CHAPTER 1

Shot Noise from Thermionic

Cathodes

C. F. Quate

Introduction

In the majority of RF amplifiers that make use of electron beams,
the random emission of electrons at the cathode surface is the primary
source of noise. In these amplifiers the cathode may be operated
either in the “temperature-limited’” region, wherein all emitted elec-
trons are drawn to the anode, or in the “space-charge-limited” region,
wherein only a small fraction of the emitted electrons are drawn to
the anode. In the temperature-limited type the noise properties of
the beam consist of a noise current which is pure shot noise and a noise
velocity which is calculated as the deviation from the mean value of
the emission velocities, described by the Maxwellian distribution.
In space-charge-limited operation the velocity and current noises are
modified by the action of the potential minimum region. A large
part of the following discussion will be devoted to this phenomenon.

We will treat only the problem of a one-dimensional diode consisting
of two parallel planes of infinite extent—one plane being the cathode
which emits the electrons and the second plane being the anode which
is maintained at a positive potential with respect to the cathode.
The d-c, or steady-state, conditions for space-charge-limited flow for
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this one-dimensional diode will first be considered by following the
work of I'ry and others.'~* This work, together with a discussion of
several fluctuation parameters associated with the Maxwellian distri-
bution function, will serve as an introduction to the noise calculations.
For simplicity, we will first discuss the noise in space-charge-limited
flow by using an approximate “single-velocity” model in order to give
some insight into the low-frequency region where the presence of the
potential minimum must result in noise current that is less than that
of shot noise. After this we will consider the actual multivelocity
flow problem with the aid of North’s® solution, which again is limited
to the low-frequency case of short-transit angles from cathode to anode.

At higher frequencies, where the transit angles are no longer small,
we make use of the equations for one-dimensional flow as given by
Llewellyn and Peterson.® These equations are limited to problems of
electron flow with only a single velocity at one given point in the beam
at a given instant of time. In the region near the potential minimum,
the spread in transit time between electrons of different initial veloci-
ties may be an appreciable part of an RT cycle and the single-velocity
approximations are severely strained. Because of the multivelocity
character of the beam of this critical region, no rigorous analysis of the
noise has yet been obtained. The single-velocity equations are valid,
however, if we accept as the input boundary a plane beyond the poten-
tial minimum where the electrons have reached an average velocity
several times the value of their initial velocity owing to thermal energy.
The problem then becomes one of determining the noise fluctuations
in velocity and current at this input plane beyond which the single-
velocity equations can be used. Some approximations for the input
conditions have been obtained by Robinson,” Watkins,® and Whin-
nery.® We will discuss part of this work and show that it leads to
answers that are reasonably close to those obtained from experiments.
It is believed, however, that the rigorous solution must be obtained
with the aid of a computer. Tien has worked out one problem with
this approach, using the “Monte Carlo” method, and a summary of
his results will be presented as the conclusion to this chapter.

1. Steady-State Conditions for
Space-Charge-Limited Flow
Single-Velocity Approximation

The simplest model that can be visualized for space-charge-limited
flow in a plane-parallel diode is that used by Child. Ile neglected the
initial velocities of the electrons and used the “single-velocity”” model
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to obtain the three-halves power law of current versus voltage. We
shall write down the steps leading to Child’s law, since the more
rigorous treatment, which includes the multivelocity flow, will proceed
in a similar fashion. It will also be evident that in many cases the
equation is a sufficiently good approximation for the potential distri-
bution in a diode.

We solve the one-dimensional Poisson equation by specifying that
both the potential and the potential gradient are zero at the input
which is located at the cathode surface.

eV e _Jo W

where J is the current density, p is the charge density given by —J /v,
¢ is the dielectric constant of free space, and v is the velocity of the
electron at point x. The energy equation tells us that

2= 22y (1.2)
m

where e, a negative number, represents the charge of the electron and
m denotes the mass.

If we multiply Eq. 1.1 by 2(dV/dz) and use Eq. 1.2, we obtain,
after one integration,

5.’
g = -—4‘—]—0'_—_- ‘ 7441
eoN T
m
This can be written after a second integration:
oe V3 3
e [Z2VE a3 10m0 D (1.4)
9 m X x

Equation 1.4 is the familiar expression for Child’s law, which describes
the variation of current in a model of a diode in which the electrons
have only a single velocity at a given point, and in which they leave
the cathode surface with zero initial velocity.

" Multivelocity Flow

In an actual diode the thermal energy of the electrons at the cathode
surface imparts initial velocities to the electrons that are distributed
according to Maxwell’s law, and, as a consequence of this multi-
‘velocity type of flow, there must be a negative potential gradient at
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the cathode. If it were otherwise, all the emitted electrons would
reach the anode, and the beam current would not be controlled by the
anode voltage. The potential profile in the diode must therefore be
somewhat as pictured in Iig. 1.1. There is a negative gradient of
potential between the cathode and the minimum which is located at
T and has a potential V,,.

Fig. 1.1. Potential distribution in
parallel-plane diode with finite emis-
sion velocity.

Cathode Anode
x=0
V=0

We designate the initial velocity of emission at the cathode, which is
normal to the cathode surface, as v, and the velocity at an arbitrary
point 2 by ». The value of v is a function of emission velocity v,.
We shall denote by v,, the velocity at the cathode surface of that group
of electrons which just reach the potential minimum. The number
of electrons emitted per unit area and unit time in the velocity range
from v, to v, + dvs, may be called n(vs) dvs. We sce that n(v;) is the
distribution function giving the number of electrons in each velocity
class. As one simple application of this distribution function we may
calculate the total number of electrons per unit area per unit time N
from the relation

N = ]: n(vs) dv, (1.5)

I'or our diode problem we must evaluate the charge density in
order to apply Poisson’s equation. At point 2 where the electrons
that left the cathode with velocity v, travel at a velocity » we have

e n(v,) dog

dp = o (1.6)
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For the total charge density we must integrate Eq. 1.6 between the
proper limits. In the region between the minimum and the anode,
which will be called the 8 region, we will find only those electrons that
had an initial velocity great enough to overcome the retarding field
of the potential minimum. Thus we must integrate Eq. 1.6 from v,
through <« to obtain in the 8 region

* n(vs) dog
W:eﬁ n(vs) dv, | )

m v

In the region between the cathode and potential minimum, called the
o region, at point x the electrons moving away from the cathode
contain all velocity groups v, from v, to «, where ¢, is the velocity
at the cathode of an electron that just reaches point 2 (0 < & < xn).
The group that has been returned and is now moving toward the cath-
ode had initial velocities from z, to z,,. We can then write

b= / Tn)de / " n(es) dos
vz v vz v

which in turn can be written

p¢=26/ 71(02—‘h+e/ ﬁ%'—sldvs (1.8)

z m

We now use Poisson’s equation, and with Eq. 1.7 we can write for the
potential in the B region

d2V € ‘/‘w n(vs) dvs
—_— = - = —_ 1.9

dz? €0 Jom v (1.9)
If we multiply both sides of Eq. 1.9 by 2(dV /dz), we have

dv a*v 2 [("1dV
“rr = el d
23 da co Jon 0 ag "0 Ve
Since V = —mw?/2e¢ + constant, where the constant represents the

electron energy at the cathode surface, we can write

d <ﬂ>2=mfw1@n(v)dl'

dz \dz ;; v dx
or, by integrating with respect to x from zn to ,
2 2 ®
<d—> - nws) (v — vms) dvs (1.10)
_(‘727 B €n Jom
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where v, is the velocity at the potential minimum of an electron
which left the cathode with a velocity v;.

