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[265] Mézard, M., and J.-P. Nadal. Learning in feedforward layered networks: The tiling algorithm. Journal of
Physics A 22:2191–2203, 1989.

[266] Minai, A.A., and R.D. Williams. Acceleration of back-propagation through learning rate and momentum
adaptation. In Proceedings of the International Joint Conference on Neural Networks (Washington, D.C.), vol. 1,
pp. 676–679. IEEE, New York, 1990.

[267] Minnix, J.I. Fault tolerance of the backpropagation neural network trained on noisy inputs. In Proceedings
of the International Joint Conference on Neural Networks (Baltimore), vol. 1, pp. 847–852. IEEE, New York,
1992.

[268] Minsky, M., and S. Papert. Perceptrons, Expanded Edition. MIT Press, Cambridge, 1988.

[269] Mitchison, G.J., and R.M. Durbin. Bounds on the learning capacity of some multi-layer networks. Biologi-
cal Cybernetics 60:345–356, 1989.

[270] Moller, M.F. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6(4):525–
533, 1993.

[271] Moody, J., and C. Darken. Learning with localized receptive fields. In Proceedings of the 1988 Connection-
ist Models Summer School, pp. 133–143. Morgan Kaufmann, San Mateo, 1988.

[272] Moody, J., and C. Darken. Fast learning in networks of locally-tuned processing units. Neural Computation
1:281–294, 1989.

[273] Moody, J.E. The effective number of parameters: An analysis of generalization and regularization in non-
linear learning systems. In J.E. Moody, S.J. Hanson, and R.P. Lippmann, editors, Advances in Neural Information
Processing Systems (4), pp. 847–854. Morgan Kaufmann, San Mateo, 1992.



332 References

[274] Moore, B. Theory of networks for learning. In SPIE Vol. 1294, Applications of Artificial Neural Networks,
pp. 22–30. Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, 1990.

[275] Mozer, M.C., and P. Smolensky. Skeletonization: A technique for trimming the fat from a network via
relevance assessment. In D.S. Touretzky, editor, Advances in Neural Information Processing Systems (Denver,
1988) (1), pp. 107–115. Morgan Kaufmann, San Mateo, 1989.

[276] Mukhopadhyay, S., A. Roy, L.S. Kim, and S. Govil. A polynomial time algorithm for generating neural
networks for pattern classification: Its stability properties and some test results. Neural Computation 5(2):317–
330, 1993.

[277] Müller, B., and J. Reinhardt. Neural Networks, An Introduction. Springer-Verlag, Berlin, 1990.

[278] Muroga, S. Threshold logic and its Applications. Wiley, New York, 1971.

[279] Murphy, O.J. Nearest neighbor pattern classification perceptrons. Proceedings of the IEEE 78(10):1595–
1598, 1990.

[280] Murphy, O.J. An information theoretic design and training algorithm for neural networks. IEEE Transaction
on Circuits and Systems 38(12):1542–1547, 1991.

[281] Musavi, M.T., K.H. Chan, D.M. Hummels, and K. Kalantri. On the generalization ability of neural network
classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 16(6):659–663, 1994.

[282] Natarajan, B.K. Machine Learning, A Theoretical Approach. Morgan Kaufmann, San Mateo, 1991.

[283] Nguyen, D.H., and B. Widrow. Improving the learning speed of 2-layer neural networks by choosing initial
values of the adaptive weights. In Proceedings of the International Joint Conference on Neural Networks (San
Diego), vol. 3, pp. 211–226. IEEE, New York, 1990.

[284] Nilsson, N.J. The Mathematical Foundations of Learning Machines. Morgan-Kaufmann, San Mateo, 1990
(reprint).

[285] Nowlan, S.J., and G.E. Hinton. Adaptive soft weight tying using Gaussian mixtures. In J.E. Moody, S.J.
Hanson, and R.P. Lippmann, editors, Advances in Neural Information Processing Systems (4), pp. 993–1000.
Morgan Kaufmann, San Mateo, 1992.

