
22 Prologue

16. E.H. Durfee, editor. Special Issue on Distributed Arti�cial Intelligence of the IEEE

Transactions on Systems, Man, and Cybernetics. Vol. SMC-21, 1991.

17. E.H. Durfee, V.R. Lesser, and D.D. Corkill. Distributed problem solving. In S.C.

Shapiro, editor, Encyclopedia of Arti�cial Intelligence, pages 379{388. John Wiley,

1992.

18. E.H. Durfee and M. Tokoro, editors. Proceedings of the Second International

Conference on Multi-Agent Systems (ICMAS-96). AAAI Press, 1996.

19. L. Gasser and M.N. Huhns, editors. Distributed Arti�cial Intelligence, Volume 2.

Pitman/Morgan Kaufmann, 1989.

20. L. Gasser and M.N. Huhns. Themes in distributed arti�cial intelligence research.

In L. Gasser and M.N. Huhns, editors, Distributed Arti�cial Intelligence, Volume 2,

pages vii{xv. Pitman/Morgan Kaufmann, 1989.

21. M.N. Huhns, editor. Distributed Arti�cial Intelligence. Pitman/Morgan

Kaufmann, 1987.

22. M.N. Huhns and M.P. Singh. Agents and multiagent systems: Themes, approaches,

and challenges. In M.N. Huhns and M.P. Singh, editors, Readings in Agents, pages

1{23. Morgan Kaufmann, San Francisco, CA, 1998.

23. M.N. Huhns and M.P. Singh, editors. Readings in Agents. Morgan Kaufmann, San

Francisco, CA, 1998.

24. N.R. Jennings, editor. Cooperation in Industrial Multi-Agent Systems. World

Scienti�c, Singapore, 1994.

25. N.R. Jennings, K. Sycara, and M. Wooldridge. A roadmap of agent research and

development. Autonomous Agents and Multi-Agent Systems, 1:7{38, 1998.

26. N.R. Jennings and M.J. Wooldridge, editors. Agent Technology. Foundations,

Applications, and Markets. Springer-Verlag, Berlin, 1998.

27. P. Kandzia and M. Klusch, editors. Cooperative Information Agents. Lecture

Notes in Arti�cial in Arti�cial Intelligence, Vol. 1202. Springer-Verlag, Berlin, 1997.

28. M. Klusch and G. Wei�, editors. Cooperative Information Agents II. Lecture Notes

in Arti�cial in Arti�cial Intelligence, Vol. 1435. Springer-Verlag, Berlin, 1998.

29. D. Kwek and S. Kalenka. Distributed arti�cial intelligence references and resources.

In G.M.P. O'Hare and N.R. Jennings, editors, Foundations of Distributed Arti�cial

Intelligence, pages 557{572. John Wiley & Sons Inc., New York, 1996.

30. V.R. Lesser and L. Gasser, editors. Proceedings of the First International

Conference on Multi-Agent Systems (ICMAS-95). AAAI Press/The MIT Press,

1995.

31. B. Moulin and B. Chaib-Draa. An overview of distributed arti�cial intelligence. In

G.M.P. O'Hare and N.R. Jennings, editors, Foundations of Distributed Arti�cial

Intelligence, pages 3{55. John Wiley & Sons Inc., New York, 1996.

32. J.P. M�uller, M. Wooldridge, and N.R. Jennings, editors. Intelligent Agents III.

Lecture Notes in Arti�cial in Arti�cial Intelligence, Vol. 1193. Springer-Verlag,

Berlin, 1997.

33. N.J. Nilsson. Arti�cial Intelligence. A New Synthesis. Morgan Kaufmann Publ.,

San Francisco, CA, 1998.

34. G.M.P. O'Hare and N.R. Jennings, editors. Foundations of Distributed Arti�cial

Intelligence. John Wiley & Sons Inc., New York, 1996.

35. J.W. Perram and J.-P. M�uller, editors. Decentralized Arti�cial Intelligence.

Proceedings of the Sixth European Workshop on Modelling Autonomous Agents in a



Prologue 23

Multi-Agent World (MAAMAW'94). Lecture Notes in Arti�cial Intelligence, Vol.

1069. Springer-Verlag, Berlin, 1996.

36. D. Poole, A. Machworth, and R. Goebel. Computational Intelligence. Oxford

University Press, New York, 1998.

37. Proceedings of the First International Conference on Autonomous Agents

(Agents'97). http://www.isi.edu/isd/Agents97/materials-order-form.html, 1997.

38. S.J. Russell and P. Norwig. Arti�cial Intelligence. A Modern Approach. Prentice

Hall, Englewood Cli�s, New Jersey, 1995.

39. M.P. Singh, A. Rao, and M.J. Wooldridge, editors. Intelligent Agents IV. Lecture

Notes in Arti�cial in Arti�cial Intelligence, Vol. 1365. Springer-Verlag, Berlin, 1998.

40. K. Sycara. Multiagent systems. AI Magazine, Summer:79{92, 1998.

41. K.P. Sycara and M. Wooldridge, editors. Proceedings of the Second International

Conference on Autonomous Agents (Agents'98). Association for Computing

Machinery, Inc. (ACM), 1998.

42. W. Van der Velde and J.W. Perram, editors. Decentralized Arti�cial Intelligence.

Proceedings of the Seventh European Workshop on Modelling Autonomous Agents in

a Multi-Agent World (MAAMAW'96). Lecture Notes in Arti�cial Intelligence, Vol.

1038. Springer-Verlag, Berlin, 1996.

43. E. Werner and Y. Demazeau, editors. Decentralized Arti�cial Intelligence.

Proceedings of the Third European Workshop on Modelling Autonomous Agents in a

Multi-Agent World (MAAMAW'91). Elsevier Science, 1992.

44. M. Wooldridge and N.R. Jennings, editors. Intelligent Agents. Lecture Notes in

Arti�cial in Arti�cial Intelligence, Vol. 890. Springer-Verlag, Berlin, 1995.

45. M. Wooldridge and N.R. Jennings. Intelligent agents: Theory and practice. The

Knowledge Engineering Review, 10(2):115{152, 1995.

46. M. Wooldridge and N.R. Jennings, editors. Special Issue on Intelligent Agents and

Multi-Agent Systems Applied Arti�cial Intelligence Journal. Vol. 9(4), 1995 and

Vol. 10(1), 1996.

47. M. Wooldridge, J.P. M�uller, and M. Tambe, editors. Intelligent Agents II. Lecture

Notes in Arti�cial in Arti�cial Intelligence, Vol. 1037. Springer-Verlag, Berlin, 1996.





Part I:

Basic Themes





1 Intelligent Agents

Michael Wooldridge

1.1 Introduction

Computers are not very good at knowing what to do: every action a computer

performs must be explicitly anticipated, planned for, and coded by a programmer. If

a computer program ever encounters a situation that its designer did not anticipate,

then the result is not usually pretty|a system crash at best, multiple loss of life

at worst. This mundane fact is at the heart of our relationship with computers. It

is so self-evident to the computer literate that it is rarely mentioned. And yet it

comes as a complete surprise to those encountering computers for the �rst time.

For the most part, we are happy to accept computers as obedient, literal,

unimaginative servants. For many applications (such as payroll processing), it is

entirely acceptable. However, for an increasingly large number of applications, we

require systems that can decide for themselves what they need to do in order

to satisfy their design objectives. Such computer systems are known as agents.

Agents that must operate robustly in rapidly changing, unpredictable, or open

environments, where there is a signi�cant possibility that actions can fail are known

as intelligent agents , or sometimes autonomous agents. Here are examples of recent

application areas for intelligent agents:

When a space probe makes its long ight from Earth to the outer planets, a

ground crew is usually required to continually track its progress, and decide how

to deal with unexpected eventualities. This is costly and, if decisions are required

quickly, it is simply not practicable. For these reasons, organisations like nasa

are seriously investigating the possibility of making probes more autonomous|

giving them richer decision making capabilities and responsibilities.

Searching the Internet for the answer to a speci�c query can be a long and tedious

process. So, why not allow a computer program|an agent|do searches for us?

The agent would typically be given a query that would require synthesising

pieces of information from various di�erent Internet information sources. Failure

would occur when a particular resource was unavailable, (perhaps due to network

failure), or where results could not be obtained.

This chapter is about intelligent agents. Speci�cally, it aims to give you a thorough



28 Intelligent Agents

introduction to the main issues associated with the design and implementation of

intelligent agents. After reading it, you will understand:

why agents are believed to be an important new way of conceptualising and

implementing certain types of software application;

what intelligent agents are (and are not), and how agents relate to other software

paradigms|in particular, expert systems and object-oriented programming;

the main approaches that have been advocated for designing and implementing

intelligent agents, the issues surrounding these approaches, their relative merits,

and the challenges that face the agent implementor;

the characteristics of the main programming languages available for building

agents today.

The chapter is structured as follows. First, section 1.2 describes what is meant by

the term agent. Section 1.3, presents some abstract architectures for agents. That is,

some general models and properties of agents are discussed without regard to how

they might be implemented. Section 1.4, discusses concrete architectures for agents.

The various major design routes that one can follow in implementing an agent

system are outlined in this section. In particular, logic-based architectures, reactive

architectures, belief-desire-intention architectures, and �nally, layered architectures

for intelligent agents are described in detail. Finally, section 1.5 introduces some

prototypical programming languages for agent systems.

Comments on Notation

This chapter makes use of simple mathematical notation in order to make ideas

precise. The formalism used is that of discrete maths: a basic grounding in sets and

�rst-order logic should be quite su�cient to make sense of the various de�nitions

presented. In addition: if S is an arbitrary set, then }(S) is the powerset of S, and

S� is the set of sequences of elements of S; the symbol : is used for logical negation

(so :p is read \not p"); ^ is used for conjunction (so p ^ q is read \p and q"); _ is

used for disjunction (so p _ q is read \p or q"); and �nally, ) is used for material

implication (so p) q is read \p implies q").

1.2 What Are Agents?

An obvious way to open this chapter would be by presenting a de�nition of the term

agent. After all, this is a book about multiagent systems|surely we must all agree

on what an agent is? Surprisingly, there is no such agreement: there is no universally

accepted de�nition of the term agent, and indeed there is a good deal of ongoing

debate and controversy on this very subject. Essentially, while there is a general

consensus that autonomy is central to the notion of agency, there is little agreement

beyond this. Part of the di�culty is that various attributes associated with agency



1.2 What Are Agents? 29

ENVIRONMENT

AGENT

action 
output

sensor
input

Figure 1.1 An agent in its environment. The agent takes sensory input from

the environment, and produces as output actions that a�ect it. The interaction is

usually an ongoing, non-terminating one.

are of di�ering importance for di�erent domains. Thus, for some applications, the

ability of agents to learn from their experiences is of paramount importance; for

other applications, learning is not only unimportant, it is undesirable.

Nevertheless, some sort of de�nition is important|otherwise, there is a danger

that the term will lose all meaning (cf. \user friendly"). The de�nition presented

here is adapted from [71]: An agent is a computer system that is situated in some

environment, and that is capable of autonomous action in this environment in order

to meet its design objectives.

There are several points to note about this de�nition. First, the de�nition refers

to \agents" and not \intelligent agents." The distinction is deliberate: it is discussed

in more detail below. Second, the de�nition does not say anything about what type

of environment an agent occupies. Again, this is deliberate: agents can occupy many

di�erent types of environment, as we shall see below. Third, we have not de�ned

autonomy. Like agency itself, autonomy is a somewhat tricky concept to tie down

precisely. In this chapter, it is used to mean that agents are able to act without

the intervention of humans or other systems: they have control both over their own

internal state, and over their behavior. In section 1.2.3, we will contrast agents with

the objects of object-oriented programming, and we will elaborate this point there.

In particular, we will see how agents embody a much stronger sense of autonomy

than objects do.

Figure 1.1 gives an abstract, top-level view of an agent. In this diagram, we can

see the action output generated by the agent in order to a�ect its environment. In

most domains of reasonable complexity, an agent will not have complete control over

its environment. It will have at best partial control, in that it can inuence it. From

the point of view of the agent, this means that the same action performed twice in

apparently identical circumstances might appear to have entirely di�erent e�ects,

and in particular, it may fail to have the desired e�ect. Thus agents in all but the



30 Intelligent Agents

most trivial of environments must be prepared for the possibility of failure. We can

sum this situation up formally by saying that environments are non-deterministic.

