a change in Is by an amount A Is also represents a change in I
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by A Is, we have
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~ = 1
dIs (1.67)

and therefore

~vs = (- ~ v I + T) is
or

~
~vs = (vs - v) i (1.68)

Since each velocity class is emitted independently , " 'e may assume
that the fluctuation is is a shot -noise current , (21el Is I::.f ) ~-J., independent
of the fluctuation in any other stream , and the total mean-square
fluctuation in velocity " ill be given by ":""228V) 2 J22:

8

L
8

- ~ ~f
- ] 2

(A Vs) 2 =

(vs - V)2 ~~l~~]2

   ~8
mv 2)- 2k;];: Ll v 8

\' ( mV 2)L., Vs exp - ~ Livs8

(vs - V)2 Is (1.G9)

but

Is = ](Vs exp (
' ...-here A Vs is the width of the velocity class and

I

(1.70)

(1.71)= K

Using Eqs. 1.70 and 1.71 in Eq. 1.G9, and replacing the summation

~co ( 2)- 2 mvs~~ 0 (vs - V) Vs exp - 2kT:; dlJs
I ~co ( mV2)Vs exp - --.-I!- dus0 2/cT c

-; -: -2 -
L.lVs - (1.72)

(vs :.--

by integration , " e obtain



M; = ~~ [;;2 - V2) = ~ ~I I
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and, from Eq.

NOISE
1.72

FROM THE Rilf I ON I C CATHODES 19

(1.73)

, , " hich then gives , for the mean - square fluctuation within the frequency

band L \ j , 16

- = - 2 lei Llfl ~ T c ( 4 - ) ( 1 . 74 )LlV = 7r

8 mI

In the next section " e " ill treat the problem of noise in a space -

charge - limited diode and find that fluctuations in the potential

minimum \ vill act to smooth the shot - noise current of emission . However

, from Eq . 1 . 19 \ ve see that the average velocity is not changed by

fluctuations in the potential minimum , and therefore \ ve shall assume

that the fluctuation velocity given by Eq . 1 . 74 does not change \ vith

changes in the potential minimum .

The above quantity is of sufficient importance to introduce a separate 

symbol for it . " \Ve shall denote it hence simply by ~ . Although

v has been used before to denote the velocity of single electron groups ,

\ ve believe that there \ vill be no occasion for confusion .

3 . Space - Charge Reduction of Noise Using the

Single - Velocity Approximation

In the next section ' , e , \ " ill present a more general treatment of the

low - frequency noise in a space - charge - limited diode and sho , v that

this noise is reduced much belo , \ " shot noise . Since this treatment is

complicated by the multivelocity character of the beam , , \ :"e , \ ' ill consider 

first some approximate derivations of this reduction factor , vhich

are based on simplified models . The model will be assumed to have an

electron stream " hich has only a single velocity at a given plane , x ,

and the mean - square fluctuation in this velocity " ill be assumed to

be equal to the mean - square fluctuation in velocity which , \ '' as calculated 

for the multivelocity beam in Section 2 . The space - charge

reduction of noise based on a single - velocity theory , vas first demonstrated 

by Rack16 to give results that " ere in good agreement with the

multivelocity treatment . Rack ' s , \ " ork ' \ " as based on the Lie , vellyn -

Peterson equations , and ' \ ~e , , ~ill take this up some , \ ~hat later . First ,

ho , , ' ever , " ~e can illustrate rather easily from the equations of Section 1

that a given noise fluctuation at the cathode associated with shot

noise must result in a noise current at the anode , vhich is reduced

belo \ v shot noise by a " smoothing factor " r2 .



(1.75)

(1.74)

(1.78)
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Simple Expression for Smoothing Factor r2

In Eq . 1 . 36 " '"e have an approximate expression , vhich relates the

anode current to the finite velocity of emission at the cathode , vhich

can bewrittenD . O . North pointed out this method )

[ 2 .GGv JI () = 100 1 + ] ~2 ( 1 .3Ga )[ ~ ~ ( Va - lrm )2 m

,vhere 100 is the diode current found from Eq . 1 . 33 . From the numerical 

calculation in Section 1 ( p . 14 ) , , ve concluded that this is a good

approximation to the average current density for voltages abov '"e

20 volts . If there is a fluctuation A Vs of the average emission velocity ,

caused by excess current in the velocity group v B, the resulting change

in anode currentAl is given from Eq . 1 . 36a as

I - Io02 .G6 -

A - [ ] ] () AVS

7r e 7-

2 ; ( Tia - Vm )

and the mean square of the fluctuation current is

~ = ( 2 . 66Ioo ) 2 ( ~ 2) ( 1 . 76 )

~ ~ ( V a - ~T m )
2 m

If \ \ ' e 110 \ \; a ~sociate the fluctuation of velocity A Vs2 at the cathode

\ vith ~hot noise , the mean - square fluctuation in velocity is , from

l '::q . 1 . 74 ,

- - lel Afic  T c
A Vs2 == 1,,2 = ( 4 - 7r)

mIo

Setting I 00 ~ 10 , the mean - square fluctuation in anode current is ,

from Eq . 1 .76 ,

( Alf = i ~ . :Q ~ ( 4 - 7r ) 21ello i1f

7r ( lel / l ~ 1Yc ) ( Va - 1 ,Tm )