[286] Nowlan, S.J., and G.E. Hinton. Simplifying neural networks by soft weight-sharing. Neural Computation
4(4):473–493, 1992.

[287] Oh, S., R.J. Marks, II, and M.A. El-Sharkawi. Query based learning in a multilayered perceptron in the
presence of data jitter. In M.A. El-Sharkawi and R.J. Marks, II, editors, Applications of Neural Networks to Power
Systems (Seattle) pp. 72–75. IEEE Press, New York, 1991.

[288] Oja, E. Neural networks, principal components, and subspaces. International Journal of Neural Systems
1(1):61–68, 1089.

[289] Oja, E. A simplified neuron model as a principal component analyzer. Journal of Mathematical Biology
15:267–273, 1982.

[290] Oja, E., and J. Karhunen. On stochastic approximation of the eigenvectors and eigenvalues of the expecta-
tion of a random matrix. Journal of Mathematical Analysis and Applications 106:69–84, 1985.

[291] Okada, H., et al. Initializing multilayer neural networks with fuzzy logic. In Proceedings of the International
Joint Conference on Neural Networks (Baltimore), vol. 1, pp. 239–244. IEEE, New York, 1992.

[292] Oppenheim, A.V., A.S. Willsky, and I.T. Young. Signals and Systems. Prentice-Hall, Englewood Cliffs, NJ,
1983.

[293] Pados, D.A., and P. Papantoni-Kazakos. A note on the estimation of the generalization error and the
prevention of overfitting. In IEEE International Conference on Neural Networks (Orlando), vol. 1, pp. 321–325.
IEEE, New York, 1994.

[294] Palubinskas, G. Data-driven weight initialization of back-propagation for pattern recognition. In Proceed-
ings of the International Conferance on Artificial Neural Networks (ICANN’94), pp. 851–854. Springer-Verlag,
London, 1994.



References 333

[295] Parker, D.B. Learning logic. Technical Report TR-47. Center for Computational Research in Economics
and Management Science, Massachusetts Institute of Technology, Cambridge, 1985.

[296] Parker, D.B. Optimal algorithms for adaptive networks: Second-order back propagation, second-order direct
propagation, and second-order Hebbian learning. In Proceedings of the IEEE First International Conference on
Neural Networks (San Diego), vol. 2, pp. 593–600. IEEE, New York, 1987.

[297] Pearlmutter, B.A. Fast exact multiplication by the Hessian. Neural Computation 6(1):147–160, 1994.

[298] Pearlmutter, B.A., and R. Rosenfeld. Chaitin-Kolmogorov complexity and generalization in neural net-
works. In R. Lippmann, J. Moody, and D. Touretzky, editors, Advances in Neural Information Processing Systems
(3), pp. 925–931. Morgan Kaufmann, San Mateo, 1991.

[299] Plaut, D.C., S.J. Nowlan, and G.E. Hinton. Experiments on learning by back propagation. Technical Report
CMU-CS-86-126, Carnegie-Mellon University, Pittsburgh, 1986.

[300] Poggio, T., and F. Girosi. Networks for approximation and learning. Proceedings of the IEEE 78(9):1481–
1497, Sept. 1990.

[301] Poston, T., C.-N. Lee, Y. Choie, and Y. Kwon. Local minima and back propagtion. In Proceedings of the
International Joint Conference on Neural Networks (Seattle), vol. 2, pp. 173–176. IEEE, New York, 1991.

[302] Press, W.H., B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes in C. Cambridge
University Press, Cambridge, 1988.

[303] Raudys, S., and M. Skurikhina. The role of the number of training samples on weight initialization of
artificial neural net classifier. In RNNS/IEEE Symposium on Neuroinformatics and Neurocomputing (Rostov-on-
Don, Russia), pp. 343–353. IEEE Press, New York, 1992.

[304] Rechenberg, I. Artificial evolution and artificial intelligence. In R. Forsyth, editor, Machine Learning,
Principles and Techniques, pp. 83–103. Chapman and Hall Computing, New York, 1989.