Similarly for the « region we can integrate from z to z, to obtain
from Eq. 1.8 (noting that the limits of integration are variable)

2 © Vm
(d—V) = m [/ nws) (0 — vms) dvg + 2/ v n(vs) dvs] (1.11)
dv/e« €9 m vz

Properties of the Maxwellian Distribution

It is now necessary to discuss the distribution function n(v,). This
is simply Maxwell’s distribution law and can be written

AT ) 2
n(vs) = g Vs exp (— :7721”37) (1.12)

KNig A7 o 4PV
Here k is Boltzmann’s constant, and T, is the cathode temperature in
degrees Kelvin. .

We wish to compute with this particular distribution of electrons
the average velocity 7 at point z in the « region for all electrons moving
in the forward direction. It is a quantity that will recur somewhat
later, and it can be written

» mos?
) . g exp | — KT, dvs
T =—03 3
/ s € (_ T ) dv
o P\ T oy, ) M

The velocity at point x, which is at a potential V, is related to the
initial velocity v by

(1.13)

2=t =25V (1.14)

or
vdv = vsdug (1.15)

(1.16)
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which is evaluated with the aid of the integrals

- _xz 1
ﬁ dx = 5 (1.17)
and
© V'
2 —a:2 —
ﬁ dx e (1.18)
to give
o (wkT N\
7= <2m> (1.19)

We wish to stress the significance of Eq. 1.19. It tells us that the
average velocity of the electrons moving away from the cathode
remains constant as we move from the cathode to the potential
minimum. This is a consequence of the Maxwellian distribution,
together with the fact that the field at the surface of the cathode is
negative. This second condition is necessary in order that we may
always integrate from 0 to « in the numerator of Eq. 1.16.

It is not difficult to see why the average, Eq. 1.19, should remain
constant: Although each electron loses velocity as it moves from the
cathode, the more slowly moving electrons are continually sorted and
returned to the cathode. Later we shall use this property to show that
fluctuations in the magnitude of the potential minimum may smooth
out the fluctuations in emitted current but will not change the velocity
fluctuations.

The distribution function may equally well be written in terms of the
average velocity 7, and in this form it will be useful later in a physical
interpretation of some of our noise equations. Thus with Eq. 1.19
we can write

N 7rvs2
n(vs) = 552 ex p( 1 52) (1.20)

We can easily see from Egs. 1.20 or 1.12 that the normalizing factor N
is the total number of electrons emitted per unit area per unit time
and is given by Eq. 1.5.

Potential Distribution for the Multivelocity Diode

Now, to return to the problem of solving Poisson’s equation for the
potential distribution, we can combine Egs. 1.10, 1.11, and 1.12.
First, it will prove simpler to change the variable from Vs to v with the
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aid of Eqs. 1.14 and 1.15. This gives

dV>2 2m*N ‘ / T, [ m < 9 e )]
= ) 0 —_— 2 —_—
((l;v ek T, 0 vexp 2T, v+ m V)|

z m e
—-/ —vvmexp[— - (vz+2—V):|dv
A\ 2%T, m

\-’2"%(Vm—V)
T vl sz ))e]
_/0 v® exp T, v +2mI dvp  (1.21)

The upper sign is to be used in the « region, and the lower sign in the
B region. We note that V,, is a negative number.

We wish to convert to normalized parameters which serve to
measure both voltage and distance from the potential minimum.
We therefore define

e(V — Vi) V—Tn
E— = 11,605 —— 1.22
! kT, ,005 T, (1.22)
and
2mm)¥ | eJq|* T
= —| @—am) =919 X 10° s — 2,) (123
: (KTe)% | € (v = am) = 9.19 X 10 T % @ —am) (1.23)

where Jo = current density beyond the potential minimum.
We define the error function by the relation

erf (x) = \/i;r ﬁz e da (1.24)

and note that, for > 1, erf (2) = 1.
Equation 1.21 can now be evaluated with Eqgs. 1.22 and 1.23 to be

2 £ -
<@> =e"— 14 e erf \/77 + —%z '\/n (1.25)
d¢ T

Here again the upper signs apply to the « region between 0 and Ty,
and the lower signs apply to the 8 region beyond ,,.

Equation 1.25 cannot be integrated explicitly, but it has been tabu-
lated,'=* with the latest and most complete tables being given in
reference 10. In Fig. 1.2 there is shown a plot of 7 vs. £.  We should
note that at the cathode £, approaches a limit of —2.55 for large
values of 7. In order to determine what is meant by large values of
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n¢, let us evaluate the current which is given by

Jo= — e/ n(vs) dvg (1.26)
or
eV
Jo = J exp <— lcTc> (1.27)

where J = current density at cathode. Therefore

]CTC Jo Tc JO
/= e —— —_— = —
Von . an 11,605 In 7 (1.28)
and
eV Jo
Ne = o —In 7 (1.29)

Approximate Solutions of the Multivelocity Flow

In Eq. 1.29 we find that large values of », correspond to small values
of Jo/J. This then states that the limiting value of & = —2.55 is
determined by the requirement that the current density passing
through the potential minimum is a small fraction of the emitted
current density.

Thus, since 7. is very large for small values of Jo/J, we can replace
erf (2) by 1, and Eq. 1.25 has the following approximate form:

-4 -2 01234 8 12 16 20

A
£=919 x 105 ‘;—y (x = xm)

Fig. 1.2. Normalized potential distribution in multivelocity diode.
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In the o region at the cathode surface,

dnc>2 . a 2
—) =ev — 14 ererf Vi — —
<d£c ‘ ‘ RV

In the B region at the anode (if we assume that V, is large) 5, will
be large, and Eq. 1.25 becomes

2
(%) e — 1 — e orf Vo —\27 Vi (31
a s

Ve = 2e%  (1.30)

2\/—
=~ —= Vg, —1
Ve

For positive & and for values of n greater than 8, the solution of
Eq. 1.25 can be expressed in the form

£ = 1.2557% 4 1.6887" — 0.51 — 0.1677n % + (1.32)

If we use the first term of Eq. 1.32, we find from Eqs. 1.22 and 1.23
that
’ 6 (V = V)
(x — xm)g

Equation 1.33 is the familiar Child’s law, Eq. 1.4, for the diode
which is derived on a single-velocity basis. However, the potential
difference and the diode spacing are now measured from the potential
minimum rather than from the cathode.

If we use the first two terms of Eq. 1.32 and note that we must
square £ to obtain the current density, we obtain

Jo = 2.33 X 10~ (1.33)

(V= V)% 2.66
=233 X 1076 —2 (1 4+ 2= 1.34
or
(V= V,,,)%[ 0.0257, } 3
= 2 106 .
Jo = 2.33 X 10 o )? A (1.35)

Langmuir discusses this approximation in reference 4, page 244, and
points out that it is an accurate representation of the actual 5 vs. ¢
curve (I'ig. 1.2) down to values of 4 = 1 with an error in ¢ of about 2%,
Therefore, in most practical cases it is sufficient to use Eq. 1.35
together with the limiting value of —¢, = 2.55.

It may give us more insight into Eq. 1.34 and will be helpful in a
later discussion of noise if we re-express this equation in terms of the
average velocity rather than in terms of cathode temperature.
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We can write from Eq. 1.19

KT, 2m ,
= -0
e Te
and Eq. 1.35 becomes
2.6 |22 [
G66|—)| @
T V)%
Jo = 233 X 10—6%{1 + ”(V—_r;—)r (1.36)

Thus we see from Eq. 1.36 that a finite velocity of emission causes
an increase of the current by an amount expressed by the second term
on the right.