Normally, an agent will have a repertoire of actions available to it. This set of

possible actions represents the agents e�ectoric capability : its ability to modify its

environments. Note that not all actions can be performed in all situations. For

example, an action \lift table" is only applicable in situations where the weight

of the table is su�ciently small that the agent can lift it. Similarly, the action

\purchase a Ferrari" will fail if insu�cient funds area available to do so. Actions

therefore have pre-conditions associated with them, which de�ne the possible

situations in which they can be applied.

The key problem facing an agent is that of deciding which of its actions it

should perform in order to best satisfy its design objectives. Agent architectures,

of which we shall see several examples later in this chapter, are really software

architectures for decision making systems that are embedded in an environment.

The complexity of the decision-making process can be a�ected by a number

of di�erent environmental properties. Russell and Norvig suggest the following

classi�cation of environment properties [59, p46]:

Accessible vs inaccessible.

An accessible environment is one in which the agent can obtain complete, ac-

curate, up-to-date information about the environment's state. Most moderately

complex environments (including, for example, the everyday physical world and

the Internet) are inaccessible. The more accessible an environment is, the simpler

it is to build agents to operate in it.

Deterministic vs non-deterministic.

As we have already mentioned, a deterministic environment is one in which any

action has a single guaranteed e�ect|there is no uncertainty about the state

that will result from performing an action. The physical world can to all intents

and purposes be regarded as non-deterministic. Non-deterministic environments

present greater problems for the agent designer.

Episodic vs non-episodic.

In an episodic environment, the performance of an agent is dependent on a

number of discrete episodes, with no link between the performance of an agent

in di�erent scenarios. An example of an episodic environment would be a mail

sorting system [60]. Episodic environments are simpler from the agent developer's

perspective because the agent can decide what action to perform based only on

the current episode|it need not reason about the interactions between this and

future episodes.

Static vs dynamic.

A static environment is one that can be assumed to remain unchanged except

by the performance of actions by the agent. A dynamic environment is one that

has other processes operating on it, and which hence changes in ways beyond

the agent's control. The physical world is a highly dynamic environment.



1.2 What Are Agents? 31

Discrete vs continuous.

An environment is discrete if there are a �xed, �nite number of actions and

percepts in it. Russell and Norvig give a chess game as an example of a discrete

environment, and taxi driving as an example of a continuous one.

As Russell and Norvig observe [59, p46], if an environment is su�ciently complex,

then the fact that it is actually deterministic is not much help: to all intents and

purposes, it may as well be non-deterministic. The most complex general class

of environments are those that are inaccessible, non-deterministic, non-episodic,

dynamic, and continuous.

1.2.1 Examples of Agents

At this point, it is worth pausing to consider some examples of agents (though not,

as yet, intelligent agents):

Any control system can be viewed as an agent. A simple (and overused) example

of such a system is a thermostat. Thermostats have a sensor for detecting room

temperature. This sensor is directly embedded within the environment (i.e., the

room), and it produces as output one of two signals: one that indicates that the

temperature is too low, another which indicates that the temperature is OK. The

actions available to the thermostat are \heating on" or \heating o�". The action

\heating on" will generally have the e�ect of raising the room temperature, but

this cannot be a guaranteed e�ect|if the door to the room is open, for example,

switching on the heater may have no e�ect. The (extremely simple) decision

making component of the thermostat implements (usually in electro-mechanical

hardware) the following rules:

too cold �! heating on

temperature OK �! heating o�

More complex environment control systems, of course, have considerably richer

decision structures. Examples include autonomous space probes, y-by-wire

aircraft, nuclear reactor control systems, and so on.

Most software daemons, (such as background processes in the unix operating

system), which monitor a software environment and perform actions to modify

it, can be viewed as agents. An example is the X Windows program xbiff. This

utility continually monitors a user's incoming email, and indicates via a gui

icon whether or not they have unread messages. Whereas our thermostat agent

in the previous example inhabited a physical environment|the physical world|

the xbiff program inhabits a software environment. It obtains information

about this environment by carrying out software functions (by executing system

programs such as ls, for example), and the actions it performs are software

actions (changing an icon on the screen, or executing a program). The decision

making component is just as simple as our thermostat example.



32 Intelligent Agents

To summarize, agents are simply computer systems that are capable of autonomous

action in some environment in order to meet their design objectives. An agent will

typically sense its environment (by physical sensors in the case of agents situated

in part of the real world, or by software sensors in the case of software agents),

and will have available a repertoire of actions that can be executed to modify the

environment, which may appear to respond non-deterministically to the execution

of these actions.

1.2.2 Intelligent Agents

We are not used to thinking of thermostats or unix daemons as agents, and certainly

not as intelligent agents. So, when do we consider an agent to be intelligent? The

question, like the question what is intelligence? itself, is not an easy one to answer.

But for the purposes of this chapter, an intelligent agent is one that is capable of

exible autonomous action in order to meet its design objectives, where exibility

means three things [71]:

reactivity : intelligent agents are able to perceive their environment, and respond

in a timely fashion to changes that occur in it in order to satisfy their design

objectives;

pro-activeness : intelligent agents are able to exhibit goal-directed behavior by

taking the initiative in order to satisfy their design objectives;

social ability : intelligent agents are capable of interacting with other agents (and

possibly humans) in order to satisfy their design objectives.

These properties are more demanding than they might at �rst appear. To see why,

let us consider them in turn. First, consider pro-activeness : goal directed behavior.

It is not hard to build a system that exhibits goal directed behavior|we do it every

time we write a procedure in pascal, a function in c, or a method in java. When

we write such a procedure, we describe it in terms of the assumptions on which it

relies (formally, its pre-condition) and the e�ect it has if the assumptions are valid

(its post-condition). The e�ects of the procedure are its goal : what the author of

the software intends the procedure to achieve. If the pre-condition holds when the

procedure is invoked, then we expect that the procedure will execute correctly : that

it will terminate, and that upon termination, the post-condition will be true, i.e.,

the goal will be achieved. This is goal directed behavior: the procedure is simply

a plan or recipe for achieving the goal. This programming model is �ne for many

environments. For example, its works well when we consider functional systems|

those that simply take some input x, and produce as output some some function

f(x) of this input. Compilers are a classic example of functional systems.

But for non-functional systems, this simple model of goal directed programming

is not acceptable, as it makes some important limiting assumptions. In particular, it

assumes that the environment does not change while the procedure is executing. If

the environment does change, and in particular, if the assumptions (pre-condition)



1.2 What Are Agents? 33

underlying the procedure become false while the procedure is executing, then the

behavior of the procedure may not be de�ned|often, it will simply crash. Also, it

is assumed that the goal, that is, the reason for executing the procedure, remains

valid at least until the procedure terminates. If the goal does not remain valid, then

there is simply no reason to continue executing the procedure.

In many environments, neither of these assumptions are valid. In particular, in

domains that are too complex for an agent to observe completely, that are multi-

agent (i.e., they are populated with more than one agent that can change the

environment), or where there is uncertainty in the environment, these assumptions

are not reasonable. In such environments, blindly executing a procedure without

regard to whether the assumptions underpinning the procedure are valid is a poor

strategy. In such dynamic environments, an agent must be reactive, in just the way

that we described above. That is, it must be responsive to events that occur in its

environment, where these events a�ect either the agent's goals or the assumptions

which underpin the procedures that the agent is executing in order to achieve its

goals.

As we have seen, building purely goal directed systems is not hard. As we shall

see later in this chapter, building purely reactive systems|ones that continually

respond to their environment|is also not di�cult. However, what turns out to be

hard is building a system that achieves an e�ective balance between goal-directed

and reactive behavior. We want agents that will attempt to achieve their goals

systematically, perhaps by making use of complex procedure-like patterns of action.

But we don't want our agents to continue blindly executing these procedures in an

attempt to achieve a goal either when it is clear that the procedure will not work,

or when the goal is for some reason no longer valid. In such circumstances, we want

our agent to be able to react to the new situation, in time for the reaction to be of

some use. However, we do not want our agent to be continually reacting, and hence

never focussing on a goal long enough to actually achieve it.

On reection, it should come as little surprise that achieving a good balance

between goal directed and reactive behavior is hard. After all, it is comparatively

rare to �nd humans that do this very well. How many of us have had a manager

who stayed blindly focussed on some project long after the relevance of the project

was passed, or it was clear that the project plan was doomed to failure? Similarly,

how many have encountered managers who seem unable to stay focussed at all,

who it from one project to another without ever managing to pursue a goal long

enough to achieve anything? This problem|of e�ectively integrating goal-directed

and reactive behavior|is one of the key problems facing the agent designer. As we

shall see, a great many proposals have been made for how to build agents that can

do this|but the problem is essentially still open.

Finally, let us say something about social ability, the �nal component of exible

autonomous action as de�ned here. In one sense, social ability is trivial: every

day, millions of computers across the world routinely exchange information with

both humans and other computers. But the ability to exchange bit streams is

not really social ability. Consider that in the human world, comparatively few of



34 Intelligent Agents

our meaningful goals can be achieved without the cooperation of other people,

who cannot be assumed to share our goals|in other words, they are themselves

autonomous, with their own agenda to pursue. To achieve our goals in such

situations, we must negotiate and cooperate with others. We may be required to

understand and reason about the goals of others, and to perform actions (such as

paying them money) that we would not otherwise choose to perform, in order

to get them to cooperate with us, and achieve our goals. This type of social

ability is much more complex, and much less well understood, than simply the

ability to exchange binary information. Social ability in general (and topics such

as negotiation and cooperation in particular) are dealt with elsewhere in this book,

and will not therefore be considered here. In this chapter, we will be concerned with

the decision making of individual intelligent agents in environments which may be

dynamic, unpredictable, and uncertain, but do not contain other agents.

1.2.3 Agents and Objects

Object-oriented programmers often fail to see anything novel or new in the idea of

agents. When one stops to consider the relative properties of agents and objects,

this is perhaps not surprising. Objects are de�ned as computational entities that

encapsulate some state, are able to perform actions, or methods on this state, and

communicate by message passing.

While there are obvious similarities, there are also signi�cant di�erences between

agents and objects. The �rst is in the degree to which agents and objects are

autonomous. Recall that the de�ning characteristic of object-oriented programming

is the principle of encapsulation|the idea that objects can have control over their

own internal state. In programming languages like java, we can declare instance

variables (and methods) to be private, meaning they are only accessible from

within the object. (We can of course also declare them public, meaning that they

can be accessed from anywhere, and indeed we must do this for methods so that

they can be used by other objects. But the use of public instance variables is

usually considered poor programming style.) In this way, an object can be thought

of as exhibiting autonomy over its state: it has control over it. But an object does

not exhibit control over it's behavior. That is, if a method m is made available for

other objects to invoke, then they can do so whenever they wish|once an object

has made a method public, then it subsequently has no control over whether or

not that method is executed. Of course, an object must make methods available to

other objects, or else we would be unable to build a system out of them. This is not

normally an issue, because if we build a system, then we design the objects that go

in it, and they can thus be assumed to share a \common goal". But in many types

of multiagent system, (in particular, those that contain agents built by di�erent

organisations or individuals), no such common goal can be assumed. It cannot be

for granted that an agent i will execute an action (method) a just because another

agent j wants it to|a may not be in the best interests of i. We thus do not think of

agents as invoking methods upon one-another, but rather as requesting actions to



1.2 What Are Agents? 35

be performed. If j requests i to perform a, then i may perform the action or it may

not. The locus of control with respect to the decision about whether to execute an

action is thus di�erent in agent and object systems. In the object-oriented case, the

decision lies with the object that invokes the method. In the agent case, the decision

lies with the agent that receives the request. This distinction between objects and

agents has been nicely summarized in the following slogan: Objects do it for free;

agents do it for money.

Note that there is nothing to stop us implementing agents using object-oriented

techniques. For example, we can build some kind of decision making about whether

to execute a method into the method itself, and in this way achieve a stronger

kind of autonomy for our objects. The point is that autonomy of this kind is not a

component of the basic object-oriented model.

The second important distinction between object and agent systems is with

respect to the notion of exible (reactive, pro-active, social) autonomous behavior.