The factor , , :"hich rela

denoted by r2 , and from Eq . 1 . 77 " . e see that

2 9 ( 4 - 7r )

r = -

4 17a

9(4 - 7r)~ 21el 10 I1f 4 --;;:- (1.77)
tes the reduced noise current to shot noise is



which can be written from Eq . 1.22, assuming T c = 11000 K

'V:2 = Zlello /:)of Rm2 (1.81)
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r2 ~ (1-~)~ (1.79)

1~-~ -ytJ a (with Vain volts)

where dJ,TmRm = dI;
and, from Eq. 1.27,

lcT c
Rm=~ (1.82)

Thus "~e find r2 consider ably less than unity. The relation of Eq. 1.78
is valid only for large values of ?Ja since it is based on Eq. 1.36a.
l\.lso, it neglects the effect of the electrons ,,;-hich ,vere returned to the
cathode because of low initial velocities. 'Ve " 'ill see from the next
section, ,vhich treats the problem ill a more rigorous fashion, that the
effect of these returning electrons is small and the limiting expression
for large values of ?Ja is just that giv.en by Eq. 1.78.

Smoothing Factor r2 Derived from Another Simplified Model

In reference 14, Pierce discuss es the noise in space-charge-limited
single-velocity flow along the Folio,ving lines: In an actual diode, the
relation bet,veen the anode current 10 and the emitted current I is
given (from Section 1) as

( eVm)10 = I exp - kT: (1.27)

If " "e now assume V m to be held constant, the electrons returning
to the cathode are independent of those going on to the anode, and
hence the anode current must contain pure shot noise, given by

if = 21ello i1f (1.80)

Consider an acopen-circuited diode. In order to keep the fluctuation 
current zero, 11m must change in such a way as to create a current

equal and opposite to that given in Eq. 1.80. Therefore at Xm there
must be a fluctuating voltage
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Therefore Eq. 1.81 becomes
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av
(1.85)

EO

and the acceleration is

e lot'r = - -
. m EO (1.8G)

\\:,hich givTes

e ~ t2 + fo
X = ; 2eo

(1.87)

I at- - -
ax

' "i ' :2 = t41cT cRm Llf (1.83)

If there ,vere no change in Va - V m, the fluctuation in anode voltage
,vould also be given by Eq. 1.83. Ho,,'"ever, if ,ve compare this to the
equivalent result, Eq. 1.77 multiplied by 1/ g2, ,ve find that Eq. 1.83
gives a value that is much too small. We must therefore look for
fluctuations in the space bet,,'"een the potential minimum and the
anode. These variations in voltage bet,,'"een the potential minimum
and the anode are related to the fluctuations in average velocity of the
electrons in the region.

We ,viII neglect the effect of the thermal velocities of emission, and
this in turn implies that ,ve are neglecting the effect of the electrons
that return to the cathode. The assumption can be verified through
comparison ,vith the results of the next section. With these assumptions 

the steady-~tate conditions are given by Child 's la,v

V ~2
10 = 2.33 X 10- 6 - T (1.4)x

From Eq. 1.4 " e obtain for the conductance of the diode

alo 3 10
g == - = - -

aVa 2 Va

and the diode resistance is

1 2 Va
R == - = - - (1.84)

g 3 10

Consider no\v an electron \vhich crossed the potential minimum at
x = 0 at a time t = O. rrhe charge bet\veen the electron and the
potential minimum is given by - I at. Since the field at the minimum
is zero, the potential gradient at x is given from Gauss's theorem as
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and

x = = H2 t3+–ot (1.88) m m 6 cc,

where – is the velocity at t = 0, x = 0.
Now the voltage between the potential minimum and .r (where hence-

forth in this computation x is the position of the anode) is given by

–2 � –2 = �2 Va (1.89)

or

/e \2
I � Io

1 im j Jo.
= / t + � X t 2 (1.90)

2 - - 2� i 2e
m

If at constant x we now vary –o by a small amount, we find, from
Eq. 1.88,

dt � t

d– 0 hello 2
�t +Xo
\m

and, from 1.90,

-2 t 2 + –o) dt + t 2 d–o (1.92) o 2e 0 m 2� o

and, using Eq. 1.91,

dVa = � t 2 d– (1.93)
2e o

We will now evaluate t. Since the major portion of the thermal
velocities at the potential minimum are small compared with the
velocities in the rest of the region, we can take the value of t for –o 0.
Thus, from Eqs. 1.87 and 1.88, we can write

= � = � ( .____ ) (1.94) 
1 �1 /. v \‰

2m� 0 \ m /

and, from Eqs. 1.93 and 1.94,

dVa = T T d–o (1.95)
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If (d~ is the mean-square fluctuation in velocity, the mean-
square fluctuation in voltage "V:2 ,,"ill be, from Eq. 1.95,

- m -

11 a2 = 2 - 11 a dXO2 (1.96)
e

or , with Eq . 1.75, we can write

- m -

1-' a2 = 3 - lo R dXO2 (1.97)
e

From Section 2, Eq . 1.74, \\ e have

~ = ~ = ~L~ ~ (4 - 7r)
10m

and Eq . 1.97,

11; = 3(4 - 7r)lcT cR ~f

~ = (O.644)41cT cR ~f (1.98)

This is the fluctuation in voltage bet ,,'een the anode and potential
minimum for an open - circuited diode . It is also the fluctuation in

anode- cathode \'oltage for an acopen -circuited diode under the
assumption that ' \'e can neglect the effect of those electrons that
return to the cathode . ' \ Te see here the , \ ' ell - known result that the

noise from the space-charge-limited diode is two thirds of that from a
thermal resistor ,vith resistance equal to the diode resistance .