Dependence of Anode Current on Changes in Emission Current

In later sections, as we discuss noise, we will be interested in the
change in anode current caused by fluctuations in the cathode current.
With the foregoing equations we can'! easily derive an expression
for the variation of anode current under the following restrictions.
We limit ourselves to small values of Jo/J so that Eq. 1.30 is valid,
and to large values of anode voltage so that Eq. 1.31 holds. From
Eq. 1.23 evaluated at the anode, x = 2,

¢ = K JO‘/é(xa - lm)

9.19 X 10° (1.37)
K = constant = —————
Tc:}-l
At the cathode, z = 0, we have
tc = —KJo"tm (1.38)

These two equations can be combined to give

(o — & = KaoJ ¥ (1.39)
and
_ (Sa - 26)2
Jo = _——(Kxa)z (1.40)

If we differentiate Eq. 1.40 with respect to the emitted current
density J, we obtain

aJq 2(&—&)(6& asc>

] (Kz)? \oJ  oJ
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and, from Eq. 1.22,

_a_g_a _ &, a_ﬂa _ 0&, an (4
o  9n, 0]  dne 9J kT,

and
agc 65,; a’?c agc an €

oJ  dn.0J  9n. oJ kT.
Th_érefore, we have

aJo 2eJ o <ag,, a_gc> AV

0T~ kTo(ts — £) \oma  oms) oJ

Now we see, from Eq. 1.30, that

and, from Eq. 1.31,
ot _ 1

g <\/l; \/;; B 1>',-2

Since 7. is large under our assumptions, we see that

9. 0%
e e

and Eq. 1.41 can be written
aJy _ 2eJo 083V
aJ - kT (0 — &) 9na 0T
We can eliminate 9V ,,/dJ through the use of Eq. 1.27:

aJo < eVm> Je ox (_ eVm>6Vm
o~ FP\Trr.) TR P\ T T, ) o7

or

Vo kT, <Jo aJo>
aJ  eJo \J aJ
Equation 1.42 becomes

i, 2 ) s
aJ $a — EcOMa J(Ea - Sc) g

(1.41)

(1.42)

(1.43)

(1.4
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The term 9£,/9n, is not convenient to use, and we can easily express
this in terms of g, which is defined by

R I LA
vV, (Kz.)? Lon, e O/ V. IET,

T

From Eq 1.27 we know that

eJo 0V
g = AT, oV, (1.46)

and Eq. 1.45 becomes

_ 2Jo (%)(l_k_Tf.g.)I_el_
T & — £ \9na e Jo kT,

Since 8V,,/0V, K 1, we find for the above, with the aid of Eq. 1.46,

2 aa,)] 2J0 (a£a> e
1 Ye)| - 2o .
g [ N (ana f— & \an ko, 14D

Equation 1.47 can be combined with Eq. 1.44 to give

oy _ KT,
7= !eng (1.48)

- Numerical Example for a Typical Diode

To conclude this section we will consider a numerical example to
determine the order of magnitude of some of the quantities that we
have been discussing. Consider a cathode operating at 1100°K with
a cathode emission of 2 amperes per cm?® and an anode-current density
of 0.1 ampere per cm?.  Thus J/J, = 20, and we can use the asymp-
totic value of —§, = 2.55.

We find with Eq. 1.23 thut

. 2.55 T
™7 019 X 105 Jo#

= 0.0017 cm

From Eq. 1.28,

1100

Vi = 11,605

In 20 = 0.29 volt
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Now for a diode operating at 10 volts we have for the last factor of
Eq. 1.35, which is a correction to Child’s law,

0.0257T %

1+ (V —0.28)%

1.26
whereas, if V' = 100 volts, the correction factor becomes 1.08.

Thus for the steady-state conditions the corrections to the single-
velocity (Child’s law) expression are of importance only for low-
voltage diodes. However, we shall find this multivelocity treatment
of great importance and indeed the starting point for the succeeding
calculations on noise in the presence of the potential minimum.

2. Noise Properties of an Electron Stream at the
Surface of the Cathode

We will discuss in this section the noise current and noise velocity
in a temperature-limited diode. The term temperature-limited is
used to describe the condition of operation wherein all the emitted
electrons are drawn to the anode. The resulting relations will be
valid for the input conditions at the surface of the cathode for space-
charge-limited flow which will be studied later. The diode will be
assumed to have a small cathode-anode distance so that transit time
effects can be neglected.

Shot Noise

The noise current in a temperature-limited diode, called shot noise,
was first described by Schottky.!21* Here we wish to give two argu-
ments which have been used by Pierce!¢!® that may or may not make
the shot-noise formula more plausible.

The first example considers a short diode consisting of two emitting
surfaces opposing each other. Both surfaces are assumed to be
identical, and the entire diode is held at the same temperature. If V
is the voltage of cathode 2 with respect to cathode 1, we then have,
from Eq. 1.27, that the current flowing to cathode 2, which is held at
—|V| with respect to cathode 1, is given by

eV

Io=TIexp (— ﬁ) (1.49)

(note: e is a negative quantity) where I is the total emitted current
of cathode 1. The diode conductance is defined

6[0 el ( GV)
=20_ _ xp ( — 1.
=%y kT, P\ kT, (1.50)
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We now short-circuit the diode, and, since there are no external
sources of power, the electric-energy flow in the lead connecting
cathode 1 to cathode 2 must be the Johnson noise attributable to the
resistance of the diode.

Johnson noise is given in the equation

% = 4kTg Af (1.51)

where ¢ is the conductance of the noise element, & is Boltzmann’s
constant, T is the temperature in degrees Kelvin, and Af is the band-
width of the measuring system in cycles per second. From Eq. 1.50,
when V = 0,
_ LI
9= %r,

so that we may write for the short-circuited diode, using Lq. 1.51,
and the fact that the diode is at equilibrium temperature T,

5 _ gy A]
@ = 4RT o0 Af
i? = 4l¢| T Af

If V = 0, a current flows from cathode 2 to 1 equal to that from
cathode 1 to 2, so that the noise associated with a current Io flowing
from cathode 1 is given by

i = 2|dI af (1.52)

This is recognized as the shot-noise formula.

The second argument, which may make Eq. 1.52 appear reasonable,
begins by considering a periodic procession of electrons, one electron
every T scc. These electrons (carrying a charge e) form a series of
current impulses, and the spectrum of current flow is made up of a
number of harmonies spaced by

1
Af = — 1.53
=7 (1.53)
The peak amplitude of each harmonic is given by
2|e]
= —— 1.54
i = (154

We assume there to be many such periodic processions of electrons,
each producing its own set of harmonics, and this large number of
electrons produces a net harmonic component at a given frequency of
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peak amplitude %,. To this we add one more periodic procession of
electrons carrying a current with a peak harmonic amplitude 7. and
phase 6 with respect to 7.

The square of the total current 7 is given by

12| = $(im + 126"°) (i + 5,677°) (1.55)

= 3(Tn? + 5% 4+ 2imiy cos 6)

I

If 6 is chosen at random, the result of a large number of additions
‘of 7, will just as likely have negative values of 6 as positive values,
and the third term of Eq. 1.55 does not contribute to the total current.

Therefore, by adding a current 7, at a random phase, we increase |I|2

by an amount 7,2

Thus, for p sets of electrons per sec, the mean-square value 2% for
each harmonic will be, from Eq. 1.54,

2 2
F_P(2) _o 5
YT (7) = (1.56)
The average current is given by
Iy = pM (1.57)
and therefore, from Iqs. 1.53, 1.56, and 1.57, we obtain

e| Iy Af (1.58)

which is again the shot-noise formula.

2=2

Noise-Velocity Parameters of the Temperature-Limited Diode

Let us now turn our attention to a second noise parameter which
will appear frequently in our discussions; namely, the mean square
deviation of the velocity, sv°.

Just as in Section 1, where we calculated the average velocity from
the Maxwellian distribution, we can now calculate the square of the
deviation from this average. Let

2= (v —1n)? (1.59)

w 2
— 5?2 - m_”)
/o v — 0% exp( 2kT. dv

0 = = — (1.60)
ﬁ v exp (" 2ch) v

and thus
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— 1 ® my

L e (- 5i7)

v /w <_ m”2>dv . Vv exp KT dv
0

2kT.