The standard object model has nothing whatsoever to say about how to build

systems that integrate these types of behavior. Again, one could object that we can

build object-oriented programs that do integrate these types of behavior. But this

argument misses the point, which is that the standard object-oriented programming

model has nothing to do with these types of behavior.

The third important distinction between the standard object model and our

view of agent systems is that agents are each considered to have their own thread

of control|in the standard object model, there is a single thread of control in

the system. Of course, a lot of work has recently been devoted to concurrency

in object-oriented programming. For example, the java language provides built-

in constructs for multi-threaded programming. There are also many programming

languages available (most of them admittedly prototypes) that were speci�cally

designed to allow concurrent object-based programming. But such languages do

not capture the idea we have of agents as autonomous entities. Perhaps the closest

that the object-oriented community comes is in the idea of active objects :

An active object is one that encompasses its own thread of control [. . . ]. Active

objects are generally autonomous, meaning that they can exhibit some behavior

without being operated upon by another object. Passive objects, on the other hand,

can only undergo a state change when explicitly acted upon. [5, p91]

Thus active objects are essentially agents that do not necessarily have the ability

to exhibit exible autonomous behavior.

To summarize, the traditional view of an object and our view of an agent have

at least three distinctions:

agents embody stronger notion of autonomy than objects, and in particular,

they decide for themselves whether or not to perform an action on request from

another agent;

agents are capable of exible (reactive, pro-active, social) behavior, and the

standard object model has nothing to say about such types of behavior;



36 Intelligent Agents

a multiagent system is inherently multi-threaded, in that each agent is assumed

to have at least one thread of control.

1.2.4 Agents and Expert Systems

Expert systems were the most important AI technology of the 1980s [31]. An expert

system is one that is capable of solving problems or giving advice in some knowledge-

rich domain [32]. A classic example of an expert system is mycin, which was

intended to assist physicians in the treatment of blood infections in humans. mycin

worked by a process of interacting with a user in order to present the system with

a number of (symbolically represented) facts, which the system then used to derive

some conclusion. mycin acted very much as a consultant : it did not operate directly

on humans, or indeed any other environment. Thus perhaps the most important

distinction between agents and expert systems is that expert systems like mycin are

inherently disembodied. By this, we mean that they do not interact directly with any

environment: they get their information not via sensors, but through a user acting as

middle man. In the same way, they do not act on any environment, but rather give

feedback or advice to a third party. In addition, we do not generally require expert

systems to be capable of co-operating with other agents. Despite these di�erences,

some expert systems, (particularly those that perform real-time control tasks), look

very much like agents. A good example is the archon system [33].

Sources and Further Reading

A view of arti�cial intelligence as the process of agent design is presented in [59],

and in particular, Chapter 2 of [59] presents much useful material. The de�nition

of agents presented here is based on [71], which also contains an extensive review

of agent architectures and programming languages. In addition, [71] contains a de-

tailed survey of agent theories|formalisms for reasoning about intelligent, rational

agents, which is outside the scope of this chapter. This question of \what is an

agent" is one that continues to generate some debate; a collection of answers may

be found in [48]. The relationship between agents and objects has not been widely

discussed in the literature, but see [24]. Other readable introductions to the idea of

intelligent agents include [34] and [13].

1.3 Abstract Architectures for Intelligent Agents

We can easily formalize the abstract view of agents presented so far. First, we will

assume that the state of the agent's environment can be characterized as a set

S = fs1; s2; : : :g of environment states. At any given instant, the environment is

assumed to be in one of these states. The e�ectoric capability of an agent is assumed

to be represented by a set A = fa1; a2; : : :g of actions. Then abstractly, an agent



1.3 Abstract Architectures for Intelligent Agents 37

can be viewed as a function

action : S� ! A

which maps sequences of environment states to actions. We will refer to an agent

modelled by a function of this form as a standard agent. The intuition is that an

agent decides what action to perform on the basis of its history|its experiences to

date. These experiences are represented as a sequence of environment states|those

that the agent has thus far encountered.

The (non-deterministic) behavior of an an environment can be modelled as a

function

env : S �A! }(S)

which takes the current state of the environment s 2 S and an action a 2 A

(performed by the agent), and maps them to a set of environment states env(s; a)|

those that could result from performing action a in state s. If all the sets in the

range of env are all singletons, (i.e., if the result of performing any action in any

state is a set containing a single member), then the environment is deterministic,

and its behavior can be accurately predicted.

We can represent the interaction of agent and environment as a history. A history

h is a sequence:

h : s0
a0
�! s1

a1
�! s2

a2
�! s3

a3
�! � � �

au�1
�! su

au
�! � � �

where s0 is the initial state of the environment (i.e., its state when the agent starts

executing), au is the u'th action that the agent chose to perform, and su is the u'th

environment state (which is one of the possible results of executing action au�1 in

state su�1). If action : S� ! A is an agent, env : S �A! }(S) is an environment,

and s0 is the initial state of the environment, then the sequence

h : s0
a0
�! s1

a1
�! s2

a2
�! s3

a3
�! � � �

au�1
�! su

au
�! � � �

will represent a possible history of the agent in the environment i� the following

two conditions hold:

8u 2 IN; au = action((s0; s1; : : : ; su))

and

8u 2 IN such that u > 0; su 2 env(su�1; au�1):

The characteristic behavior of an agent action : S� ! A in an environment

env : S � A ! }(S) is the set of all the histories that satisfy these properties.

If some property � holds of all these histories, this property can be regarded as

an invariant property of the agent in the environment. For example, if our agent

is a nuclear reactor controller, (i.e., the environment is a nuclear reactor), and

in all possible histories of the controller/reactor, the reactor does not blow up,

then this can be regarded as a (desirable) invariant property. We will denote by



38 Intelligent Agents

hist(agent; environment) the set of all histories of agent in environment. Two

agents ag1 and ag2 are said to be behaviorally equivalent with respect to environ-

ment env i� hist(ag1; env) = hist(ag2; env), and simply behaviorally equivalent i�

they are behaviorally equivalent with respect to all environments.

In general, we are interested in agents whose interaction with their environment

does not end, i.e., they are non-terminating. In such cases, the histories that we

consider will be in�nite.

1.3.1 Purely Reactive Agents

Certain types of agents decide what to do without reference to their history. They

base their decision making entirely on the present, with no reference at all to the

past. We will call such agents purely reactive, since they simply respond directly

to their environment. Formally, the behavior of a purely reactive agent can be

represented by a function

action : S ! A:

It should be easy to see that for every purely reactive agent, there is an equivalent

standard agent; the reverse, however, is not generally the case.

Our thermostat agent is an example of a purely reactive agent. Assume, without

loss of generality, that the thermostat's environment can be in one of two states|

either too cold, or temperature OK. Then the thermostat's action function is simply

action(s) =

(
heater o� if s = temperature OK

heater on otherwise.

1.3.2 Perception

Viewing agents at this abstract level makes for a pleasantly simply analysis.

However, it does not help us to construct them, since it gives us no clues about

how to design the decision function action. For this reason, we will now begin

to re�ne our abstract model of agents, by breaking it down into sub-systems in

exactly the way that one does in standard software engineering. As we re�ne our

view of agents, we �nd ourselves making design choices that mostly relate to the

subsystems that go to make up an agent|what data and control structures will be

present. An agent architecture is essentially a map of the internals of an agent|its

data structures, the operations that may be performed on these data structures,

and the control ow between these data structures. Later in this chapter, we will

discuss a number of di�erent types of agent architecture, with very di�erent views

on the data structures and algorithms that will be present within an agent. In

the remainder of this section, however, we will survey some fairly high-level design

decisions. The �rst of these is the separation of an agent's decision function into

perception and action subsystems: see Figure 1.2.



1.3 Abstract Architectures for Intelligent Agents 39

ENVIRONMENT

action

AGENT

see

Figure 1.2 Perception and action subsystems.

The idea is that the function see captures the agent's ability to observe its

environment, whereas the action function represents the agent's decision making

process. The see function might be implemented in hardware in the case of an

agent situated in the physical world: for example, it might be a video camera or

an infra-red sensor on a mobile robot. For a software agent, the sensors might be

system commands that obtain information about the software environment, such as

ls, finger, or suchlike. The output of the see function is a percept|a perceptual

input. Let P be a (non-empty) set of percepts. Then see is a function

see : S ! P

which maps environment states to percepts, and action is now a function

action : P � ! A

which maps sequences of percepts to actions.

These simple de�nitions allow us to explore some interesting properties of agents

and perception. Suppose that we have two environment states, s1 2 S and s2 2 S,

such that s1 6= s2, but see(s1) = see(s2). Then two di�erent environment states are

mapped to the same percept, and hence the agent would receive the same perceptual

information from di�erent environment states. As far as the agent is concerned,

therefore, s1 and s2 are indistinguishable. To make this example concrete, let us

return to the thermostat example. Let x represent the statement

\the room temperature is OK"

and let y represent the statement

\John Major is Prime Minister."

If these are the only two facts about our environment that we are concerned with,



40 Intelligent Agents

then the set S of environment states contains exactly four elements:

S = ff:x;:yg| {z }
s1

; f:x; yg| {z }
s2

; fx;:yg| {z }
s3

; fx; yg| {z }
s4

g

Thus in state s1, the room temperature is not OK, and John Major is not Prime

Minister; in state s2, the room temperature is not OK, and John Major is Prime

Minister. Now, our thermostat is sensitive only to temperatures in the room. This

room temperature is not causally related to whether or not John Major is Prime

Minister. Thus the states where JohnMajor is and is not Prime Minister are literally

indistinguishable to the thermostat. Formally, the see function for the thermostat

would have two percepts in its range, p1 and p2, indicating that the temperature is

too cold or OK respectively. The see function for the thermostat would behave as

follows:

see(s) =

(
p1 if s = s1 or s = s2

p2 if s = s3 or s = s4.

Given two environment states s 2 S and s0 2 S, let us write s � s0 if

see(s) = see(s0). It is not hard to see that � is an equivalence relation over

environment states, which partitions S into mutually indistinguishable sets of

states. Intuitively, the coarser these equivalence classes are, the less e�ective is

the agent's perception. If j � j = jSj, (i.e., the number of distinct percepts is equal

to the number of di�erent environment states), then the agent can distinguish every

state|the agent has perfect perception in the environment; it is omniscient. At the

other extreme, if j � j = 1, then the agent's perceptual ability is non-existent|it

cannot distinguish between any di�erent states. In this case, as far as the agent is

concerned, all environment states are identical.

1.3.3 Agents with State

We have so far been modelling an agent's decision function action as from sequences

of environment states or percepts to actions. This allows us to represent agents

whose decision making is inuenced by history. However, this is a somewhat

unintuitive representation, and we shall now replace it by an equivalent, but

somewhat more natural scheme. The idea is that we now consider agents that

maintain state|see Figure 1.3.

These agents have some internal data structure, which is typically used to record

information about the environment state and history. Let I be the set of all internal

states of the agent. An agent's decision making process is then based, at least in

part, on this information. The perception function see for a state-based agent is

unchanged, mapping environment states to percepts as before:

see : S ! P



1.3 Abstract Architectures for Intelligent Agents 41

actionsee

next state

AGENT

ENVIRONMENT

Figure 1.3 Agents that maintain state.

The action-selection function action is now de�ned a mapping

action : I ! A

from internal states to actions. An additional function next is introduced, which

maps an internal state and percept to an internal state:

next : I � P ! I

The behavior of a state-based agent can be summarized as follows. The agent

starts in some initial internal state i0. It then observes its environment state s,

and generates a percept see(s). The internal state of the agent is then updated

via the next function, becoming set to next(i0; see(s)). The action selected by the

agent is then action(next(i0; see(s))). This action is then performed, and the agent

enters another cycle, perceiving the world via see, updating its state via next, and

choosing an action to perform via action.

It is worth observing that state-based agents as de�ned here are in fact no

more powerful than the standard agents we introduced earlier. In fact, they are

identical in their expressive power|every state-based agent can be transformed

into a standard agent that is behaviorally equivalent.

Sources and Further Reading

The abstract model of agents presented here is based on that given in [25, Chapter

13], and also makes use of some ideas from [61, 60]. The properties of perception

as discussed in this section lead to knowledge theory, a formal analysis of the

information implicit within the state of computer processes, which has had a

profound e�ect in theoretical computer science. The de�nitive reference is [14],

and an introductory survey is [29].