Smoothing Factor from the Llewellyn - Peterson Equations

We will now present the approach used by Rack .16 It will be
assumed that the reader is familiar \\"ith the Lie \\"ellyn - Peterson equa-
tions6 which can be \\"ritten in the form t

Vb - Va = A * I + B *Ja + C*Va (1.99)

where Vb - Va is the alternating voltage bet " Teen t " TO planes in a
diode and J a and Va are the a-c convection -current density and a-c
velocity at plane a. I is the total a-c current density in the diode .

If " ' e consider the case where we have no fluctuations in the diode ,

i .e., J a = 0 and Va = 0 , Eq . 1.99 reduces to

Vb - Va = A * I (1.100)

from ,,'hich ,ve identify .11 * ,vith the a-c impedance of the diode .

t See also Chapter 3 but note changes in notation .



Vb - V a = C*Va (1.105)

And from Eq . 1.104 we have , for 0 ~ 0,

P 1- - -
- 02 - 2

If b represents the anode plane , Eq .

(1.106)

1.106 is applicable to the short-
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Therefore " e associate the last two terms " rith the voltage produced

in the diode by fluctuations in the electron stream , and " re ,vrite for the
a- c open -circuited diode

Vb - Va = B *Ja + C * Va ( 1.101 )

The coefficients B * and C * are given in reference 6 as

1 T2
B * = j - 3 ua (2P - fJQ) ( 1.102 )

EO e

2m P
C * = - - (Ua + Ub) 2 ( 1.103 )e ()

In these equations

Ua = average velocity at pl ~ne a
Ub = average velocity at plane b

e = transit angle from plane a to plane b

T = transit time from plane a to plane b
and

P = 1 - e- j8 - j8e - j8 (1.104 )
and

0 = 1 - e- j8"

respectively . For our noise problems we ,viII consider the a plane

to be just slightly beyond the potential minimum , so that ,ve encounter

no electrons returning to the cathode , but close enough to the minimum

so that the d - c acceleration may be taken equal to zero . Under these

conditions ua will be considered to be zero , and , from Eq . 1.102 ,
B * is zero . This tells us that fluctuations in current density at the

potential minimum produce no significant effect on fluctuations at the

anode . We are left ,,"ith the equation
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transit -angle diode problem. Equation 1.105 becomest

m UbV - - 1'a - TiaeVb - (1.107)

-(2-j;rV,.)}'- Va

and the mean-square fluctuation in anode voltage is given by

V2 = 2 fir Vob;; (1.108)
This will be recognized as identical to Eq . 1.96, and therefore we can
write again

V2 = -1(4 - 7r)41cT cR l:!.f (1.109)

In this section ,ve have derived several consistent expressions for the
noise-smoothing factor r2 , using models that are limited to single -
velocity flow . We must no,v de~elop the problem of multivelocity
flo ,v, and ,ve " ,ill find that the above approximations are valid for
small values of Jo/ J and relatively large values of Va (Va > 20 volts ) .
rrhese are familiar approximations and apply for most operating conditions 

in the lo ,\"-frequency region .

4. Space-Charge -Limited Noise for Diodes with Short
Transit Angles

The problem of reduced shot noise ,vith multivelocity flow that is
encountered in space-charge-limited diodes ,vhen the transit time from
cathode to anode is short compared to an RF cycle " 'ill be treated by
following the discussion presented by Thompson , North , and Harris
in reference 5. i\.S pointed out in Section 1, the mechanism of space-
charge-limited flow is such that part of the emitted electrons are
turned back to the cathode by the negative gradient prior to the
potential minimum . Since this gradient is established by the space
charge of the electrons , it is not difficult to understand that an instantaneous 

increase of emitted electrons over and above the average

number " Tould result in a lo,vering of the potential minimum , and hence
a larger number of electrons " 'ill be returned to the cathode . It
is this gating action of the potential minimum that reduces the noise
below the level of pure shot noise .

When additional electrons are emitted ,vhich have velocities suffi -

t Kote that in the Llewellyn - Peterson notation Va corresponds to the input

plane , and , in this context , to the potential minimum , not the anode !
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cient to pass the potential minimum , the number of electrons passing
through to the anode is momenta rily increased , thus lowering the value
of V m owing to the added space charge . The more negative potential
minimum turns back some electrons which would have otherwise

passed to the anode . Similarly , if the number of emitted high -velocity
electrons is less, V m becomes less negative , and an additional number
of the lo ,ver-velocity electrons are allowed to pass to the anode . It is
this critical relation bet ,veen the fluctuations in emission velocities

and the col;responding fluctuations in potential minimum that " ~e wish
to study . .

Formulation of Smoothing Factor

The analysis will proceed along the following lines : ...\.ssume that
steady -state conditions exist within the diode . We no\v inject into
this diode a small current \ \ ' hich contains electrons with velocities of

emission from Vs to Vs + flus' The fluctuation current is given by the
shot -noise formula (2eI s flf )~2, \, ith Is being the current carried by the
v ~locity group t's to t's + flus. From this ,ve shall determine the
resulting fluctuation in the potential minimum . This in turn ,\'ill
allo \v us to calculate the corresponding fluctuations in anode current .
An integration over all the velocity classes " ill then give the total
fluctuation in the anode current .