® mv2) /” < mvz> ]
— 25 wexpl — 72 - .
uﬁ v0 exp ( SET. dv + 0 , U exp oNT, dv (1.61)

With Eq. 1.13 this can be written

02 =2 — p? (1.62)
From LEq. 1.19 we have
kT,
=" (1.19)
2m

and further

- 2iT
»? = < (1.63)
m
Thus we have
) ]GTC
st = 4 - (1.64)

Now we must consider how this is related to the mean-square
fluctuation of velocity which is created by shot noise in the emission
current. Suppose we have a current I which forms part of a current 7
and leaves the cathode with a velocity »;. Then the average velocity
7 will be

EI Vs
I

<

(1.65)

We can find the fluctuation in & due to the fluctuation AT, = 4, in
the current I, as

i 1dI
ADy = ( T dI — 210, + I) s (1.66)

Since a change in I, by an amount A, also represents a change in
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by Al we have

al
— =1 1.67
al. (1.67)
and therefore
_ 1 _ Vs
A, = _I—ZUI_*_T R
or
ATy = (v, — 1’))215 (1.68)

Since each velocity class is emitted independently, we may assume
that the fluctuation ; is a shot-noise current, (2|e|I, Af)*, independent
of the fluctuation in any other stream, and the total mean-square
fluctuation in velocity will be given by

2\e| L af E (v — )1 (1.69)

but

2
I, = Kvsexp ( 2107" ) v, (1.70)
v

where Av; is the width of the velocity class and

2
T=KY o, ex s (1.71)
Ly \ 2kT.)

Using Eqs. 1.70 and 1.71 in Eq. 1.69, and replacing the summation
by integration, we obtain

2
/ (vs — )%, exp ( s > des
T 2|el Af 2kT

s - m P
[)Lsexp( 2kT)dL

(1.72)
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and, from LEq. 1.72

2lel AF ~ _2dar— ‘
=7 S (1.73)

which then gives, for the mean-square fluctuation within the frequency
band Af,1¢

— AfET,
AD = le] mf[

In the next section we will treat the problem of noise in a space-
charge-limited diode and find that fluctuations in the potential
minimum will act to smooth the shot-noise current of emission. How-
ever, from Eq. 1.19 we see that the average velocity is not changed by
fluctuations in the potential minimum, and therefore we shall assume
that the fluctuation velocity given by Eq. 1.74 does not change with
changes in the potential minimum.

The above quantity is of sufficient importance to introduce a sep-

4 —-m (1.74)

arate symbol forit. We shall denote it hence simply by 2. Although
v has been used before to denote the velocity of single electron groups,
we believe that there will be no occasion for confusion.

3. Space-Charge Reduction of Noise Using the
Single-Velocity Approximation

In the next section we will present a more general treatment of the
low-frequency noise in a space-charge-limited diode and show that
this noise is reduced much below shot noise. Since this treatment is
complicated by the multivelocity character of the beam, we will con-
sider first some approximate derivations of this reduction factor which
are based on simplified models. The model will be assumed to have an
electron stream which has only a single velocity at a given plane, z,
and the mean-square fluctuation in this velocity will be assumed to
be equal to the mean-square fluctuation in velocity which was calcu-
lated for the multivelocity beam in Section 2. The space-charge
reduction of noise based on a single-velocity theory was first demon-
strated by Rack?® to give results that were in good agreement with the
multivelocity treatment. Rack’s work was based on the Llewellyn—
Peterson equations, and we will take this up somewhat later. First,
however, we can illustrate rather easily from the equations of Section 1
that a given noise fluctuation at the cathode associated with shot
noise must result in a noise current at the anode which is reduced
below shot noise by a “smoothing factor’” T2,
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Simple Expression for Smoothing Factor I'?

In Eq. 1.36 we have an approximate expression which relates the
anode current to the finite velocity of emission at the cathode which
can be written (D. O. North pointed out this method)

2.660
Iy = Tg |1+ 06z (1.36a)

PEENE
[2 V. uq

where I is the diode current found from Eq. 1.33. From the numer-
ical calculation in Section 1 (p. 14), we concluded that this is a good
approximation to the average current density for voltages above
20 volts. If there is a fluctuation A7 of the average emission velocity,
caused by excess current in the velocity group v,, the resulting change
in anode current A7 is given from Eq. 1.36a as

m

Al = —— Lo02.66 - A, (1.73)
énd the mean square of the fluctuation current is
an? = - (2.66190)? R (1.76)
3| (Va= Vi)

If we now associate the fluctuation of velocity A% at the cathode
with shot noise, the mean-square fluctuation in velocity is, from
oq. 1.74,

= _ leaskT.

AB2 = o2 4 — (1.74)

’m,Io

Setting Igo = Iy, the mean-square fluctuation in anode current is,
from Eq. 1.76,

— _ (260)? 2| I &f
WD == G =) Ty (Ve = V)

9
= 2|e| I, Afz(

4 — 7

a

) (L.77)

The factor which relates the reduced noise current to shot noise is
denoted by T'%, and from Eq. 1.77 we sce that

2 = g(* — ”) (1.78)
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which can be written from I3q. 1.22, assuming 7, = 1100°K

1
r? ~ <1 - ’—r> — 1.7
Py AT (1.79)

(with V, in volts)

~

5V,

Thus we find I'2 considerably less than unity. The relation of Eq. 1.78
is valid only for large values of 5, since it is based on Eq. 1.36a.
Also, it neglects the effect of the electrons which were returned to the
cathode because of low initial velocities. We will see from the next
section, which treats the problem in a more rigorous fashion, that the
effect of these returning electrons is small and the limiting expression
for large values of 5, is just that given by LEq. 1.78.

Smoothing Factor I'2 Derived from Another Simplified Model

In reference 14, Pierce discusses the noise in space-charge-limited
single-velocity flow along the following lines: In an actual diode, the
relation between the anode current Io and the emitted current I is
given (from Section 1) as

Io=1Iexp (— 7?’") (1.27)

If we now assume V,, to be held constant, the electrons returning
to the cathode are independent of those going on to the anode, and
hence the anode current must contain pure shot noise, given by

i? = 2l 1o Af (1.80)

Consider an a-c open-circuited diode. In order to keep the fluctua-
tion current zero, ¥, must change in such a way as to create a current
equal and opposite to that given in Eq. 1.80. Therefore at 2., there
must be a fluctuating voltage

Vik = 2|70 AfR? (1.81)
where
AVm
pm
T dl
and, from Eq. 1.27,
R, = Pl (1.82)
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Therefore Eq. 1.81 becomes

V? = ¥kT Ry Af (1.83)

If there were no change in V, — V,,, the fluctuation in anode voltage
would also be given by Eq. 1.83. However, if we compare this to the
equivalent result, Eq. 1.77 multiplied by 1/¢% we find that Eq. 1.83
gives a value that is much too small. We must therefore look for
fluctuations in the space between the potential minimum and the
anode. These variations in voltage between the potential minimum
and the anode are related to the fluctuations in average velocity of the
electrons in the region.