42 Intelligent Agents

1.4 Concrete Architectures for Intelligent Agents

Thus far, we have considered agents only in the abstract. So while we have examined

the properties of agents that do and do not maintain state, we have not stopped

to consider what this state might look like. Similarly, we have modelled an agent's

decision making as an abstract function action, which somehow manages to indicate

which action to perform|but we have not discussed how this function might be

implemented. In this section, we will rectify this omission. We will consider four

classes of agents:

logic based agents|in which decision making is realized through logical deduc-

tion;

reactive agents|in which decision making is implemented in some form of direct

mapping from situation to action;

belief-desire-intention agents|in which decision making depends upon the ma-

nipulation of data structures representing the beliefs, desires, and intentions of

the agent; and �nally,

layered architectures|in which decision making is realized via various software

layers, each of which is more-or-less explicitly reasoning about the environment

at di�erent levels of abstraction.

In each of these cases, we are moving away from the abstract view of agents, and

beginning to make quite speci�c commitments about the internal structure and

operation of agents. Each section explains the nature of these commitments, the

assumptions upon which the architectures depend, and the relative advantages and

disadvantages of each.

1.4.1 Logic-Based Architectures

The \traditional" approach to building arti�cially intelligent systems, (known as

symbolic AI ) suggests that intelligent behavior can be generated in a system by

giving that system a symbolic representation of its environment and its desired

behavior, and syntactically manipulating this representation. In this section, we

focus on the apotheosis of this tradition, in which these symbolic representations are

logical formulae, and the syntactic manipulation corresponds to logical deduction,

or theorem proving.

The idea of agents as theorem provers is seductive. Suppose we have some theory

of agency|some theory that explains how an intelligent agent should behave.

This theory might explain, for example, how an agent generates goals so as to

satisfy its design objective, how it interleaves goal-directed and reactive behavior

in order to achieve these goals, and so on. Then this theory � can be considered

as a speci�cation for how an agent should behave. The traditional approach to

implementing a system that will satisfy this speci�cation would involve re�ning the



1.4 Concrete Architectures for Intelligent Agents 43

speci�cation through a series of progressively more concrete stages, until �nally an

implementation was reached. In the view of agents as theorem provers, however, no

such re�nement takes place. Instead, � is viewed as an executable speci�cation: it

is directly executed in order to produce the agent's behavior.

To see how such an idea might work, we shall develop a simple model of logic-

based agents, which we shall call deliberate agents. In such agents, the internal state

is assumed to be a database of formulae of classical �rst-order predicate logic. For

example, the agent's database might contain formulae such as:

Open(valve221)

Temperature(reactor4726; 321)

Pressure(tank776; 28)

It is not di�cult to see how formulae such as these can be used to represent the

properties of some environment. The database is the information that the agent

has about its environment. An agent's database plays a somewhat analogous role to

that of belief in humans. Thus a person might have a belief that valve 221 is open|

the agent might have the predicate Open(valve221) in its database. Of course, just

like humans, agents can be wrong. Thus I might believe that valve 221 is open when

it is in fact closed; the fact that an agent has Open(valve221) in its database does

not mean that valve 221 (or indeed any valve) is open. The agent's sensors may

be faulty, its reasoning may be faulty, the information may be out of date, or the

interpretation of the formula Open(valve221) intended by the agent's designer may

be something entirely di�erent.

Let L be the set of sentences of classical �rst-order logic, and let D = }(L) be

the set of L databases, i.e., the set of sets of L-formulae. The internal state of an

agent is then an element of D. We write �;�1; : : : for members of D. The internal

state of an agent is then simply a member of the set D. An agent's decision making

process is modelled through a set of deduction rules, �. These are simply rules of

inference for the logic. We write � `� � if the formula � can be proved from the

database � using only the deduction rules �. An agents perception function see

remains unchanged:

see : S ! P:

Similarly, our next function has the form

next : D � P ! D

It thus maps a database and a percept to a new database. However, an agent's

action selection function, which has the signature

action : D ! A

is de�ned in terms of its deduction rules. The pseudo-code de�nition of this function

is as follows.



44 Intelligent Agents

1. function action(� : D) : A

2. begin

3. for each a 2 A do

4. if � `� Do(a) then

5. return a

6. end-if

7. end-for

8. for each a 2 A do

9. if � 6`� :Do(a) then

10. return a

11. end-if

12. end-for

13. return null

14. end function action

The idea is that the agent programmer will encode the deduction rules � and

database � in such a way that if a formula Do(a) can be derived, where a is a

term that denotes an action, then a is the best action to perform. Thus, in the �rst

part of the function (lines (3){(7)), the agent takes each of its possible actions a in

turn, and attempts to prove the form the formula Do(a) from its database (passed

as a parameter to the function) using its deduction rules �. If the agent succeeds

in proving Do(a), then a is returned as the action to be performed.

What happens if the agent fails to proveDo(a), for all actions a 2 A? In this case,

it attempts to �nd an action that is consistent with the rules and database, i.e.,

one that is not explicitly forbidden. In lines (8){(12), therefore, the agent attempts

to �nd an action a 2 A such that :Do(a) cannot be derived from its database

using its deduction rules. If it can �nd such an action, then this is returned as the

action to be performed. If, however, the agent fails to �nd an action that is at least

consistent, then it returns a special action null (or noop), indicating that no action

has been selected.

In this way, the agent's behavior is determined by the agent's deduction rules

(its \program") and its current database (representing the information the agent

has about its environment).

To illustrate these ideas, let us consider a small example (based on the vacuum

cleaning world example of [59, p51]). The idea is that we have a small robotic agent

that will clean up a house. The robot is equipped with a sensor that will tell it

whether it is over any dirt, and a vacuum cleaner that can be used to suck up dirt.

In addition, the robot always has a de�nite orientation (one of north, south, east,

or west). In addition to being able to suck up dirt, the agent can move forward one

\step" or turn right 90�. The agent moves around a room, which is divided grid-like

into a number of equally sized squares (conveniently corresponding to the unit of

movement of the agent). We will assume that our agent does nothing but clean|it

never leaves the room, and further, we will assume in the interests of simplicity

that the room is a 3�3 grid, and the agent always starts in grid square (0; 0) facing



1.4 Concrete Architectures for Intelligent Agents 45

dirt dirt

(0,0) (1,0) (2,0)

(0,1)

(0,2)

(1,1) (2,1)

(2,2)(1,2)

Figure 1.4 Vacuum world

north.

To summarize, our agent can receive a percept dirt (signifying that there is dirt

beneath it), or null (indicating no special information). It can perform any one of

three possible actions: forward, suck, or turn. The goal is to traverse the room

continually searching for and removing dirt. See Figure 1.4 for an illustration of the

vacuum world.

First, note that we make use of three simple domain predicates in this exercise:

In(x; y) agent is at (x; y)

Dirt(x; y) there is dirt at (x; y)

Facing(d) the agent is facing direction d

Now we specify our next function. This function must look at the perceptual

information obtained from the environment (either dirt or null), and generate a

new database which includes this information. But in addition, it must remove old

or irrelevant information, and also, it must try to �gure out the new location and

orientation of the agent. We will therefore specify the next function in several parts.

First, let us write old(�) to denote the set of \old" information in a database, which

we want the update function next to remove:

old(�) = fP (t1; : : : ; tn) j P 2 fIn;Dirt; Facingg and P (t1; : : : ; tn) 2 �g

Next, we require a function new, which gives the set of new predicates to add to

the database. This function has the signature

new : D � P ! D

The de�nition of this function is not di�cult, but it is rather lengthy, and so we

will leave it as an exercise. (It must generate the predicates In(: : :), describing the

new position of the agent, Facing(: : :) describing the orientation of the agent, and

Dirt(: : :) if dirt has been detected at the new position.) Given the new and old

functions, the next function is de�ned as follows:

next(�; p) = (� n old(�)) [ new(�; p)



46 Intelligent Agents

Now we can move on to the rules that govern our agent's behavior. The deduction

rules have the form

�(: : :) �!  (: : :)

where � and  are predicates over some arbitrary list of constants and variables.

The idea being that if � matches against the agent's database, then  can be

concluded, with any variables in  instantiated.

The �rst rule deals with the basic cleaning action of the agent: this rule will take

priority over all other possible behaviors of the agent (such as navigation).

In(x; y) ^Dirt(x; y) �! Do(suck) (1.1)

Hence if the agent is at location (x; y) and it perceives dirt, then the prescribed

action will be to suck up dirt. Otherwise, the basic action of the agent will be to

traverse the world. Taking advantage of the simplicity of our environment, we will

hardwire the basic navigation algorithm, so that the robot will always move from

(0; 0) to (0; 1) to (0; 2) and then to (1; 2), (1; 1) and so on. Once the agent reaches

(2; 2), it must head back to (0; 0). The rules dealing with the traversal up to (0; 2)

are very simple.

In(0; 0) ^ Facing(north) ^ :Dirt(0; 0) �! Do(forward) (1.2)

In(0; 1) ^ Facing(north) ^ :Dirt(0; 1) �! Do(forward) (1.3)

In(0; 2) ^ Facing(north) ^ :Dirt(0; 2) �! Do(turn) (1.4)

In(0; 2) ^ Facing(east) �! Do(forward) (1.5)

Notice that in each rule, we must explicitly check whether the antecedent of rule

(1.1) �res. This is to ensure that we only ever prescribe one action via the Do(: : :)

predicate. Similar rules can easily be generated that will get the agent to (2; 2), and

once at (2; 2) back to (0; 0). It is not di�cult to see that these rules, together with

the next function, will generate the required behavior of our agent.

At this point, it is worth stepping back and examining the pragmatics of the

logic-based approach to building agents. Probably the most important point to

make is that a literal, naive attempt to build agents in this way would be more or

less entirely impractical. To see why, suppose we have designed out agent's rule set

� such that for any database �, if we can proveDo(a) then a is an optimal action|

that is, a is the best action that could be performed when the environment is as

described in �. Then imagine we start running our agent. At time t1, the agent has

generated some database �1, and begins to apply its rules � in order to �nd which

action to perform. Some time later, at time t2, it manages to establish �1 `� Do(a)

for some a 2 A, and so a is the optimal action that the agent could perform at time

t1. But if the environment has changed between t1 and t2, then there is no guarantee

that a will still be optimal. It could be far from optimal, particularly if much time

has elapsed between t1 and t2. If t2�t1 is in�nitesimal|that is, if decision making is

e�ectively instantaneous|then we could safely disregard this problem. But in fact,



1.4 Concrete Architectures for Intelligent Agents 47

we know that reasoning of the kind our logic-based agents use will be anything but

instantaneous. (If our agent uses classical �rst-order predicate logic to represent

the environment, and its rules are sound and complete, then there is no guarantee

that the decision making procedure will even terminate.) An agent is said to enjoy

the property of calculative rationality if and only if its decision making apparatus

will suggest an action that was optimal when the decision making process began.

Calculative rationality is clearly not acceptable in environments that change faster

than the agent can make decisions|we shall return to this point later.

One might argue that this problem is an artifact of the pure logic-based approach

adopted here. There is an element of truth in this. By moving away from strictly

logical representation languages and complete sets of deduction rules, one can build

agents that enjoy respectable performance. But one also loses what is arguably

the greatest advantage that the logical approach brings: a simple, elegant logical

semantics.

There are several other problems associated with the logical approach to agency.

First, the see function of an agent, (its perception component), maps its environ-

ment to a percept. In the case of a logic-based agent, this percept is likely to be

symbolic|typically, a set of formulae in the agent's representation language. But

for many environments, it is not obvious how the mapping from environment to

symbolic percept might be realized. For example, the problem of transforming an

image to a set of declarative statements representing that image has been the object

of study in AI for decades, and is still essentially open. Another problem is that

actually representing properties of dynamic, real-world environments is extremely

hard. As an example, representing and reasoning about temporal information|how

a situation changes over time|turns out to be extraordinarily di�cult. Finally, as

the simple vacuum world example illustrates, representing even rather simple pro-

cedural knowledge (i.e., knowledge about \what to do") in traditional logic can be

rather unintuitive and cumbersome.