TVe shall consider only fluctuations of long enough duration so that they
act as a succession of equilibrium states. We assume the cathode to be
at zero potential and define V s by

e

- 2 - V 8 = V82 (1.110)
m

where Vs is the velocity of emission of a small steady increment of
current , is (vs) . " Te further define the parameter

A = -=~i ';--!~~ (1.111)
\\"here Vm is a negative number . Thus \\"e can use A rather than t's
to designate the emission velocity of electrons \, hich comprise is.
If \\"e choose Vs such that the element of current in this velocity class
crosses the potential minimum to the anode, A is positive . For smaller
values of v B, such that the current is turned back , A is negative and
must lie in the range - 17c :::; A :::; 0, \, here 17c is defined in Eq . 1.29.
We see that the value A = - 17c corresponds to a value of Vs equal to
zero. .I:'\.lso, from the 17 vs. ~ plot of Fig . 1.2, the point at which the
electrons stop and return to the cathode is given by 17 = - A.
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We now consider the noise fluctuations in the anode current. 1�or

every value of i 5 (X) that we inject into the diode, we will find the new
equilibrium current I. Thus, if Io represents the steady-state anode
current which flows before the admission of i 8 (X), we are able to deter-
mine the net increase in Jo. The ratio of this net increase in anode

current to the increment of current i 5 (X) will be a function only of X.
This follows from the previous argument which indicated that the
change in anode current due to an incremental change in emission
current would be a function of the velocity of emission and hence X.
The ratio of the net increase in anode current to i 3 will be denoted by
y(X). It represents the factor by which a change in emission is
converted into a change in plate current.

The fluctuation i 8 in the incremental current is a true shot fluctu-
ation and can be written

= 2 e Is Al (1.112)

where is the emission current containing electrons with emission
velocities between X and X + & . From Eq. 1.27 we can write

z I = Ie � X (1.11 : )
or

L i 2 = 2 e I f(e X) (1.114)

Now we have stated that the fluctuations in anode current will be
changed by the factor �y(X) from those in the emitted current. Ve an
then write the fluctuations in an incremental element of anode current
as

= 2 e I f [ y 2 (A)e X] (1.115)

Since the fluctuations of Eq. 1.112 associated with one velocity class
are independent of other velocity classes, we can obtain the total
fluctuations in anode current by integrating lq. 1.115 to give

= 2 eIIWf �y 2 (X)e dX (1.116)
\vhich we can write as

= 2Ie I f F 2 (1.117)

r 2 will be recognized as the space-charge reduction factor and can
be written as

= Fa 2 + 1 2 (1.118)
where

p 2 fO y2(x)e_Xd \ (1.119)



   [ ~ ] 2 = - =~d .t {3 e

. If \ ve now change
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and

r{J2 = h ~ 'Y2(A)e->' dA (1.120)

1- 10is(A) (a group)

l;"'or the {3 group the total anode current after injection is 1

1- 10"((A) = 1 + --~)

v = ~2 ;
" 'e obtain, in place of Eq. 1.10,

~
~

: 
8

n(vs) (v - Vm) dvsis2 V2- ~~--~~/~l (V V + Vs - V Vm + Vs) (1.124)

from x and V to ~ and ?J as given in Eqs . 1.22 and

'Y(X) =

i .~ now passes on to the anode , and therefore

vv-+ -v:

(1.121)

+ is, for

~ I = - ~ 1 ~ n(vs) dvs - ~ (1.123)dx 1.8 EO V", V EOV

Folio\ving the procedure of Section 1, \\'e can make a first integration
of Eq. 1.123 by multiplying both sides by 2(dV / dx) and, since

({3 group ) ( 1 .122 )

Let us now calculate J , \,hen , \ ' e inject a small additional current is

from the cathode . For the {3 group " e can write , in place of Eq .

1.9 ,

where a refers to the group of electrons that do not have initial velocities 
at the cathode sufficient to overcome the potential minimum and

hence are returned to the cathode . The subscript /3 denotes that
group of electrons \vhich pass the potential minimum and hence
reach the anode .

Evaluation of Smoothing Factor

The factor "'( ;\) for the a and 13 groups can be expressed as follows .
For values of ;\ pertaining to the a group the total anode current after
injection of is is I , whereas before injection it was 10. " ' e can then
\\"ri te



where

(d )2 .'17 1.8 2 -d"i fJ = T :=-;= (V;+~ - VA) + e" - 1OV7r - e" err v ~

2 - /-+~-;V1] (1.125)

which " "e can ,,"rite as

(d )2 .1] ~8

~ ,B = I F(1], A) + <P,B(1])
2

= ~ (V ~-+ ~ - V ~)

(1.126)

F(7], X)

(1.127)

.. {1Ia d17 1 is (1Ia F(17, A)
~a = } 0 ~"(;)~ - :2 I } 0 ~W:j; d17 (1.128)

(1.130)

(1.131)

where the subscript c denotes the cathode surface . Now
treat the problem wherein the anode potential is held constant

we will
as In an

' \~e can '\~ri te
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1.23, "\ve obtain, in place of Eq. 1.124,

and <I >{ 3 ( 1] ) Folio \ \ s from Eq . 1 . 125 .