We will neglect the effect of the thermal velocities of emission, and
this in turn implies that we are neglecting the effect of the electrons
that return to the cathode. The assumption can be verified through
comparison with the results of the next section. With these assump-
tions the steady-state conditions are given by Child’s law

' V3
Iy =233 X 107¢ " (1.4)
From Eq. 1.4 we obtain for the conductance of the diode
_3 _31
I=v. 27,
and the diode resistance is
1 27V,
R=-=2-2 1.84
0 3T, (1.84)

Consider now an electron which crossed the potential minimum at
2 =0 at a time { = 0. The charge between the electron and the
potential minimum is given by —If. Since the field at the minimum
is zero, the potential gradient at 2 is given from Gauss’s theorem as

oV _ Lt (1.85)
dx €9 )
and the acceleration is
P AR L (1.86)
m| e
which gives
I
2|22 44 (1.87)
m 260
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and
I

— 3 4 @t (1.88)
Deg

_ts‘{‘.‘f}ot = ‘E

T
m

where iy is the velocity at { = 0, x = 0.
Now the voltage between the potential minimum and x (where hence-
forth in this computation x is the position of the anode) is given by

i — ! = —2% Va (1.89)

or

2
1 w lo I
m "
V, = —— ) gt (1.90)
e 2&1] 260
ol =
m

If at constant x we now vary &y by a small amount, we find, from
Eq. 1.88,

di —1
= —___MI (1.91)
LU0 (_uu 1‘2 + .].:D)
meg
and, from 1.90,
I (o
PR (‘—“'—3 *+ ru) dt+ 20 2 dz, (1.92)
en \2egm 2¢
and, using Eq. 1.91,
dV, = — To 1% diy (1.93)
260

We will now evaluate {. Since the major portion of the thermal
velocities at the potential minimum are small compared with the
velocities in the rest of the region, we can take the value of ¢ for &g = 0.
Thus, from Eqs. 1.87 and 1.88, we can write

=1 r N\ 34
ﬁ‘ (2}41 ) (1.94)

{* =
2mey | m

and, from Eqs. 1.93 and 1.94,

AV, = —2% \ t I —% 7 % dig (1.95)
m
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If (dio)? is the mean-square fluctuation in velocity, the mean-
square fluctuation in voltage V,? will be, from Eq. 1.93,

V=2 I? V, do? (1.96)
or, with Eq. 1.75, we can write
Vi=3 % IoR do® (1.97)
From Section 2, Eq. 1.74, we have
7 =

and Eq. 1.97,
Vol = 3(4 — 0)kT R Af

Vo? = (0.644)4kT R Af (1.98)

_ This is the fluctuation in voltage between the anode and potential
minimum for an open-circuited diode. It is also the fluctuation in
anode-cathode voltage for an a-c open-circuited diode under the
assumption that we can neglect the effect of those electrons that
return to the cathode. We see here the well-known result that the
noise from the space-charge-limited diode is two thirds of that from a
thermal resistor with resistance equal to the diode resistance.

Smoothing Factor from the Llewellyn-Peterson Equations

We will now present the approach used by Rack.’® It will be
assumed that the reader is familiar with the Llewellyn-Peterson equa-
tions® which can be written in the formt

Vy — Vo = A*I 4 B*J, 4 C*, (1.99)

where V, — V, is the alternating voltage between two planes in a
diode and J, and v, are the a-¢ convection-current density and a-c
velocity at plane a. [ is the total a-c current density in the diode.

If we consider the case where we have no fluctuations in the diode,
ie, Jo = 0and v, = 0, Eq. 1.99 reduces to

Vy — Vo = A*I (1.100)

from which we identify A* with the a-c impedance of the diode.

T See also Chapter 3 but note changes in notation.
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Therefore we associate the last two terms with the voltage produced
in the diode by fluctuations in the electron stream, and we write for the
a-c open-circuited diode

Vy — Vo = B¥J, + C*y, (1.101)

The coefficients B* and C* are given in reference 6 as

. 17T
B* =3 ; Fua@P — B8Q) (1.102)
C* = — %"—2 (ug + ub)a—i (1.103)

In these equations

ue = average velocity at plane a
up = average velocity at plane b
6 = transit angle from plane a to plane b

T = transit time from plane a to plane b
and

P=1—¢7%— jge° (1.104)
and

Q=1-¢7*

respectively. For our noise problems we will consider the a plane
to be just slightly beyond the potential minimum, so that we encounter
no electrons returning to the cathode, but close enough to the minimum
so that the d-c acceleration may be taken equal to zero. Under these
conditions u, will be considered to be zero, and, from Eq. 1.102,
B* is zero. This tells us that fluctuations in current density at the
potential minimum produce no significant effect on fluctuations at the
anode. e are left with the equation

Vo — Vo = C*y, (1.105)

And from Eq. 1.104 we have, for § — 0,

(1.106)

If b represents the anode plane, Eq. 1.106 is applicable to the short-
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transit-angle diode problem. Equation 1.105 becomest

mT“” v (1.107)

14
= — <2 % Vob> Vg

and the mean-square fluctuation in anode voltage is given by

Vb_ Va.

I

m

V=2 [l Vopa® (1.108)

This will be recognized as identical to Eq. 1.96, and therefore we can
write again

V? =34 — n)4kTR Af (1.109)

In this section we have derived several consistent expressions for the
noise-smoothing factor I'?, using models that are limited to single-
velocity flow. We must now develop the problem of multivelocity
flow, and we will find that the above approximations are valid for
small values of Jo/J and relatively large values of V, (V, > 20 volts).
These are familiar approximations and apply for most operating con-
ditions in the low-frequency region.

4. Space-Charge-Limited Noise for Diodes with Short
Transit Angles

The problem of reduced shot noise with multivelocity flow that is
encountered in space-charge-limited diodes when the transit time from
cathode to anode is short compared to an RI cycle will be treated by
following the discussion presented by Thompson, North, and Harris
in reference 5. As pointed out in Section 1, the mechanism of space-
charge-limited flow is such that part of the emitted electrons are
turned back to the cathode by the negative gradient prior to the
potential minimum. Since this gradient is established by the space
charge of the electrons, it is not difficult to understand that an instan-
taneous increase of emitted electrons over and above the average
number would result in a lowering of the potential minimum, and hence
a larger number of electrons will be returned to the cathode. It
is this gating action of the potential minimum that reduces the noise
below the level of pure shot noise.

When additional electrons are emitted which have velocities suffi-

t Note that in the Llewellyn-Peterson notation V, corresponds to the input
plane, and, in this context, to the potential minimum, not the anode!
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cient to pass the potential minimum, the number of electrons passing
through to the anode is momentarily increased, thus lowering the value
of V., owing to the added space charge. The more negative potential
minimum turns back some electrons which would have otherwise
passed to the anode. Similarly, if the number of emitted high-velocity
electrons is less, V., becomes less negative, and an additional number
of the lower-velocity electrons are allowed to pass to the anode. It is
this critical relation between the fluctuations in emission velocities
and the corresponding fluctuations in potential minimum that we wish
to study.

Formulation of Smoothing Factor

The analysis will proceed along the following lines: Assume that
steady-state conditions exist within the diode. We now inject into
this diode a small current which contains electrons with velocities of
emission from v, to vs + Av;.  The fluctuation current is given by the
shot-noise formula (2eI, Af)*, with I, being the current carried by the
velocity group v, to v, + Avs. From this we shall determine the
resulting fluctuation in the potential minimum. This in turn will
allow us to calculate the corresponding fluctuations in anode current.
An integration over all the velocity classes will then give the total
fluctuation in the anode current.

We shall consider only fluctuations of long enough duration so that they
act as a succession of equilibrium states. We assume the cathode to be
at zero potential and define V' by

—2fy, =2 (1.110)
m

where v, is the velocity of emission of a small steady increment of
current, 7,(vs). We further define the parameter
—e(Vs + Vi)

= T (1.111)
where V,, is a negative number. Thus we can use X rather than v,
to designate the emission velocity of electrons which comprise <.
If we choose v, such that the element of current in this velocity class
crosses the potential minimum to the anode, X is positive. I'or smaller
values of v;, such that the current is turned back, X is negative and
must lie in the range —n. < XA < 0, where 7. is defined in Eq. 1.29.
We see that the value N = —7, corresponds to a value of v, equal to
zero. Also, from the 5 vs. £ plot of Iig. 1.2, the point at which the
electrons stop and return to the cathode is given by n = —AX.
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We now consider the noise fluctuations in the anode current. For
every value of 7,(\) that we inject into the diode, we will find the new
equilibrium current 7. Thus, if 7, represents the steady-state anode
current which flows before the admission of 7,(\), we are able to deter-
mine the net increase in 7). The ratio of this net increase in anode
current to the increment of current #,(\) will be a function only of .
This follows from the previous argument which indicated that the
change in anode current due to an incremental change in emission
current. would be a function of the velocity of emission and hence A.
The ratio of the net increase in anode current to 7, will be denoted by
¥(A). It represents the factor by which a change in emission is
converted into a change in plate current.