To summarize, in logic-based approaches to building agents, decision making is

viewed as deduction. An agent's \program"|that is, its decision making strategy|

is encoded as a logical theory, and the process of selecting an action reduces to a

problem of proof. Logic-based approaches are elegant, and have a clean (logical)

semantics|wherein lies much of their long-lived appeal. But logic-based approaches

have many disadvantages. In particular, the inherent computational complexity

of theorem proving makes it questionable whether agents as theorem provers

can operate e�ectively in time-constrained environments. Decision making in such

agents is predicated on the assumption of calculative rationality|the assumption

that the world will not change in any signi�cant way while the agent is deciding

what to do, and that an action which is rational when decision making begins

will be rational when it concludes. The problems associated with representing

and reasoning about complex, dynamic, possibly physical environments are also

essentially unsolved.



48 Intelligent Agents

Sources and Further Reading

My presentation of logic based agents is based largely on the discussion of deliberate

agents presented in [25, Chapter 13], which represents the logic-centric view of AI

and agents very well. The discussion is also partly based on [38]. A number of more-

or-less \pure" logical approaches to agent programming have been developed. Well-

known examples include the congolog system of Lesp�erance and colleagues [39]

(which is based on the situation calculus [45]) and the MetateM and Concurrent

MetateM programming languages developed by Fisher and colleagues [3, 21] (in

which agents are programmed by giving them temporal logic speci�cations of the

behavior they should exhibit). Concurrent MetateM is discussed as a case study

in section 1.5. Note that these architectures (and the discussion above) assume

that if one adopts a logical approach to agent-building, then this means agents

are essentially theorem provers, employing explicit symbolic reasoning (theorem

proving) in order to make decisions. But just because we �nd logic a useful tool

for conceptualising or specifying agents, this does not mean that we must view

decision-making as logical manipulation. An alternative is to compile the logical

speci�cation of an agent into a form more amenable to e�cient decision making.

The di�erence is rather like the distinction between interpreted and compiled

programming languages. The best-known example of this work is the situated

automata paradigm of Leslie Kaelbling and Stanley Rosenschein [58]. A review

of the role of logic in intelligent agents may be found in [70]. Finally, for a detailed

discussion of calculative rationality and the way that it has a�ected thinking in AI,

see [60].

1.4.2 Reactive Architectures

The seemingly intractable problems with symbolic/logical approaches to building

agents led some researchers to question, and ultimately reject, the assumptions

upon which such approaches are based. These researchers have argued that minor

changes to the symbolic approach, such as weakening the logical representation

language, will not be su�cient to build agents that can operate in time-constrained

environments: nothing less than a whole new approach is required. In the mid-

to-late 1980s, these researchers began to investigate alternatives to the symbolic

AI paradigm. It is di�cult to neatly characterize these di�erent approaches, since

their advocates are united mainly by a rejection of symbolic AI, rather than by a

common manifesto. However, certain themes do recur:

the rejection of symbolic representations, and of decision making based on

syntactic manipulation of such representations;

the idea that intelligent, rational behavior is seen as innately linked to the

environment an agent occupies|intelligent behavior is not disembodied, but

is a product of the interaction the agent maintains with its environment;



1.4 Concrete Architectures for Intelligent Agents 49

the idea that intelligent behavior emerges from the interaction of various simpler

behaviors.

Alternative approaches to agency are sometime referred to as behavioral (since a

common theme is that of developing and combining individual behaviors), situ-

ated (since a common theme is that of agents actually situated in some environ-

ment, rather than being disembodied from it), and �nally|the term used in this

chapter|reactive (because such systems are often perceived as simply reacting to

an environment, without reasoning about it). This section presents a survey of the

subsumption architecture, which is arguably the best-known reactive agent archi-

tecture. It was developed by Rodney Brooks|one of the most vocal and inuential

critics of the symbolic approach to agency to have emerged in recent years.

There are two de�ning characteristics of the subsumption architecture. The �rst

is that an agent's decision-making is realized through a set of task accomplishing

behaviors ; each behavior may be though of as an individual action function, as we

de�ned above, which continually takes perceptual input and maps it to an action

to perform. Each of these behavior modules is intended to achieve some particular

task. In Brooks' implementation, the behavior modules are �nite state machines.

An important point to note is that these task accomplishing modules are assumed

to include no complex symbolic representations, and are assumed to do no symbolic

reasoning at all. In many implementations, these behaviors are implemented as rules

of the form

situation �! action

which simple map perceptual input directly to actions.

The second de�ning characteristic of the subsumption architecture is that many

behaviors can \�re" simultaneously. There must obviously be a mechanism to choose

between the di�erent actions selected by these multiple actions. Brooks proposed

arranging the modules into a subsumption hierarchy, with the behaviors arranged

into layers. Lower layers in the hierarchy are able to inhibit higher layers: the lower

a layer is, the higher is its priority. The idea is that higher layers represent more

abstract behaviors. For example, one might desire a behavior in a mobile robot for

the behavior \avoid obstacles". It makes sense to give obstacle avoidance a high

priority|hence this behavior will typically be encoded in a low-level layer, which

has high priority. To illustrate the subsumption architecture in more detail, we will

now present a simple formal model of it, and illustrate how it works by means of a

short example. We then discuss its relative advantages and shortcomings, and point

at other similar reactive architectures.

The see function, which represents the agent's perceptual ability, is assumed to

remain unchanged. However, in implemented subsumption architecture systems,

there is assumed to be quite tight coupling between perception and action|raw

sensor input is not processed or transformed much, and there is certainly no attempt

to transform images to symbolic representations.



50 Intelligent Agents

The decision function action is realized through a set of behaviors, together with

an inhibition relation holding between these behaviors. A behavior is a pair (c; a),

where c � P is a set of percepts called the condition, and a 2 A is an action. A

behavior (c; a) will �re when the environment is in state s 2 S i� see(s) 2 c. Let

Beh = f(c; a) j c � P and a 2 Ag be the set of all such rules.

Associated with an agent's set of behavior rules R � Beh is a binary inhibition

relation on the set of behaviors: � � R�R. This relation is assumed to be a total

ordering on R (i.e., it is transitive, irreexive, and antisymmetric). We write b1 � b2

if (b1; b2) 2�, and read this as \b1 inhibits b2", that is, b1 is lower in the hierarchy

than b2, and will hence get priority over b2. The action function is then de�ned as

follows:

1. function action(p : P ) : A

2. var fired : }(R)

3. var selected : A

4. begin

5. fired := f(c; a) j (c; a) 2 R and p 2 cg

6. for each (c; a) 2 fired do

7. if :(9(c0; a0) 2 fired such that (c0; a0) � (c; a)) then

8. return a

9. end-if

10. end-for

11. return null

12. end function action

Thus action selection begins by �rst computing the set fired of all behaviors

that �re (5). Then, each behavior (c; a) that �res is checked, to determine whether

there is some other higher priority behavior that �res. If not, then the action part

of the behavior, a, is returned as the selected action (8). If no behavior �res, then

the distinguished action null will be returned, indicating that no action has been

chosen.

Given that one of our main concerns with logic-based decision making was its

theoretical complexity, it is worth pausing to examine how well our simple behavior-

based system performs. The overall time complexity of the subsumption action

function is no worse than O(n2), where n is the larger of the number of behaviors or

number of percepts. Thus, even with the naive algorithm above, decision making is

tractable. In practice, we can do considerably better than this: the decision making

logic can be encoded into hardware, giving constant decision time. For modern

hardware, this means that an agent can be guaranteed to select an action within

nano-seconds. Perhaps more than anything else, this computational simplicity is

the strength of the subsumption architecture.

To illustrate how the subsumption architecture in more detail, we will show how

subsumption architecture agents were built for the following scenario (this example

is adapted from [66]):



1.4 Concrete Architectures for Intelligent Agents 51

The objective is to explore a distant planet, more concretely, to collect samples of

a particular type of precious rock. The location of the rock samples is not known in

advance, but they are typically clustered in certain spots. A number of autonomous

vehicles are available that can drive around the planet collecting samples and later

reenter the a mothership spacecraft to go back to earth. There is no detailed map of

the planet available, although it is known that the terrain is full of obstacles|hills,

valleys, etc.|which prevent the vehicles from exchanging any communication.

The problem we are faced with is that of building an agent control architecture for

each vehicle, so that they will cooperate to collect rock samples from the planet

surface as e�ciently as possible. Luc Steels argues that logic-based agents, of the

type we described above, are \entirely unrealistic" for this problem [66]. Instead,

he proposes a solution using the subsumption architecture.

The solution makes use of two mechanisms introduced by Steels: The �rst is a

gradient �eld. In order that agents can know in which direction the mothership lies,

the mothership generates a radio signal. Now this signal will obviously weaken as

distance to the source increases|to �nd the direction of the mothership, an agent

need therefore only travel \up the gradient" of signal strength. The signal need not

carry any information|it need only exist.

The second mechanism enables agents to communicate with one another. The

characteristics of the terrain prevent direct communication (such as message pass-

ing), so Steels adopted an indirect communication method. The idea is that agents

will carry \radioactive crumbs", which can be dropped, picked up, and detected by

passing robots. Thus if an agent drops some of these crumbs in a particular loca-

tion, then later, another agent happening upon this location will be able to detect

them. This simple mechanism enables a quite sophisticated form of cooperation.

The behavior of an individual agent is then built up from a number of behaviors,

as we indicated above. First, we will see how agents can be programmed to

individually collect samples. We will then see how agents can be programmed to

generate a cooperative solution.

For individual (non-cooperative) agents, the lowest-level behavior, (and hence

the behavior with the highest \priority") is obstacle avoidance. This behavior can

can be represented in the rule:

if detect an obstacle then change direction. (1.6)

The second behavior ensures that any samples carried by agents are dropped back

at the mother-ship.

if carrying samples and at the base then drop samples (1.7)

if carrying samples and not at the base then travel up gradient. (1.8)

Behavior (1.8) ensures that agents carrying samples will return to the mother-ship

(by heading towards the origin of the gradient �eld). The next behavior ensures



52 Intelligent Agents

that agents will collect samples they �nd.

if detect a sample then pick sample up. (1.9)

The �nal behavior ensures that an agent with \nothing better to do" will explore

randomly.

if true then move randomly. (1.10)

The pre-condition of this rule is thus assumed to always �re. These behaviors are

arranged into the following hierarchy:

(1:6) � (1:7) � (1:8) � (1:9) � (1:10)

The subsumption hierarchy for this example ensures that, for example, an agent

will always turn if any obstacles are detected; if the agent is at the mother-ship

and is carrying samples, then it will always drop them if it is not in any immediate

danger of crashing, and so on. The \top level" behavior|a random walk|will only

every be carried out if the agent has nothing more urgent to do. It is not di�cult

to see how this simple set of behaviors will solve the problem: agents will search for

samples (ultimately by searching randomly), and when they �nd them, will return

them to the mother-ship.

If the samples are distributed across the terrain entirely at random, then equip-

ping a large number of robots with these very simple behaviors will work extremely

well. But we know from the problem speci�cation, above, that this is not the case:

the samples tend to be located in clusters. In this case, it makes sense to have agents

cooperate with one-another in order to �nd the samples. Thus when one agent �nds

a large sample, it would be helpful for it to communicate this to the other agents,

so they can help it collect the rocks. Unfortunately, we also know from the problem

speci�cation that direct communication is impossible. Steels developed a simple

solution to this problem, partly inspired by the foraging behavior of ants. The idea

revolves around an agent creating a \trail" of radioactive crumbs whenever it �nds

a rock sample. The trail will be created when the agent returns the rock samples

to the mother ship. If at some later point, another agent comes across this trail,

then it need only follow it down the gradient �eld to locate the source of the rock

samples. Some small re�nements improve the e�ciency of this ingenious scheme

still further. First, as an agent follows a trail to the rock sample source, it picks

up some of the crumbs it �nds, hence making the trail fainter. Secondly, the trail

is only laid by agents returning to the mothership. Hence if an agent follows the

trail out to the source of the nominal rock sample only to �nd that it contains no

samples, it will reduce the trail on the way out, and will not return with samples

to reinforce it. After a few agents have followed the trail to �nd no sample at the

end of it, the trail will in fact have been removed.