Now , since \ \ e have assumed is   I , \ \ ' "e shall neglect all the higher

powers of is / 10 and \ \ Trite

d ~ = [ 1 - ~ ~ ~ ~ ~ ~ ] - ~ ~2 I <I >{ 3 ( 1] ) <I >{ 3 ( 1] ) ~ 2

If \ , Te denote the value of ~ and 1] at the anode by the subscript a ,

A f}a - 1]a 1 is (?l4 F(1], X)~a - ~a = ~(;~ - :2 I J 0 ~(-;;P;; d1]A similar treatment for the a group givesA f}c - 1]c 1 is (?lC F(1], X)~c - ~c = ~(~~ + :2 Y Jo "i:(~ d1]

where ~ and ~ represent the perturbed values, " hereas ~ represents the
unperturbed value and is giv"en from Eq. 1.128 with is = 0:

hi /4 d'7~a = ( ) 1~ (1.129)0 ~.8 '7 72

Now since the quantities (fj - 17) and (  - ~) are also first -order
infinitesimals , " e can " rite for Eq. 1.128
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a-c short-circuited diode, and, from Eqs. 1.22, 1.23, and 1.29, we have

A A e ( ~ 10 1 - 1017a - 17a = 17c - 17c = kT v m - V m) = In y ~ - ---1- ; - (1.132)

and

(~a - ~c) - (~a - ~c) = (~a - ~c) ( ~ - 1)0
1 1 - 10

= :2 (~a - ~c) ---I ~ (1.133)

If ,,'e subtract Eq. 1.131 from Eq. 1.130 and use Eqs. 1.132 and 1.133,
we obtain

I - 10 1 [ ( 7/C F(ll, X) ( 7/4 F(ll, X) ]---i - ; - = - W ) 0 ~:(~ dll + ) 0 ~ (~ dll (1.134)
where

D = t (~a - ~c) + <I>.B(Ila)- ~2 + <I>a(llc)- ~2 (1.135)

1'herefore, from Eq. 1.122, " e ,,'rite for the {3 region

1 [ (7IC F(7], A) (7IQ F(7], A) ]")I(A) = 1 - w Jo ~:(~ d7] + Jo ;p~ ~ d7] (1.136)
,,~here

A ~ O

It is now necessary to resort to numerical integration in order to
evaluate Eq . 1.136. This is done for the case of complete space-
charge-limited flo \\", \\"hich means that ' \"e can assume 10/ 1   1.
rl' his in turn means that \\"e may use the values 7]c = 00, ~c = - 2 .55

and <I>a(7]c) = 00. rl'hus, in Eq . 1.136, 'Y(A) becomes a function of 7]a
and A. The resulting values of 'Y(A) ' \'ere obtained by North and
others in the range 5 ~ 7]a ~ 100 and 0 .03 ~ A ~ 5 . Near A = 0 ,

'Y(A) has a logarithmic discontinuity and must be evaluated separately .
In Fig . 1.3 there is sho\\"n a plot of 'Y(A) \"S. A as taken from reference 5
for 7]a = 30. The value of r .a2 for 7]a = 30 is now obtained from Fig.
1.3 with the aid of Eq . 1.119. This method then allo ,\"s a plot of
rp2 vs. 7]a, "\,"hich is given in Fig. 1.4.

Also sho\\'n in Fig . 1.4 is a plot of r a2 vs . 7]a, ,\"hich is obtained in a
manner similar to the preceding calculation for r .a2. It is significant
to note that r a2 is al\\.ays much smaller than r .a2. This is to be
expected , since the major portion of the electrons in the a group are
returned to the cathode before they approach very near the potential
minimum . Therefore the action of the a electrons is confined to a very
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short region . We can thus neglect their contribution to the noise and
set r (%2 ~ O. This assumption , together with single -velocity equations

, allo ,,"ed us to evaluate r ,82 in the approximate but explicit forms
of Section 3.

Fig. 1.3. Shot-effect reduction factorY as a function of the velocity parameter A.

(1.137)

The diode conductance g as defined by

aID

g = a"Va

Smoothing Factor in Terms of the Diode Transconductance

Before concluding this section , " Te " , ill discuss Eq . 1 . 117 in adifferent 

form in terms of the diode conductance g . Thus Eq . 1 . 51 can be

" ri tten

i2 = (J . 41c1 ' g f !1.f
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was derived in Section 1, Eqs . 1.45 through 1.47 . In Eq . 1.47 we

set the multiplier approximately to one and replace ~a - ~c by Eq .

1. 135 , where

<t>a- J,1 ~ 0
We obtain

21 0 a~a lei
g = 2D - ct>.8(?7a)-~2 ~ ~

Ji ~1= D<P{J(T/a 2!t':T c g .

()

Shot-noise reduction factor for complete space-charge-limited flo,vFig. 1.4.
(Is/ I  1).

Further , using Eqs . 1 . 31 , 1 . 125 , and 1 . 12G , ' \ '"e can replace a ~ a / a17a

by <t>.B( 17a) - ~2 and obtain

210 le I
g = -

2D <t>.B( 17a) ~2 - 11cT c
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e = tr2 J1 10I~T c g= tr2 D<I>/3(17a)~2 (1.139)

C()

Or-...l3(1- ~) = o. (1.140)
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With Eqs. 1.117 and 1.137 \\'e can \\~rite for e

This value of e is also plotted in liig. 1.4, and we see that for?7a ~
" e have a limiting value for e given by

rl"'his familiar result agrees ,,'ith that found by the approximate
methods of 3ection 3. .I\ gain it can be stated that a space-charge-
limited diode generates a mean-square noise po" er equal to the thermal
noise in a resistor " hose resistance is equal to t " ro thirds of the a-c
resistance of a diode.