The fluctuation A7, in the ineremental current is a true shot fluctu-
ation and can be written

A% = 2|e| AT, Af (1.112)

where AJ, is the emission current containing electrons with emission
velocities between A and A + AN.  From Eq. 1.27 we can write

Al = Ie™ AN (1.113)
or

27,2 = 2le|T Af(e™ AN) (1.114)

Now we have stated that the fluctuations in anode current will be
changed by the factor y(\) from those in the emitted current. We can
then write the fluctuations in an incremental element of anode current
as

A = 2|e|I Affy2(\)e™ AN] (1.115)

Since the fluctuations of Eq. 1,112 associated with one velocity class
are independent of other velocity classes, we can obtain the total
fluctuations in anode current by integrating Eq. 1.115 to give

@ =2drar [T 200e (1.116)
which we can write as
12 = 2le|I Af T? (1.117)

I'? will be recognized as the space-charge reduction factor and can
be written as

9

I'? =Tr,.2 + g (1.118)

where
Pt

I

f_“m YA (N)e d) (1.119)
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and
Ty? = ﬁ)“ +2(\)e d) (1.120)

where « refers to the group of electrons that do not have initial veloci-
ties at the cathode sufficient to overcome the potential minimum and
hence are returned to the cathode. The subscript 8 denotes that
group of electrons which pass the potential minimum and hence
reach the anode.

Evaluation of Smoothing Factor

The factor v(A\) for the o and 8 groups can be expressed as follows.
For values of X pertaining to the « group the total anode current after
injection of 5 is I, whereas before injection it was I,. We can then
write

I-1I
is(\)

For the 8 group the total anode current after injection is I+ 1s, for
1, now passes on to the anode, and therefore

y(\) = (a group) (1.121)

y(A) =1 + (8 group) (1.122)

— I
is(\)

Let us now calculate I when we inject a small additional current 4,
from the cathode. For the 8 group we can write, in place of Eq.
1.9,

2V ® 8 d 8 .8
‘;_2 =_£/ n(vs) v _ 15 (1.123)
RN €0 Jom v €oV

Following the procedure of Section 1, we can make a first integration
of Eq. 1.123 by multiplying both sides by 2(dV /dz) and, since

) & \/V+Vs
m

we obtain, in place of Eq. 1.10,
av]p -2 “
[—] = m/ n(vs) (v — vy) dvg

dx s e

Lsé v 2
€0 \/{e m

“If we now change from 2 and V to £ and % as given in Egs. 1.22 and

I(\/V + V= VVm+ Vo) (1.124)
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1.23, we obtain, in place of Eq. 1.124,

2
(%)ﬂ:}—s = (Vi + A=V e =1 —eefVy

+ :/—W Voo (1.125)

which we can write as

dn 2 _ é -
(d_g)s =7 (2 + %(n) (1.126)

where F(n, \) = % (Vg 4+x— \/X)

and ®s(n) follows from Eq. 1.125.
Now, since we have assumed 7; < I, we shall neglect all the higher
powers of 7;/I, and write

14 F(n, X)] dn
ds = [ = — 1.127
2T 2() J Bln)” (1.127)
If we denote the value of ¢ and 5 at the anode by the subscript a,
we can write
. e dy 114, /ﬁ“F(n, \)
. = - — = = d 1.128
b, B 21 Jo Hiyn T (1128

where £ and # represent the perturbed values, whereas ¢ represents the
unperturbed value and is given from Eq. 1.128 with ¢, = 0:

Na dn
e = raa—— 1.129
¢ ﬁ Pg(m) " ( )

Now since the quantities (4 — 5) and (£ — £) are also first-order
infinitesimals, we can write for Eq. 1.128

g _ﬁa""’?a ]-is/mF(ﬂ;)\)
Pp(na)?* 21 Jo Dg(m)*
A similar treatment for the « group gives

é_£='?lc—770 li_s/"‘F(mX)
T (o) 21 Jo @)

dn (1.130)

dn (1.131)

where the subscript ¢ denotes the cathode surface. Now we will
treat the problem wherein the anode potential is held constant as in an
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a-¢ short-circuited diode, and, from Egs. 1.22, 1.23, and 1.29, we have

S

e — = f, — =i _7 = _{QQ_I_IO
fla = %0 = fle = 1e = 17 (Ve — Vi) =In 7 = i3 (1.132)
and
., T
(sa - Ec) - (Ea - Ec) = (Sa - Ec) (\/I_ - 1)
. 0
1 I—-1,
= 5=t (L133)

If we subtract Eq. 1.131 from Eq. 1.130 and use Eqs. 1.132 and 1.133,
we obtain

-1, 1 Uﬂfp(n, ) /m F(n, \) }
S — e — 1.134
i 20 Lo @t ™t Jo ayem 7] (113

where
D = 3t — &) + Bp(na) ™ + Balne) ™ (1.135)

Therefore, from Eq. 1.122, we write for the 8 region

L[ ["F@ N /”"F(n, N ]
Y =1 2DM) Rl Mwno L I

I

where
A>0

It is now necessary to resort to numerical integration in order to
evaluate Eq. 1.136. This is done for the case of complete space-
charge-limited flow, which means that we can assume [o/I < 1.
This in turn means that we may use the values n, = «, § = —2.55
and ®.(n,) = . Thus, in Eq. 1.136, v(\) becomes a function of 5,
and X\. The resulting values of y(A) were obtained by North and
others in the range 5 < 5, <100 and 0.05 <A < 5. Near A =0,
v(\) has a logarithmic discontinuity and must be evaluated separately.
In Fig. 1.3 there is shown a plot of ¥(A) vs. A as taken from reference 5
for n, = 30. The value of T's® for 5, = 30 is now obtained from Fig.
1.3 with the aid of Eq. 1.119. This method then allows a plot of
I's% vs. 14, which is given in Fig. 1.4.

Also shown in Fig. 1.4 is a plot of T'.? vs. 74, which is obtained in a
manner similar to the preceding calculation for I'y?. It is significant
to note that I'.? is always much smaller than T2 This is to be
expected, since the major portion of the electrons in the o group are
returned to the cathode before they approach very near the potential
minimum. Therefore the action of the « electrons is confined to a very
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short region. We can thus neglect their contribution to the noise and
set To? = 0. This assumption, together with single-velocity equa-
tions, allowed us to evaluate I's® in the approximate but explicit forms
of Section 3.

04}
03}
YN 8 group
02}
01
-1
1 ] | I I
0 1 2 3 4
A
« group
-0.1
111 = oo
1y =30
HI
-o0.2i
]

Tig. 1.3. Shot-effect reduction factor v as a function of the velocity parameter A.

Smoothing Factor in Terms of the Diode Transconductance

Before concluding this section, we will discuss Eq. 1.117 in a differ-
ent form in terms of the diode conductance g. Thus Eq. 1.51 can be
written

3T = - 4kTg Af (1.137)

The diode conductance g as defined by

_al,

>3}



SIHOT NOISE FROM THERMIONIC CATHODES 33

was derived in Section 1, Eqs. 1.45 through 1.47. In Eq. 1.47 we
set the multiplier approximately to one and replace ¢, — & by Eq.
1.135, where
$a =0
We obtain
_ 21, 9t le]
2D — ‘ISB("IG)_}‘2 Ma ET.

g

Further, using Eqs. 1.31, 1.125, and 1.126, we can replace 9£4/974
by ¢s(ns)7* and obtain
_ 2L |
7 D¢yt — 1T,

At large 5, we can neglect the one in the denominator, and finally
obtain

lel Io-
il o) % 1.138
ch g Déﬂ(" ) ( )
0.12 I T I
010 -
0.08 - —Jo08
3
2 006
P

0.02

] I
0 40 80 120 160 200

Fig. 1.4. Shot-noise reduction factor for complete space-charge-limited flow
(Ls/1I > 1).
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With Eqs. 1.117 and 1.137 we can write for 6

I
§ = 4I? ]liT|—g-° = 372 D&y(na) % (1.139)
vl e

This value of § is also plotted in Fig. 1.4, and we see that for 7, — «
we have a limiting value for 4 given by

§~3 (1 - ’4i> = 0.644 (1.140)

This familiar result agrees with that found by the approximate
methods of Section 3. Again it can be stated that a space-charge-
limited diode generates a mean-square noise power equal to the thermal
noise in a resistor whose resistance is equal to two thirds of the a-c
resistance of a diode.