The modi�ed behaviors for this example are as follows. Obstacle avoidance, (1.6),

remains unchanged. However, the two rules determining what to do if carrying a



1.4 Concrete Architectures for Intelligent Agents 53

sample are modi�ed as follows.

if carrying samples and at the base then drop samples (1.11)

if carrying samples and not at the base

then drop 2 crumbs and travel up gradient.
(1.12)

The behavior (1.12) requires an agent to drop crumbs when returning to base with

a sample, thus either reinforcing or creating a trail. The \pick up sample" behavior,

(1.9), remains unchanged. However, an additional behavior is required for dealing

with crumbs.

if sense crumbs then pick up 1 crumb and travel down gradient (1.13)

Finally, the randommovement behavior, (1.10), remains unchanged. These behavior

are then arranged into the following subsumption hierarchy.

(1:6) � (1:11) � (1:12) � (1:9) � (1:13) � (1:10)

Steels shows how this simple adjustment achieves near-optimal performance in

many situations. Moreover, the solution is cheap (the computing power required

by each agent is minimal) and robust (the loss of a single agent will not a�ect the

overall system signi�cantly).

In summary, there are obvious advantages to reactive approaches such as that

Brooks' subsumption architecture: simplicity, economy, computational tractability,

robustness against failure, and elegance all make such architectures appealing. But

there are some fundamental, unsolved problems, not just with the subsumption

architecture, but with other purely reactive architectures:

If agents do not employ models of their environment, then they must have

su�cient information available in their local environment for them to determine

an acceptable action.

Since purely reactive agents make decisions based on local information, (i.e.,

information about the agents current state), it is di�cult to see how such decision

making could take into account non-local information|it must inherently take

a \short term" view.

It is di�cult to see how purely reactive agents can be designed that learn from

experience, and improve their performance over time.

A major selling point of purely reactive systems is that overall behavior emerges

from the interaction of the component behaviors when the agent is placed in

its environment. But the very term \emerges" suggests that the relationship

between individual behaviors, environment, and overall behavior is not under-

standable. This necessarily makes it very hard to engineer agents to ful�ll speci�c

tasks. Ultimately, there is no principled methodology for building such agents:

one must use a laborious process of experimentation, trial, and error to engineer

an agent.



54 Intelligent Agents

While e�ective agents can be generated with small numbers of behaviors (typi-

cally less that ten layers), it is much harder to build agents that contain many

layers. The dynamics of the interactions between the di�erent behaviors become

too complex to understand.

Various solutions to these problems have been proposed. One of the most popular

of these is the idea of evolving agents to perform certain tasks. This area of work

has largely broken away from the mainstream AI tradition in which work on, for

example, logic-based agents is carried out, and is documented primarily in the

arti�cial life (alife) literature.

Sources and Further Reading

Brooks' original paper on the subsumption architecture|the one that started all

the fuss|was published as [8]. The description and discussion here is partly based

on [15]. This original paper seems to be somewhat less radical than many of his

later ones, which include [9, 11, 10]. The version of the subsumption architecture

used in this chapter is actually a simpli�cation of that presented by Brooks.

The subsumption architecture is probably the best-known reactive architecture

around|but there are many others. The collection of papers edited by Pattie

Maes [41] contains papers that describe many of these, as does the collection by

Agre and Rosenschein [2]. Other approaches include:

the agent network architecture developed by Pattie Maes [40, 42, 43];

Nilsson's teleo reactive programs [49];

Rosenchein and Kaelbling's situated automata approach, which is particularly

interesting in that it shows how agents can be speci�ed in an abstract, logi-

cal framework, and compiled into equivalent, but computationally very simple

machines [57, 36, 35, 58];

Agre and Chapman's pengi system [1];

Schoppers' universal plans|which are essentially decision trees that can be used

to e�ciently determine an appropriate action in any situation [62];

Firby's reactive action packages [19].

Kaelbling [34] gives a good discussion of the issues associated with developing

resource-bounded rational agents, and proposes an agent architecture somewhat

similar to that developed by Brooks.

1.4.3 Belief-Desire-Intention Architectures

In this section, we shall discuss belief-desire-intention (bdi) architectures. These ar-

chitectures have their roots in the philosophical tradition of understanding practical

reasoning|the process of deciding, moment by moment, which action to perform

in the furtherance of our goals.



1.4 Concrete Architectures for Intelligent Agents 55

Practical reasoning involves two important processes: deciding what goals we

want to achieve, and how we are going to achieve these goals. The former process is

known as deliberation, the latter asmeans-ends reasoning. To gain an understanding

of the bdi model, it is worth considering a simple example of practical reasoning.

When you leave university with a �rst degree, you are faced with a decision to

make|about what to do with your life. The decision process typically begins by

trying to understand what the options available to you are. For example, if you

gain a good �rst degree, then one option is that of becoming an academic. (If you

fail to obtain a good degree, this option is not available to you.) Another option is

entering industry. After generating this set of alternatives, you must choose between

them, and commit to some. These chosen options become intentions, which then

determine the agent's actions. Intentions then feed back into the agent's future

practical reasoning. For example, if I decide I want to be an academic, then I

should commit to this objective, and devote time and e�ort to bringing it about.

Intentions play a crucial role in the practical reasoning process. Perhaps the most

obvious property of intentions is that they tend to lead to action. If I truly have

an intention to become an academic, then you would expect me to act on that

intention|to try to achieve it. For example, you might expect me to apply to

various PhD programs. You would expect to make a reasonable attempt to achieve

the intention. Thus you would expect me to carry our some course of action that

I believed would best satisfy the intention. Moreover, if a course of action fails to

achieve the intention, then you would expect me to try again|you would not expect

me to simply give up. For example, if my �rst application for a PhD programme is

rejected, then you might expect me to apply to alternative universities.

In addition, once I have adopted an intention, then the very fact of having this

intention will constrain my future practical reasoning. For example, while I hold

some particular intention, I will not entertain options that are inconsistent with

that intention. Intending to become an academic, for example, would preclude the

option of partying every night: the two are mutually exclusive.

Next, intentions persist. If I adopt an intention to become an academic, then I

should persist with this intention and attempt to achieve it. For if I immediately

drop my intentions without devoting resources to achieving them, then I will never

achieve anything. However, I should not persist with my intention for too long|if it

becomes clear to me that I will never become an academic, then it is only rational

to drop my intention to do so. Similarly, if the reason for having an intention goes

away, then it is rational of me to drop the intention. For example, if I adopted the

intention to become an academic because I believed it would be an easy life, but

then discover that I would be expected to actually teach, then the justi�cation for

the intention is no longer present, and I should drop the intention.

Finally, intentions are closely related to beliefs about the future. For example, if

I intend to become an academic, then I should believe that I will indeed become

an academic. For if I truly believe that I will never be an academic, it would be

non-sensical of me to have an intention to become one. Thus if I intend to become

an academic, I should at least believe that there is a good chance I will indeed



56 Intelligent Agents

become one.

From this discussion, we can see that intentions play a number of important roles

in practical reasoning:

Intentions drive means-ends reasoning.

If I have formed an intention to become an academic, then I will attempt to

achieve the intention, which involves, amongst other things, deciding how to

achieve it, for example, by applying for a PhD programme. Moreover, if one

particular course of action fails to achieve an intention, then I will typically

attempt others. Thus if I fail to gain a PhD place at one university, I might try

another university.

Intentions constrain future deliberation.

If I intend to become an academic, then I will not entertain options that are

inconsistent with this intention. For example, a rational agent would not consider

being rich as an option while simultaneously intending to be an academic. (While

the two are not actually mutually exclusive, the probability of simultaneously

achieving both is in�nitesimal.)

Intentions persist.

I will not usually give up on my intentions without good reason|they will

persist, typically until either I believe I have successfully achieved them, I believe

I cannot achieve them, or else because the purpose for the intention is no longer

present.

Intentions inuence beliefs upon which future practical reasoning is based.

If I adopt the intention to become an academic, then I can plan for the future on

the assumption that I will be an academic. For if I intend to be an academic while

simultaneously believing that I will never be one, then I am being irrational.

A key problem in the design of practical reasoning agents is that of of achieving

a good balance between these di�erent concerns. Speci�cally, it seems clear that

an agent should at times drop some intentions (because it comes to believe that

either they will never be achieved, they are achieved, or else because the reason

for having the intention is no longer present). It follows that, from time to time,

it is worth an agent stopping to reconsider its intentions. But reconsideration has

a cost|in terms of both time and computational resources. But this presents us

with a dilemma:

an agent that does not stop to reconsider su�ciently often will continue attempt-

ing to achieve its intentions even after it is clear that they cannot be achieved,

or that there is no longer any reason for achieving them;

an agent that constantly reconsiders its attentions may spend insu�cient time

actually working to achieve them, and hence runs the risk of never actually

achieving them.

This dilemma is essentially the problem of balancing pro-active (goal directed) and

reactive (event driven) behavior, that we introduced in section 1.2.2.



1.4 Concrete Architectures for Intelligent Agents 57

There is clearly a tradeo� to be struck between the degree of commitment and

reconsideration at work here. The nature of this tradeo� was examined by David

Kinny and Michael George�, in a number of experiments carried out with a bdi

agent framework called dMARS [37]. They investigate how bold agents (those that

never stop to reconsider) and cautious agents (those that are constantly stopping

to reconsider) perform in a variety of di�erent environments. The most important

parameter in these experiments was the rate of world change, . The key results of

Kinny and George� were as follows.

If  is low, (i.e., the environment does not change quickly), then bold agents

do well compared to cautious ones, because cautious ones waste time recon-

sidering their commitments while bold agents are busy working towards|and

achieving|their goals.

If  is high, (i.e., the environment changes frequently), then cautious agents tend

to outperform bold agents, because they are able to recognize when intentions

are doomed, and also to take advantage of serendipitous situations and new

opportunities.

The lesson is that di�erent types of environment require di�erent types of decision

strategies. In static, unchanging environment, purely pro-active, goal directed

behavior is adequate. But in more dynamic environments, the ability to react to

changes by modi�fying intentions becomes more important.

The process of practical reasoning in a bdi agent is summarized in Figure 1.5.

As this Figure illustrates, there are seven main components to a bdi agent:

a set of current beliefs, representing information the agent has about its current

environment;

a belief revision function, (brf), which takes a perceptual input and the agent's

current beliefs, and on the basis of these, determines a new set of beliefs;

an option generation function, (options), which determines the options available

to the agent (its desires), on the basis of its current beliefs about its environment

and its current intentions ;

a set of current options, representing possible courses of actions available to the

agent;

a �lter function (filter), which represents the agent's deliberation process, and

which determines the agent's intentions on the basis of its current beliefs, desires,

and intentions;

a set of current intentions, representing the agent's current focus|those states

of a�airs that it has committed to trying to bring about;

an action selection function (execute), which determines an action to perform

on the basis of current intentions.

It is straightforward to formally de�ne these components. First, let Bel be the set

of all possible beliefs, Des be the set of all possible desires, and Int be the set of



58 Intelligent Agents

output
action

action

intentions

desires

options
generate

beliefs

brf

sensor

filter

input

Figure 1.5 Schematic diagram of a generic belief-desire-intention architecture.

all possible intentions. For the purposes of this chapter, the content of these sets

is not important. (Often, beliefs, desires, and intentions are represented as logical

formulae, perhaps of �rst-order logic.) Whatever the content of these sets, its is

worth noting that they should have some notion of consistency de�ned upon them,

so that one can answer the question of, for example, whether having an intention

to achieve x is consistent with the belief that y. Representing beliefs, desires, and

intentions as logical formulae permits us to cast such questions as questions as

questions of determining whether logical formulae are consistent|a well known

and well-understood problem. The state of a bdi agent at any given moment is,

unsurprisingly, a triple (B;D; I), where B � Bel, D � Des, and I � Int.

An agent's belief revision function is a mapping

brf : }(Bel)� P ! }(Bel)

which on the basis of the current percept and current beliefs determines a new set

of beliefs. Belief revision is out of the scope of this chapter (and indeed this book),

and so we shall say no more about it here.