5 . Discussion of Emission Noise at High Frequencies
When the Transit Time Is Not Small

rl"here is no adequate treatment of electron streams ,vith l\lax ,vellian
distribution of velocities for high frequencies, and therefore the analysis
of the noise problem must be based on the single-velocity approximation

. Rack16 has extended the analysis of Section 4 to include finite

transit angles. Peterson17 has used the Lie,vellyn- Peterson equations
for calculating the noise in a high-frequency tetrode. pierceis used
this method in calculating the noise in the stream of a traveling -" ~ave
tube. In applying this method, he assumed that at the input plane
near the potential minimum the average velocity ,vas zero, and hence
any fluctuation in current density at this point produced no effect
at a later point in the stream. The only source of noise was the fluctuation 

in velocity ,vhich ,vas taken to be equal to the mean-square

deviation as calculated for the multivelocity stream. This analysis
is subject among other things to the defect that the average velocity
at the potential minimum is not zero but finite as calculated in Section
2, and hence the velocity fluctuation is not the only source of noise.
There is a second source of noise in the current fluctuation at the
potential minimum . 1"he question that remains to be ans,,"ered
relates to the magnitude of these current fluctuations . Is it equal to
shot noise or reduced shot noise, and is it correlated or uncorrelated
,vith the noise velocity ?
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~ Plane Beyond Potential Minimum Considered as Input

The first attempt to ans \ver these questions \vas made by Robinson .?

The single -velocity equations break do \vn because the spread in transit

angles bet \\~een the potential minimum and the anode is not small . In

fact , ~ lac Donald19 has given an expression for the anode transit time
r (E ) of an electron with an initial energy E at the minimum to be

. 1-'

( E 7,1)
r (E ) = r (O) 1 - 0 .85 - ( 1.141 )

eVa

1"(0) = transit time of electron ,vith zero initial energy

Thus for a typical micro \vave tube r (O) might be 4 cycles and Va =

1000 volts . If \\ e use E = I..-:T , the average energy of the minimum , \\~e

arrive at a value of (.;[r (O) - r (E ) ] = 271"/ 3 radians , \\'hich is not small .

Robinson points out that this spread takes place largely in a region very

close to the minimum , and hence , if \\ e consider our input plane to be a

given distance beyond the potentia .! minimum , the single -velocity

theory should be valid at the high frequencies . That such a plane
exists can be seen from Eq . 1.141 , for , if \\ e choose 4 electrons \\' ith

initial energies of 0 , l..-:T , 21..-:T , and 31..-:T , their transit times in the above

example \vould be r (O) , 0 .915r (0) , 0 .898r (0) , and 0 .888r (0) . Thus \ve

see that the spread in transit angle bet \\~een the third and fourth

electrons of 0 .0871" is certainly small . If \\ e choose our input plane ,

called the a plane , at a point beyond the minimum \vhere the potential

is a (1..-: T / e) , \\ e see that the slo \\ est electron \\ ill have an energy of

alT at this plane . If a is sufficiently large , the spread in transit

angle beyond this plane will be small .

At the a plane Robinson assumes the current fluctuations to be

equal to shot noise , and the velocity fluctuations to be given by the

mean -square velocity deviation for the multivelocity stream at the a

plane , \\'hich is calculated in a manner similar to that used in Section 2 .

Estimate of Smoothing Factor at High Frequencies for Noise Current

We see that the approach just considered would be very good if \ve
kne \\" the true v.alue of the current and velocity fluctuations at the a

plane . Robinson assumed pure shot noise \, ith no correlation bet \, een

. velocity and current . Following Watkins ,S \, e may argue that the
current fluctuations at the a plane should be some \vhat less than true

shot noise . t Consider the diode to be divided into t \, O diodes in
series : the first bet \\~een the cathode and the potential minimum and

t Compare Sec. 2, page 229, Chapter 5.
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the second bet,\ een the potential minimum and the a plane. The
first diode prior to the minimum is a retarding field diode of area A ,
which has, for small transit angles, an a-c admittance given by

=(~ +.~)Alc7"c J dy (1.142)

(1.144)

. . v .'l, = JwEoA ~ - JWEOd-T (1.146)

or , for the mean-square current fluctuation ,

":2 !
where Z = 2elo L\flr2

(1.147)

(1.148)

"\Ve can write d in Eq . 1.148 in terms of the parametier ~c defined by
Eq . 1.23. Using a new parameter a,

a - w- w

27r~~(m/ 21cT c)~~ ~ ~2 - ~mea

(1.149)

" here J 0 is the current density through the diode, and d is the distance
bet,,:-een the cathode and the potential minimum . If we consider the
diode to be a-c short-circuited, the current fluctuation through the
diode ,viII be shot noise, as argued in Section 3, and ,,'e can write

isc = 12eI 0 I1fl~'.! (1.143)

If \\ e assume a linear system, Eqs. 1.142 and 1.143 can be used \vith
Thevenin 's theorem to give the open-circuit noise voltage as

We now consider this diode to be in series with the second diode ,
and , as a result of the large transit angle beyond the potential minimum

, the latter diode can be considered to be open-circuited for

alternating current . "\Vith this condition , the total alternating current
must be zero, or

i + j C J J Eo A E = 0 (1.145)

\vhere i is the alternating convection current .

v = ~ = 12elo~fl~2oc y (.I~ . ~) AlcTc + J d

r2 = 1
1 + (eJ od/ U J Eolc T c) 2
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may be defined as a plasma frequency at the potential

Equation 1 . 148 can be \\ ritten

\vhere (lJpm
minimum .

   r2 = 11 + ~C2 /47ra2 (1.150)

NO\V, recalling that , for complete space charge J 0/ J   1, \\'e have
as the limiting value of ~c = 2.53. "\\Tith this value Eq . 1.150 is
written

r2 = 1
1 + O.52/ a2 (1.151)

For a numerical example \\'e \\'ill use the Folio\\'ing values :

T = 10200 K , f = 3000 ~Ic , J 0 = 0.1 ampere / em.

in which case a = 0 .605 and r2 = 0 .40 . The mean -square fluctuation
in current is reduced by a factor of 0.40 below shot noise.