5. Discussion of Emission Noise at High Frequencies
When the Transit Time Is Not Small

There is no adequate treatment of electron streams with Maxwellian
distribution of velocities for high frequencies, and therefore the analysis
of the noise problem must be based on the single-velocity approxima-
tion. TRack!® has extended the analysis of Section 4 to include finite
transit angles. Peterson'” has used the Llewellyn-Peterson equations
for caleulating the noise in a high-frequency tetrode. Pierce!8 used
this method in calculating the noise in the stream of a traveling-wave
tube. In applying this method, he assumed that at the input plane
near the potential minimum the average velocity was zero, and hence
any fluctuation in current density at this point produced no effect
at a later point in the stream. The only source of noise was the fluctu-
ation in velocity which was taken to be equal to the mean-square
deviation as calculated for the multivelocity stream. This analysis
is subject among other things to the defect that the average velocity
at the potential minimum is not zero but finite as calculated in Section
2, and hence the velocity fluctuation is not the only source of noise.
There is a second source of noise in the current fluctuation at the
potential minimum. The question that remains to be answered
relates to the magnitude of these current fluctuations. Is it equal to
shot noise or reduced shot noise, and is it correlated or uncorrelated
with the noise velocity?
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o Plane Beyond Potential Minimum Considered as Input

The first attempt to answer these questions was made by Robinson.”
The single-velocity equations break down because the spread in transit
angles between the potential minimum and the anode is not small. In
fact, MacDonald!® has given an expression for the anode transit time
7(E) of an electron with an initial energy £ at the minimum to be

M) (1.141)

1,
eV,

7(0) = transit time of electron with zero initial energy

T(E) = 7(0) <1 — 0.85

Thus for a typical microwave tube 7(0) might be 4 cycles and V. =
1000 volts. If weuse E = kT, the average energy of the minimum, we
arrive at a value of w[r(0) — 7(&)] = 2x/3 radians, which is not small.
Robinson points out that this spread takes place largely in a region very
close to the minimum, and hence, if we consider our input plane to be a
given distance beyond the potential minimum, the single-velocity
theory should be valid at the high frequencies. That such a plane
exists can be seen from Eq. 1.141, for, if we choose 4 electrons with
initial energies of 0, kT, 2kT, and 3kT, their transit times in the above
example would be 7(0), 0.9157(0), 0.8987(0), and 0.8887(0). Thus we
see that the spread in transit angle between the third and fourth
electrons of 0.087 is certainly small. If we choose our input plane,
called the « plane, at a point beyond the minimum where the potential
is a(kT/e), we see that the slowest electron will have an energy of
okT at this plane. If « is sufficiently large, the spread in transit
angle beyond this plane will be small.

At the « plane Robinson assumes the current fluctuations to be
equal to shot noise, and the velocity fluctuations to be given by the
mean-square velocity deviation for the multivelocity stream at the o
plane, which is calculated in a manner similar to that used in Section 2.

Estimate of Smoothing Factor at High Frequencies for Noise Current

We see that the approach just considered would be very good if we
knew the true value of the current and velocity fluctuations at the «
plane. Robinson assumed pure shot noise with no correlation between

“velocity and current. Following Watkins,® we may argue that the
current fluctuations at the « plane should be somewhat less than true
shot noise.t Consider the diode to be divided into two diodes in
series: the first between the cathode and the potential minimum and

t Compare Sec. 2, page 229, Chapter 5.
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the second between the potentlal minimum and the « plane. The
first diode prior to the minimum is a retarding field diode of area A,
which has, for small transit angles, an a-c admittance given by

_ ('}E%’. +j“’§> A (1.142)

where J is the current density through the diode, and d is the distance
between the cathode and the potential minimum. If we consider the
diode to be a-c short- circuited, the current fluctuation through the
diode will be shot noise, as aroued in Section 3, and we can write

= Izejo Af[h (1.143)

If we assume a linear system, Eqs. 1.142 and 1.143 can be used with
Thévenin’s theorem to give the open-circuit noise voltage as

[2e T, Afl

lefo | . weo (1.144)
<kT t d)A

We now consider this diode to be in series with the second diode,
and, as a result of the large transit angle beyond the potential mini-
mum, the latter diode can be considered to be open-circuited for
alternating current. With this condition, the total alternating current
must be zero, or

isc
Voo =y =

1+ jwegdE =0 (1.145)
where ¢ is the alternating convection current.
e B BT e CE
or, for the mean-square current fluctuation, we can write
% = [2¢I, Af|r? (1.147)
where
2= 1 (1.148)

1 + (eJ od/weokT,)?

We can write d in Eq. 1.148 in terms of the parameter £, defined by
Eq. 1.23. Using a new parameter a,

w w

a = —_ —
J o |4

20 (m/2kT )% &0

meg

(1.149)

Wpm
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where w,,, may be defined as a plasma frequency at the potential
minimum. Equation 1.148 can be written

1
T 1+ g2 /4ma?
Now, recalling that, for complete space charge Jo/J < 1, we have

as the limiting value of & = 2.55. With this value Eq. 1.150 is
written

r? (1.150)

1
14 0.52/a?

For a numerical example we will use the following values:
T =1020° K, f = 3000 Me, Jo = 0.1 ampere/cm.

in which case @ = 0.665 and I'? = 0.46. The mean-square fluctuation
in current is reduced by a factor of 0.46 below shot noise.

Watkins points out that the assumption of small transit angles from
cathode to potential minimum is not justified as it is found to be about
1.4 radians in the above example. Whinnery® has discussed some
aspects of the noise at the potential minimum at high frequencies by
using the physical picture of Thompson, North, and Harris as in
Section 4. He discusses the effects of using different values of 7,
in numerically evaluating the integrals of Section 4. e considers the
perturbation of the potential minimum as one injects an excess of
charge at the cathode and finds that the potential minimum “over-
compensates.” It oscillates back and forth at a frequeney correspond-
ing to the plasma frequency calculated at the potential minimum. Ie
further points out that this plasma frequency for typical tubes occurs
in the microwave region from about 2000 to 4000 Me.

I? (1.151)

Treatment of Multivelocity Problem with the Use of a Computer

In each of the approaches that has just been presented it was neces-
sary to make rather severe assumptions; so far it has proved difficult
to assess their validity. Therefore, these solutions have limitations,
for they do not give a complete answer to the multivelocity flow
problem near the potential minimum. In Watkins’ analysis a short
transit time from cathode to potential minimum is assumed, an assump-
tion which is not generally true. In Whinnery’s work the electrons
that return to the cathode are all assumed to return at the point of
the potential minimum, x = x,,, whereas in reality the point of return
is distributed between the cathode and z,,. In an analysis of this sort
one must make use of a linear theory. Since the d-c¢ velocity is small
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in the region of interest, the a-c velocities can be of comparable ampli-
tude, which violates the assumptions necessary for the linear theory.