1.4 Concrete Architectures for Intelligent Agents 59

The option generation function, options, maps a set of beliefs and a set of

intentions to a set of desires.

options : }(Bel)� }(Int)! }(Des)

This function plays several roles. First, it must be responsible for the agent's means-

ends reasoning|the process of deciding how to achieve intentions. Thus, once an

agent has formed an intention to x, it must subsequently consider options to achieve

x. These options will be more concrete|less abstract|than x. As some of these

options then become intentions themselves, they will also feedback into option gen-

eration, resulting in yet more concrete options being generated. We can thus think

of a bdi agent's option generation process as one of recursively elaborating a hier-

archical plan structure, considering and committing to progressively more speci�c

intentions, until �nally it reaches the intentions that correspond to immediately

executable actions.

While the main purpose of the options function is thus means-ends reasoning,

it must in addition satisfy several other constraints. First, it must be consistent :

any options generated must be consistent with both the agent's current beliefs and

current intentions. Secondly, it must be opportunistic, in that it should recognize

when environmental circumstances change advantageously, to o�er the agent new

ways of achieving intentions, or the possibility of achieving intentions that were

otherwise unachievable.

A bdi agent's deliberation process (deciding what to do) is represented in the

filter function,

filter : }(Bel)� }(Des)� }(Int)! }(Int)

which updates the agent's intentions on the basis of its previously-held intentions

and current beliefs and desires. This function must ful�ll two roles. First, it must

drop any intentions that are no longer achievable, or for which the expected cost

of achieving them exceeds the expected gain associated with successfully achieving

them. Second, it should retain intentions that are not achieved, and that are still

expected to have a positive overall bene�t. Finally, it should adopt new intentions,

either to achieve existing intentions, or to exploit new opportunities.

Notice that we do not expect this function to introduce intentions from nowhere.

Thus filter should satisfy the following constraint:

8B 2 }(Bel);8D 2 }(Des);8I 2 }(Int); filter(B;D; I) � I [D:

In other words, current intentions are either previously held intentions or newly

adopted options.

The execute function is assumed to simply return any executable intentions|one

that corresponds to a directly executable action:

execute : }(Int)! A

The agent decision function, action of a bdi agent is then a function

action : P ! A

and is de�ned by the following pseudo-code.



60 Intelligent Agents

1. function action(p : P ) : A

2. begin

3. B := brf(B; p)

4. D := options(D; I)

5. I := filter(B;D; I)

6. return execute(I)

7. end function action

Note that representing an agent's intentions as a set (i.e., as an unstructured

collection) is generally too simplistic in practice. A simple alternative is to associate

a priority with each intention, indicating its relative importance. Another natural

idea is to represent intentions as a stack. An intention is pushed on to the stack

when it is adopted, and popped when it is either achieved or else not achievable.

More abstract intentions will tend to be at the bottom of the stack, with more

concrete intentions towards the top.

To summarize, bdi architectures are practical reasoning architectures, in which

the process of deciding what to do resembles the kind of practical reasoning that

we appear to use in our everyday lives. The basic components of a bdi architecture

are data structures representing the beliefs, desires, and intentions of the agent,

and functions that represent its deliberation (deciding what intentions to have|

i.e., deciding what to do) and means-ends reasoning (deciding how to do it).

Intentions play a central role in the bdi model: they provide stability for decision

making, and act to focus the agent's practical reasoning. A major issue in bdi

architectures is the problem of striking a balance between being committed to and

overcommitted to one's intentions: the deliberation process must be �nely tuned

to its environment, ensuring that in more dynamic, highly unpredictable domains,

it reconsiders its intentions relatively frequently|in more static environments, less

frequent reconsideration is necessary.

The bdi model is attractive for several reasons. First, it is intuitive|we all

recognize the processes of deciding what to do and then how to do it, and we

all have an informal understanding of the notions of belief, desire, and intention.

Second, it gives us a clear functional decomposition, which indicates what sorts of

subsystems might be required to build an agent. But the main di�culty, as ever, is

knowing how to e�ciently implement these functions.

Sources and Further Reading

Belief-desire-intention architectures originated in the work of the Rational Agency

project at Stanford Research Institute in the mid 1980s. The origins of the model

lie in the theory of human practical reasoning developed by the philosopher Michael

Bratman [6], which focusses particularly on the role of intentions in practical



1.4 Concrete Architectures for Intelligent Agents 61

reasoning. The conceptual framework of the BDI model is described in [7], which

also describes a speci�c BDI agent architecture called irma. The description of

the bdi model given here (and in particular Figure 1.5) is adapted from [7]. One

of the interesting aspects of the bdi model is that it has been used in one of

the most successful agent architectures to date. The Procedural Resoning System

(prs), originally developed by Michael George� and Amy Lansky [26], has been

used to build some of the most exacting agent applications to date, including fault

diagnosis for the reaction control system of the space shuttle, and an air tra�c

management system at Sydney airport in Australia|overviews of these systems

are described in [27]. In the prs, an agent is equipped with a library of plans which

are used to perform means-ends reasoning. Deliberation is achieved by the use of

meta-level plans, which are able to modify an agent's intention structure at run-

time, in order to change the focus of the agent's practical reasoning. Beliefs in the

prs are represented as prolog-like facts|essentially, as atoms of �rst-order logic.

The bdi model is also interesting because a great deal of e�ort has been devoted

to formalising it. In particular, Anand Rao and Michael George� have developed a

range of bdi logics, which they use to axiomatize properties of bdi-based practical

reasoning agents [52, 56, 53, 54, 55, 51]. These models have been extended by others

to deal with, for example, communication between agents [28].

1.4.4 Layered Architectures

Given the requirement that an agent be capable of reactive and pro-active behavior,

an obvious decomposition involves creating separate subsystems to deal with these

di�erent types of behaviors. This idea leads naturally to a class of architectures in

which the various subsystems are arranged into a hierarchy of interacting layers.

In this section, we will consider some general aspects of layered architectures,

and then go on to consider two examples of such architectures: interrap and

touringmachines.

Typically, there will be at least two layers, to deal with reactive and pro-active

behaviors respectively. In principle, there is no reason why there should not be many

more layers. However many layers there are, a useful typology for such architectures

is by the information and control ows within them. Broadly speaking, we can

identify two types of control ow within layered architectures (see Figure 1.6):

Horizontal layering.

In horizontally layered architectures (Figure 1.6(a)), the software layers are each

directly connected to the sensory input and action output. In e�ect, each layer

itself acts like an agent, producing suggestions as to what action to perform.

Vertical layering.

In vertically layered architectures (Figure 1.6(b) and 1.6(c)), sensory input and

action output are each dealt with by at most one layer each.

The great advantage of horizontally layered architectures is their conceptual sim-

plicity: if we need an agent to exhibit n di�erent types of behavior, then we imple-



62 Intelligent Agents

action
output

perceptual
input

(b) Vertical layering
(One pass control)

(a) Horizontal layering

perceptual
input

action
output

perceptual
input

action
output

(Two pass control)

Layer 1

Layer 2

Layer n

Layer 1

Layer 2

Layer n

Layer 1

Layer 2

Layer n

... ... ...

(c) Vertical layering

Figure 1.6 Information and control ows in three types of layered agent architec-

ture (Source: [47, p263]).

ment n di�erent layers. However, because the layers are each in e�ect competing

with one-another to generate action suggestions, there is a danger that the overall

behavior of the agent will not be coherent. In order to ensure that horizontally lay-

ered architectures are consistent, they generally include a mediator function, which

makes decisions about which layer has \control" of the agent at any given time.

The need for such central control is problematic: it means that the designer must

potentially consider all possible interactions between layers. If there are n layers in

the architecture, and each layer is capable of suggesting m possible actions, then

this means there are mn such interactions to be considered. This is clearly di�cult

from a design point of view in any but the most simple system. The introduction

of a central control system also introduces a bottleneck into the agent's decision

making.

These problems are partly alleviated in a vertically layered architecture. We can

subdivide vertically layered architectures into one pass architectures (Figure 1.6(b))

and two pass architectures (Figure 1.6(c)). In one-pass architectures, control ows

sequentially through each layer, until the �nal layer generates action output. In two-

pass architectures, information ows up the architecture (the �rst pass) and control

then ows back down. There are some interesting similarities between the idea of

two-pass vertically layered architectures and the way that organisations work, with

information owing up to the highest levels of the organisation, and commands

then owing down. In both one pass and two pass vertically layered architectures,

the complexity of interactions between layers is reduced: since there are n � 1

interfaces between n layers, then if each layer is capable of suggesting m actions,

there are at most m2(n � 1) interactions to be considered between layers. This is

clearly much simpler than the horizontally layered case. However, this simplicity

comes at the cost of some exibility: in order for a vertically layered architecture to



1.4 Concrete Architectures for Intelligent Agents 63

Perception subsystem

Modelling layer

Planning Layer

Reactive layer

Control subsystem

Action subsystem

input

action
output

sensor

Figure 1.7 TouringMachines: a horizontally layered agent architecture

make a decision, control must pass between each di�erent layer. This is not fault

tolerant: failures in any one layer are likely to have serious consequences for agent

performance.

In the remainder of this section, we will consider two examples of layered

architectures: Innes Ferguson's touringmachines, and J�org M�uller's interrap.

The former is an example of a horizontally layered architecture; the latter is a (two

pass) vertically layered architecture.

TouringMachines

The touringmachines architecture is illustrated in Figure 1.7. As this Figure

shows, TouringMachines consists of three activity producing layers. That is,

each layer continually produces \suggestions" for what actions the agent should

perform. The reactive layer provides a more-or-less immediate response to changes

that occur in the environment. It is implemented as a set of situation-action rules,

like the behaviors in Brooks' subsumption architecture (section 1.4.2). These rules

map sensor input directly to e�ector output. The original demonstration scenario

for touringmachines was that of autonomous vehicles driving between locations

through streets populated by other similar agents. In this scenario, reactive rules

typically deal with functions like obstacle avoidance. For example, here is an

example of a reactive rule for avoiding the kerb (from [16, p59]):

rule-1: kerb-avoidance

if

is-in-front(Kerb, Observer) and

speed(Observer) > 0 and

separation(Kerb, Observer) < KerbThreshHold



64 Intelligent Agents

then

change-orientation(KerbAvoidanceAngle)

Here change-orientation(...) is the action suggested if the rule �res. The rules

can only make references to the agent's current state|they cannot do any explicit

reasoning about the world, and on the right hand side of rules are actions, not

predicates. Thus if this rule �red, it would not result in any central environment

model being updated, but would just result in an action being suggested by the

reactive layer.

The touringmachines planning layer achieves the agent's pro-active behavior.

Speci�cally, the planning layer is responsible for the \day-to-day" running of the

agent|under normal circumstances, the planning layer will be responsible for decid-

ing what the agent does. However, the planning layer does not do \�rst-principles"

planning. That is, it does not attempt to generate plans from scratch. Rather, the

planning layer employs a library of plan \skeletons" called schemas. These skele-

tons are in essence hierarchically structured plans, which the touringmachines

planning layer elaborates at run time in order to decide what to do. So, in order

to achieve a goal, the planning layer attempts to �nd a schema in its library which

matches that goal. This schema will contain sub-goals, which the planning layer

elaborates by attempting to �nd other schemas in its plan library that match these

sub-goals.

The modeling layer represents the various entities in the world (including the

agent itself, as well as other agents). The modeling layer thus predicts conicts

between agents, and generates new goals to be achieved in order to resolve these

conicts. These new goals are then posted down to the planning layer, which makes

use of its plan library in order to determine how to satisfy them.

The three control layers are embedded within a control subsystem, which is

e�ectively responsible for deciding which of the layers should have control over the

agent. This control subsystem is implemented as a set of control rules. Control rules

can either suppress sensor information between the control rules and the control

layers, or else censor action outputs from the control layers. Here is an example

censor rule [18, p207]:

censor-rule-1:

if

entity(obstacle-6) in perception-buffer

then

remove-sensory-record(layer-R, entity(obstacle-6))

This rule prevents the reactive layer from ever knowing about whether obstacle-6

has been perceived. The intuition is that although the reactive layer will in general

be the most appropriate layer for dealing with obstacle avoidance, there are certain

obstacles for which other layers are more appropriate. This rule ensures that the

reactive layer never comes to know about these obstacles.



1.4 Concrete Architectures for Intelligent Agents 65

world interface

cooperation layer

plan layer

behaviour layer

social knowledge

planning knowledge

world model

perceptual input action output

Figure 1.8 interrap|a vertically layered two-pass agent architecture.