Watkins points out that the assumption of small transit angles from
cathode to potential minimum is not justified as it is found to be about
1.4 radians in the above example . Whinnery9 has discussed some
aspects of the noise at the potential minimum at high frequencies by
using the physical picture of Thompson , North , and Harris as in
Section 4. lIe discuss es the ef:fects of using different values of 17c
in numerically evaluating the integrals of Section 4. lIe considers the
perturbation of the potential minimum as one injects an excess of
charge at the cathode and finds that the potential minimum " overcompensates

." It oscillates back and forth at a frequency correspolld -

ing to the plasma frequency calculated at the potential minimum . He
further points out that this plasma frequency for typical tubes occur ~
in the micro ,vave region from about 2000 to 4000 l\ lc .

Treatment of Multivelocity Problem with the Use of a Computer

In each of the approach es that has just been presented it \vas necessary 
to make rather severe assumptions ; so far it has prov"ed difficult

to assess their validity . Therefore , these solutions hav"e limitations ,
for they do not give a complete ans\\"er to the multivelocity flO\\T
problem near the potential minimum . In Watkins ' analysis a short
transit time from cathode to potential minimum is assumed, an assumption 

\\"hich is not generally true . In "\' Thinnery 's \vork the electrons

that return to the cathode are all assumed to return at the point of
the potential minimum , x = Xm, \\,hereas in reality the point of return
is distributed bet \\ een the cathode and xm. In an analysis of this sort
one must make use of a linear t teary . Since the d-c velocity is small
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in the region of interest , the a-c velocities can be of comparable amplitude
, which violates the assumptions necessary for the linear theory .

Because of these difficulties Tien and ~ loshman2  O attacked the

problem by using numerical integration to trace individual electrons
through the potential minimum of a typical diode . We can see in
principle " hat is required for this task . The d-c conditions of the
diode can be established from the equations of Section 1. Then one
electron injected at the cathode can be traced step by step through
the minimum to the anode . By injecting a sufficient number of
electrons and computing their cumulative effect , it should be possible
to find the noise current and noise velocity at the a plane just beyond
the potential minimum .

The number of electrons that are injected at the cathode is necessar-
ily limited ,,"hen a computer is used, and the question immediately
arises as to ho " these electrons should be initiated so that the emission

noise is properly simulated . It is necessary to know the number of
electrons injected , their time of injection , and the velocity at " hich
they are injected . These initial properties " ere determined by Tien
and ~joshman by the " ~lonte Carlo method " of statistics , which is
characterized by the use of random numbers .

We " 'ill first discuss briefly random numbers so as to illustrate how
they " ere used in obtaining the initial conditions of the injected
electrons . Consider the simple problem of finding the area under the
curve of l?ig . 1.5. , , : e " ould begin by dividing the interval into n
eqllal spaces (~x) and sampling the heights of the curve at each inter -

F ( v)

Plot sho\ving transformation from uniform probability



SHOT NOISE FRO .:lf TIIER .llf I O J V I C CATHODES 39

val . If we desired to increase the accuracy of the computations , \ve
would subdivide the interval and use 2n steps . Thus \\"e are limited

to a discrete number of steps . With the use of random numbers \ve
\vould not use the uniform interval but choose n random numbers

\\'hich \vere distributed \vith uniform probability in the desired interval .
If \ve chose 100 intervals , for example , the random numbers might be
1. 1 , 2 .9 , 3 . 1 , 3 .8 , etc . Ho \vever , \vith random numbers \ve can increase

the number that \\"e use \\~ithout regard to the discrete steps as before ,
and \\"e can equally \vell use 99 numbers or 101 or 138, and they \vould
still have .the same distribution . 1\.S the number of samples increases,
the accuracy increases .

Random numbers \vith a uniform distribution are readily obtainable
from tables , or , if a computing machine is involved , it may be faster
to generate the numbers . Ho \ve \ 'er , there are many instances \" hen

one \vishes to use a distribution other than uniform , and this is obtained

by a simple transformation . Let us consider how \ve might transform
a set of uniformly distributed numbers to a distribution \vhich is
expressed by a probability density function

xe - ax2

This is illustrated in Fig . 1.5, \, here \, e see the evenly spaced points
along the vertical axis and the transformed points along the horizontal
axis . It can be seen that the points along the horizontal axis are
obtained from the intersection of the equispaced vertical intervals
with the curve R , \ , here

R = hx xe-ax2 dx = 1 - e-ax
This is the integral of the desired probability density function . Since
the first factor is constant , the function R = e- ax2 may equally \vell be
used to obtain the desired distribution .

K O\v let us present a physical picture of the problem \\'hich rl"ien
and Moshman studied . The d-c potential profile shown in l ,"ig . 1.6 is
computed from the equations of Section 1. The computer must
memorize every electron in transit since interaction is considered .