Because of these difficulties Tien and Moshman?® attacked the
problem by using numerical integration to trace individual electrons
through the potential minimum of a typical diode. We can see in
principle what is required for this task. The d-c conditions of the
diode can be established from the equations of Section 1. Then one
electron injected at the cathode can be traced step by step through
the minimum to the anode. By injecting a sufficient number of
electrons and computing their cumulative effect, it should be possible
to find the noise current and noise velocity at the « plane just beyond
the potential minimum.

The number of electrons that are injected at the cathode is necessar-
ily limited when a computer is used, and the question immediately
arises as to how these electrons should be initiated so that the emission
noise is properly simulated. It is necessary to know the number of
electrons injected, their time of injection, and the velocity at which
they are injected. These initial properties were determined by Tien
and Moshman by the “Monte Carlo method” of statistics, which is
characterized by the use of random numbers.

. We will first discuss briefly random numbers so as to illustrate how
they were used in obtaining the initial conditions of the injected
electrons. Consider the simple problem of finding the area under the
curve of T'ig. 1.5. We would begin by dividing the interval into n
equal spaces (Az) and sampling the heights of the curve at each inter-

Flv) bb———

x axis

0 1 |
0 02 04 06 08 10 12 14 16 18 20

Velocity, (volt:;)}i

Fig 1.5. Plot showing transformation from uniform probability distribution to
xe—-az?'
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val. If we desired to increase the accuracy of the computations, we
would subdivide the interval and use 27 steps. Thus we are limited
to a discrete number of steps. With the use of random numbers we
would not use the uniform interval but choose n random numbers
which were distributed with uniform probability in the desired interval.
If we chose 100 intervals, for example, the random numbers might be
1.1, 2.9, 3.1, 3.8, etc. However, with random numbers we can increase
the number that we use without regard to the discrete steps as before,
and we can equally well use 99 numbers or 101 or 138, and they would
still have the same distribution. As the number of samples increases,
the accuracy increases.

Random numbers with a uniform distribution are readily obtainable
from tables, or, if a computing machine is involved, it may be faster
to generate the numbers. However, there are many instances when
one wishes to use a distribution other than uniform, and this is obtained
by a simple transformation. Let us consider how we might transform
a set of uniformly distributed numbers to a distribution which is
expressed by a probability density function

— 2
xe %

This is illustrated in Tig. 1.5, where we see the evenly spaced points
along the vertical axis and the transformed points along the horizontal
axis. It can be seen that the points along the horizontal axis are
obtained from the intersection of the equispaced vertical intervals
with the curve R, where

R = ﬁ)x redy =1 — ¢

This is the integral of the desired probability density function. Since
the first factor is constant, the function R = ¢~%** may equally well be
used to obtain the desired distribution.

Now let us present a physical picture of the problem which Tien
and Moshman studied. The d-c potential profile shown in Ifig. 1.6 is
computed from the equations of Section 1. The computer must
memorize every electron in transit since interaction is considered.
Therefore, for an assumed cathode-current density we must limit
the area of the diode under consideration. If it is too large, we cannot
‘handle the required number of electrons in the computer. On the
other hand, if the area chosen is too small, the problem loses its random
character. Therefore, an area of (r/4)x2, was chosen since it was felt
that all electrons emitted within this area had an equally important
effect at the potential minimum. Bear in mind that this is a one-
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Fig. 1.6. D-c potential distribution used in Tien-Moshman computations.

dimensional analysis, and so it contains none of the effects of sideways
displacement and velocities, ete.

The velocity distribution used is as shown in Tigure 1.7. For the
calculation the time is quantized into intervals of 2 X 1072 sec, and
during this interval an average of 8.152 electrons are emitted in the
area (w/4)x,%
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Fig. 1.7. Maxwellian velocity distributions.
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In the time interval from ¢, to £, 4+ At, we must know the number of
electrons emitted, the time of emission, and the velocity of emission.
These quantities are found with the use of random numbers. For the
number of electrons emitted, a Poisson distribution normalized about
the average of 8.152 was used. The function

¢S 15% % 8.1525°

J5) = ©

s!

is used to transform the random numbers, generated with a uniform
distribution, to a set with a Poisson distribution.

Another set of random numbers with a uniform distribution is
generated and used for the time of emission, since the emission would
normally occur at a uniform rate throughout the velocity distribution.

For the velocity of emission a set of uniform numbers is transformed
according to the Maxwellian distribution

mo my? >
J©) = 17 exp <_'2kTc

F() = ﬁvﬂv) v = [1 T exp (‘ ;ﬁ)]

which gives

2 2
R, = 1—exp<— 277;,> or Ri=exp(—-2?72;,>
K1, 2% ar3

The velocity of emission corresponding to the uniformly distributed
random number R; is given by

2k T\
m=( )(—MRM
m

and

This establishes the initial conditions, and we turn the crank until the
diode is filled with 363 electrons. The process is then repeated
2000 times to obtain the final data on the noise current and velocity
at the a plane, which is taken to be at x = 1.2z,

If we transform the current as a function of time to a plot of current
as a function of frequency with the use of the autocorrelation function,
we obtain a plot of I'? versus frequency, as in Fig. 1.8. This curve
answers the question which we initially posed, for we now have a
picture of the noise current that is appropriate for the « plane. The
peak occurs just above the frequency of oscillation of Whinnery’s
compensating current, and the dip occurs somewhat below this fre-
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quency. It might be stated that at the lower frequencies there is
almost complete compensation of the initial disturbing pulse, and
at the higher frequencies there is insufficient compensation. It seems
that there occurs one frequency where the compensation is nearly
complete. We should state that the effect of transverse velocities
has not been evaluated and might well camouflage this effect.
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Fig. 1.8. Computed space-charge reduction factor I'? as a function of frequency.

We also need to know the noise velocity at the « plane. The results
of the computation can be summarized by stating that the computed
noise velocity corresponds very closely with the expression of Eq. 1.74.
Turthermore, within the limits of the accuracy of the computation,
there is apparently no correlation between velocity and current.

This treatment is for an a-c short-circuited diode. At the frequency
corresponding to the “dip” of the I'* curve the transit angle is slightly
less than 2r. Since physical diodes, or electron guns, are more nearly
open-circuited, there is some concern as to whether the “dip” in noise
current can be realized. Siegman and Bloom?! have discussedt some
linear models that enlarge upon the work of Whinnery and Watkins
for the open-circuited diode and find no evidence of the minimum in
noise current. On either side of this frequency region the agreement
is fairly good.

Another limitation of this analysis must be kept in mind. At the
location of the x = 1.2x,, plane there is still a large spread in electron
velocities. Thus in the region immediately beyond the plane, the
single-velocity description may not be adequate. Work by Siegman,
Watkins, and Isieh?? indicates that the multivelocity character of the

t See Chapter 5, Scction 2, page 229.
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beam is important for some distance beyond 1.2z,. They use a
linearized theory to predict that correlation is produced between the
current and velocity fluctuations as the beam passes from the potential
minimum to the « plane.

In summarizing this discussion we see that the noise from a therm-
ionic cathode is fairly well understood at low frequencies. In a high-
frequency diode, however, the description of noise requires a knowledge
of noise current, noise velocity, and their correlation at the « plane.
The « plane is defined as that point beyond the potential minimum
where the spread in velocities between electrons is small. Beyond
the « plane one can use, with these noise parameters as input condi-
tions, the single-velocity theory, and this will be fully treated in later
sections. According to the work of Tien and Moshman at the plane
z = 1.2z, the noise current is given by Iig. 1.8, the velocity has the
value given in Eq. 1.74, and their correlation is zero. The later work
of Siegman, Watkins, and Hsieh predicts that some correlation is intro-
duced in the multivelocity beam as it drifts between the 1.2z, plane
and the « plane. It will be evident from later chapters how these
parameters enter into the over-all noise figure for a high-frequency
amplifier. It is sufficient here to point out that some degree of correla-
tion between the noise velocity and current may lead to a noise figure
for an amplifier which is less than that from an uncorrelated beam.f
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