[305] Reed, R., R.J. Marks, II, and S. Oh. An equivalence between sigmoidal gain scaling and training with
noisy (jittered) input data. In RNNS/IEEE Symposium on Neuroinformatics and Neurocomputing (Rostov-on-Don,
Russia), pp. 120–127. IEEE Press, New York, 1992.

[306] Reed, R., R.J. Marks, II, and S. Oh. Similarities of error regularization, sigmoid gain scaling, target
smoothing, and training with jitter. IEEE Transactions on Neural Networks 6(3):529–538, May 1995.

[307] Reed, R., S. Oh, and R.J. Marks, II. Regularization using jittered training data. In Proceedings of the
International Joint Conference on Neural Networks (Baltimore), vol. 3, pp. 147–152. IEEE, New York, 1992.

[308] Reed, R.D. Pruning algorithms—a survey. IEEE Transactions on Neural Networks, 4(5):740–744, 1993.

[309] Reed, R.D., J.E. Sanders, and R.J. Marks, II. Neural network aided prosthetic alignment. In 1995 IEEE
International Conference on Systems, Man, and Cybernetics, Vancouver, British Columbia, Oct. 1995, vol. 1,
pp. 505–508, IEEE, New York, 1995.

[310] Refregier, Ph. and J.-M. Vignolle. An improved version of the pseudo-inverse solution for classification and
neural networks. Europhysics Letters 10(4):387–392, 1989.

[311] Reklaitis, G.V., A. Ravindran, and K.M. Ragsdell. Engineering Optimization, Methods and Applications.
Wiley, 1983.

[312] Rezgui, A., and Nazif Tepedelenlioglu. The effect of the slope of the activation function on the back
propagation algorithm. In Proceedings of the International Joint Conference on Neural Networks (Washington
D.C.), vol. 1, pp. 707–710. IEEE, New York, 1990.

[313] Ricotti, L.P., S. Ragazzini, and G. Martinelli. Learning of word stress in a sub-optimal second order back-
propagation neural network. In Proceedings of the IEEE International Conference on Neural Networks (San
Diego), vol. 1, pp. 355–361. IEEE, New York, 1988.

[314] Riedmiller, M. Advanced supervised learning in multi-layer perceptrons—from backpropagation to adap-
tive learning algorithms. Computer Standards & Interfaces 16, 1994.

[315] Riedmiller, M., and H. Braun. A direct adaptive method for faster backpropagation learning: The RPROP
algorithm. In IEEE International Conference on Neural Networks (San Francisco), vol. 1, pp. 586–591. IEEE,
New York, 1993.



334 References

[316] Rigler, A.K., J.M. Irvine, and T.P. Vogl. Rescaling of variables in back propagation learning. Neural
Networks 4(2):225–229, 1991.

[317] Ripley, B.D. Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge, 1996.

[318] Robbins, H., and S. Monro. A stochastic optimization method. Annals of Mathematical Statistics, 22:400–
407, 1951.

[319] Rogers, D. Predicting weather using a genetic memory: a combination of Kanerva’s sparse distributed
memory with Holland’s genetic algorithms. In D.S. Touretzky, editor, Advances in Neural Information Processing
Systems (2), pp. 455–464. Morgan Kaufmann, San Mateo, 1989.

[320] Rohwer, R. Time trials on second-order and variable-learning-rate algorithms. In Advances in Neural
Information Processing Systems (3), pp. 977–983. Morgan Kaufmann, San Mateo, 1991.

[321] Rojas, R. Optimal weight initialization for neural networks. In Proceedings of the International Conference
on Artificial Neural Networks (ICANN’94), pp. 577–580. Springer-Verlag, London, 1994.

[322] Romaniuk, S.G., and L.O. Hall. Dynamic neural networks with the use of divide and conquer. In Proceed-
ings of the International Joint Conference on Neural Networks (Baltimore), vol. 1, pp. 658–663. IEEE, New York,
1992.
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