Therefore , for an assumed cathode -current density \\.e must limit
the area of the diode under consideration . If it is too large , \ve cannot
. handle the required number of electrons in the computer . On the
other hand , if the area chosen is too small , the problem loses its random
character . Therefore , an area of (7r/ 4)X2m was chosen since it \vas felt
that all electrons emitted within this area had an equally important
effect at the potential minimum . Bear in mind that this is a one-
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dimensional analysis , and so it contains none of the effects of sideways
displacement and velocities , etc .

The velocity distribution used is as shown in Figure 1.7. For the

calculation the time is quantized into intervals of 2 X 10- 12 sec, and
during this interval an average of 8.152 electrons are emitted in the
area (7r/ 4)Xm2.
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In the time interval from 4 to 4 + At , \ \ ~e must know the number of

electrons emitted , the time of emission , and the velocity of emission .

These quantities are found \ vith the use of random numbers . For the

number of electrons emitted , a l :>oisson distribution normalized about

the average of 8 . 152 \ vas used . The function

e- 8 . 1525 X 8 . 1525 '~
f ( 8) =

8 !

is used to . transform the random numbers , generated \ \ ~ith a uniform

distribution , to a set \ \ ~ith a Poisson distribution .

 \ nother set of random numbers \ vith a uniform distribution is

generated and used for the time of emission , since the emission \ vould

normally occur at a uniform rate throughout the velocity distribution .

For the velocity of emission a set of uniform numbers is transformed

according to the ~ Iaxwellian distribution

mv ( mv2 )
f ( v ) = - exp _ 0-

/.,; T C 2 /.,; T c

F ( v ) = h ' f ( V) dv = [ 1 - exp ( - ~ ) ]

( mv2 ) ( mv2 )
Ri = 1 - exp - - or Ri = exp - '-

2 /.,;T c 2 .J.,;T c

The velocity of emission corresponding to the uniformly

random number Ri is given by

( 2 ./,,; T C) ~:!Vi = - ; ; - ( - log Ri ) }~

This establish  es the initial conditions , and \ \ ~e turn the crank until the

diode is filled \ vith 363 electrons . The process is then repeated

2000 times to obtain the final data on the noise current and velocity

at the a plane , \ \ ~hich is taken to be at x = 1 . 2xm .

If we transform the current as a function of time to a plot of current

as a function of frequency \ vith the use of the autocorrelation function ,

~\~e obtain a plot of r2 versus frequenc ) ' , as in Fig . 1 .8 . This curve

ans \vers the question \ \ ~hich \ ve initially posed , for \ \ ~e now have a

picture of the noise current that is appropriate for the a plane . The

peak occurs just abov '"e the frequency of oscillation of Whinnery ' s

compensating current , and the dip occurs some \vhat belo \ v this fre -
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We also need to know the noise velocity at the a plane . The results
of the computation can be summarized by stating that the computed
noise velocity corresponds \ 'ery closely \vith the expression of Eq . 1.74.
l?urthermore , \\"ithin the limits of the accuracy of the computation ,
there is apparently no correlation bet \veen velocity and current .

This treatment is for an a-c short -circuited diode . .i\ t the frequency
corresponding to the " dip " of the r2 curve the transit angle is slightly
less than 211". Since physical diodes , or electron guns, are more nearly
open-circuited , there is some concern as to \vhether the " dip " in noise
current can be realized . Siegman and Bloom21 have discussedt some
linear models that enlarge upon the \vork of " Thinnery and " T atkins
for the open-circuited diode and find no evidence of the minimum in
noise current . On either side of this frequency region the agreement
is fairly good .

Another limitation of this analysis must be kept in mind . At the
location of the x = 1.2xm plane there is still a large spread in electron
velocities . Thus in the region immediately beyond the plane , the
single -velocity description may not be adequate . Work by Siegman ,
Watkins , and I Isieh22 indicates that the multivelocity character of the

t See Chapter 5, Section 2, page 229.
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quency . It might be stated that at the lower frequencies there is

almost complete compensation of the initial disturbing pulse , and

at the higher frequencies there is insufficient compensation . It seems

that there occurs one frequency where the compensation is nearly

complete . We should state that the effect of transverse velocities

has not been evaluated and might " "ell camouflage this effect .

0
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beam is important for some distance beyond 1.2xm. They use a
linearized theory to predict that correlation is produced bet \\:,een the
current and velocity fluctuations as the beam passes from the potential
minimum to the a plane .

In summarizing this discussion \, e see that the noise from a therm -
ionic cathode is fairly \, ell understood at low frequencies . In a high -
frequency diode , ho\, ever , the description of noise requires a kno \, ledge
of noise current , noise velocity , and their correlation at the a plane .
The a pl [J,ne is defined as that point beyond the potential minimum
\, here the spread in velocities bet \, een electrons is small . Beyond
the a plane one can use, \, ith these noise parameters as input conditions

, the single -velocity theory , and this \vill be fully treated in later
sections . According to the \\:,ork of Tien and l\ Ioshman at the plane
x = 1.2xm, the noise current is given by Fig . 1.8, the velocity has the
value given in Eq . 1.74, and their correlation is zero . The later \\:,ork
of Siegman , Watkins , and Hsieh predicts that some correlation is introduced 

in the multivelocity beam as it dr:ifts bet \\.een the 1.2xm plane

and the a plane . It will be evident from later chapters ho\v these
parameters enter into the over -all noise figure for a high -frequency
amplifier . It is sufficient here to point out that some degree of correlation 

bet \, een the noise velocity and current may lead to a noise figure

for an amplifier \\.hich is less than that from an un correlated beamit
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