InteRRaP

interrap is an example of a vertically layered two-pass agent architecture|see

Figure 1.8.

As Figure 1.8 shows, interrap contains three control layers, as in touringma-

chines. Moreover, the purpose of each interrap layer appears to be rather similar

to the purpose of each corresponding touringmachines layer. Thus the lowest (be-

havior based) layer deals with reactive behavior; the middle (local planning) layer

deals with everyday planning to achieve the agent's goals, and the uppermost (coop-

erative planning) layer deals with social interactions. Each layer has associated with

it a knowledge base, i.e., a representation of the world appropriate for that layer.

These di�erent knowledge bases represent the agent and its environment at di�erent

levels of abstraction. Thus the highest level knowledge base represents the plans and

actions of other agents in the environment; the middle-level knowledge base repre-

sents the plans and actions of the agent itself; and the lowest level knowledge base

represents \raw" information about the environment. The explicit introduction of

these knowledge bases distinguishes touringmachines from interrap.

The way the di�erent layers in interrap conspire to produce behavior is also

quite di�erent from touringmachines. The main di�erence is in the way the layers

interract with the environment. In touringmachines, each layer was directly

coupled to perceptual input and action output. This necessitated the introduction

of a supervisory control framework, to deal with conicts or problems between

layers. In interrap, layers interact with each other to achieve the same end. The

two main types of interaction between layers are bottom-up activation and top-

down execution. Bottom-up activation occurs when a lower layer passes control to

a higher layer because it is not competent to deal with the current situation. Top-

down execution occurs when a higher layer makes use of the facilities provided by



66 Intelligent Agents

a lower layer to achieve one of its goals. The basic ow of control in interrap

begins when perceptual input arrives at the lowest layer in the achitecture. If the

reactive layer can deal with this input, then it will do so; otherwise, bottom-up

activation will occur, and control will be passed to the local planning layer. If

the local planning layer can handle the situation, then it will do so, typically by

making use of top-down execution. Otherwise, it will use bottom-up activation to

pass control to the highest layer. In this way, control in interrap will ow from

the lowest layer to higher layers of the architecture, and then back down again.

The internals of each layer are not important for the purposes of this chapter.

However, it is worth noting that each layer implements two general functions. The

�rst of these is a situation recognition and goal activation function. This function

acts rather like the options function in a BDI architecture (see section 1.4.3).

It maps a knowledge base (one of the three layers) and current goals to a new

set of goals. The second function is responsible for planning and scheduling|it is

responsible for selecting which plans to execute, based on the current plans, goals,

and knowledge base of that layer.

Layered architectures are currently the most popular general class of agent

architecture available. Layering represents a natural decomposition of functionality:

it is easy to see how reactive, pro-active, social behavior can be generated by the

reactive, pro-active, and social layers in an architecture. The main problem with

layered architectures is that while they are arguably a pragmatic solution, they

lack the conceptual and semantic clarity of unlayered approaches. In particular,

while logic-based approaches have a clear logical semantics, it is di�cult to see how

such a semantics could be devised for a layered architecture. Another issue is that

of interactions between layers. If each layer is an independent activity producing

process (as in touringmachines), then it is necessary to consider all possible ways

that the layers can interact with one another. This problem is partly alleviated in

two-pass vertically layered architecture such as interrap.

Sources and Further Reading

The introductory discussion of layered architectures given here draws heavily

upon [47, pp262{264]. The best reference to touringmachines is [16]; more

accessible references include [17, 18]. The de�nitive reference to interrap is [46],

although [20] is also a useful reference. Other examples of layered architectures

include the subsumption architecture [8] (see also section 1.4.2), and the 3T

architecture [4].

1.5 Agent Programming Languages

As agent technology becomes more established, we might expect to see a variety

of software tools become available for the design and construction of agent-based



1.5 Agent Programming Languages 67

systems; the need for software support tools in this area was identi�ed as long ago

as the mid-1980s [23]. In this section, we will discuss two of the better-known agent

programming languages, focussing in particular on Yoav Shoham's agent0 system.

1.5.1 Agent-Oriented Programming

Yoav Shoham has proposed a \new programming paradigm, based on a societal

view of computation" which he calls agent-oriented programming. The key idea

which informs aop is that of directly programming agents in terms of mentalistic

notions (such as belief, desire, and intention) that agent theorists have developed

to represent the properties of agents. The motivation behind the proposal is

that humans use such concepts as an abstraction mechanism for representing the

properties of complex systems. In the same way that we use these mentalistic

notions to describe and explain the behavior of humans, so it might be useful

to use them to program machines.

The �rst implementation of the agent-oriented programming paradigm was the

agent0 programming language. In this language, an agent is speci�ed in terms of a

set of capabilities (things the agent can do), a set of initial beliefs (playing the role

of beliefs in bdi architectures), a set of initial commitments (playing a role similar

to that of intentions in bdi architectures), and a set of commitment rules. The key

component, which determines how the agent acts, is the commitment rule set. Each

commitment rule contains a message condition, a mental condition, and an action.

In order to determine whether such a rule �res, the message condition is matched

against the messages the agent has received; the mental condition is matched against

the beliefs of the agent. If the rule �res, then the agent becomes committed to the

action. Actions may be private, corresponding to an internally executed subroutine,

or communicative, i.e., sending messages. Messages are constrained to be one of

three types: \requests" or \unrequests" to perform or refrain from actions, and

\inform" messages, which pass on information|Shoham indicates that he took his

inspiration for these message types from speech act theory [63, 12]. Request and

unrequest messages typically result in the agent's commitments being modi�ed;

inform messages result in a change to the agent's beliefs.

Here is an example of an agent0 commitment rule:

COMMIT(

( agent, REQUEST, DO(time, action)

), ;;; msg condition

( B,

[now, Friend agent] AND

CAN(self, action) AND

NOT [time, CMT(self, anyaction)]

), ;;; mental condition

self,

DO(time, action) )



68 Intelligent Agents

beliefs

commitments

abilities

EXECUTE

update

beliefs

update

commitments

initialise messages in

internal actions

messages out

Figure 1.9 The ow of control in agent-0.

This rule may be paraphrased as follows:

if I receive a message from agent which requests me to do action at time, and I

believe that:

agent is currently a friend;

I can do the action;

at time, I am not committed to doing any other action,

then commit to doing action at time.

The operation of an agent can be described by the following loop (see Figure 1.9):

1. Read all current messages, updating beliefs|and hence commitments|where

necessary;

2. Execute all commitments for the current cycle where the capability condition

of the associated action is satis�ed;

3. Goto (1).

It should be clear how more complex agent behaviors can be designed and built



1.5 Agent Programming Languages 69

in agent0. However, it is important to note that this language is essentially a

prototype, not intended for building anything like large-scale production systems.

But it does at least give a feel for how such systems might be built.

1.5.2 Concurrent MetateM

The Concurrent MetateM language developed by Fisher is based on the direct

execution of logical formulae [21]. A Concurrent MetateM system contains a

number of concurrently executing agents, each of which is able to communicate with

its peers via asynchronous broadcast message passing. Each agent is programmed

by giving it a temporal logic speci�cation of the behavior that it is intended the

agent should exhibit. An agent's speci�cation is executed directly to generate its

behavior. Execution of the agent program corresponds to iteratively building a

logical model for the temporal agent speci�cation. It is possible to prove that the

procedure used to execute an agent speci�cation is correct, in that if it is possible

to satisfy the speci�cation, then the agent will do so [3].

The logical semantics of ConcurrentMetateM are closely related to the seman-

tics of temporal logic itself. This means that, amongst other things, the speci�cation

and veri�cation of Concurrent MetateM systems is a realistic proposition [22].

An agent program in Concurrent MetateM has the form
V

i
Pi ) Fi, where

Pi is a temporal logic formula referring only to the present or past, and Fi is a

temporal logic formula referring to the present or future. The Pi ) Fi formulae are

known as rules. The basic idea for executing such a program may be summed up

in the following slogan:

on the basis of the past do the future.

Thus each rule is continually matched against an internal, recorded history, and if a

match is found, then the rule �res. If a rule �res, then any variables in the future time

part are instantiated, and the future time part then becomes a commitment that

the agent will subsequently attempt to satisfy. Satisfying a commitment typically

means making some predicate true within the agent. Here is a simple example of a

Concurrent MetateM agent de�nition:

rc(ask)[give] :

ask(x)) give(x)

(:ask(x) Z (give(x) ^ :ask(x))) :give(x)

give(x) ^ give(y)) (x = y)

The agent in this example is a controller for a resource that is in�nitely renewable,

but which may only be possessed by one agent at any given time. The controller

must therefore enforce mutual exclusion over this resource. The �rst line of the

program de�nes the interface to the agent: its name is rc (for resource controller),

and it will accept ask messages and send give messages. The following three lines

constitute the agent program itself. The predicate ask(x) means that agent x has



70 Intelligent Agents

asked for the resource. The predicate give(x) means that the resource controller

has given the resource to agent x. The resource controller is assumed to be the

only agent able to \give" the resource. However, many agents may ask for the

resource simultaneously. The three rules that de�ne this agent's behavior may be

summarized as follows:

Rule 1: if someone has just asked for the resource, then eventually give them the

resource;

Rule 2: don't give unless someone has asked since you last gave; and

Rule 3: if you give to two people, then they must be the same person (i.e., don't

give to more than one person at a time).

ConcurrentMetateM is a good illustration of how a quite pure approach to logic-

based agent programming can work, even with a quite expressive logic.

Sources and Further Reading

The main references to agent0 are [64, 65]. Michael Fisher's ConcurrentMetateM

language is described in [21]; the execution algorithm that underpins it is described

in [3]. Since Shoham's proposal, a number of languages have been proposed which

claim to be agent-oriented. Examples include Becky Thomas's Planning Commu-

nicating Agents (placa) language [67, 68], mail [30], and Anand Rao's agents-

peak(l) language [50]. april is a language that is intended to be used for building

multiagent systems, although it is not \agent-oriented" in the sense that Shoham de-

scribes [44]. The telescript programming language, developed by General Magic,

Inc., was the �rst mobile agent programming language [69]. That is, it explicitly

supports the idea of agents as processes that have the ability to autonomously move

themselves across a computer network and recommence executing at a remote site.

Since telescript was announced, a number of mobile agent extensions to the java

programming language have been developed.

1.6 Conclusions

I hope that after reading this chapter, you understand what agents are and why

they are considered to be an important area of research and development. The

requirement for systems that can operate autonomously is very common. The

requirement for systems capable of exible autonomous action, in the sense that I

have described in this chapter, is similarly common. This leads me to conclude that

intelligent agents have the potential to play a signi�cant role in the future of software

engineering. Intelligent agent research is about the theory, design, construction, and

application of such systems. This chapter has focussed on the design of intelligent

agents. It has presented a high-level, abstract view of intelligent agents, and

described the sort of properties that one would expect such an agent to enjoy. It went



1.7 Exercises 71

on to show how this view of an agent could be re�ned into various di�erent types

of agent architecture|purely logical agents, purely reactive/behavioral agents, bdi

agents, and layered agent architectures.

1.7 Exercises

1. [Level 1] Give other examples of agents (not necessarily intelligent) that you

know of. For each, de�ne as precisely as possible:

(a) the environment that the agent occupies (physical, software, . . . ), the

states that this environment can be in, and whether the environment is:

accessible or inaccessible; deterministic or non-deterministic; episodic or

non-episodic; static or dynamic; discrete or continuous.

(b) the action repertoire available to the agent, and any pre-conditions asso-

ciated with these actions;

(c) the goal, or design objectives of the agent|what it is intended to achieve.

2. [Level 1] Prove that

(a) for every purely reactive agent, these is a behaviorally equivalent standard

agent.

(b) there exist standard agents that have no behaviorally equivalent purely

reactive agent.

3. [Level 1] Prove that state-based agents are equivalent in expressive power to

standard agents, i.e., that for every state-based agent there is a behaviorally

equivalent standard agent and vice versa.

4. [Level 2] The following few questions refer to the vacuum world example

described in section 1.4.1.

Give the full de�nition (using pseudo-code if desired) of the new function,

which de�nes the predicates to add to the agent's database.

5. [Level 2] Complete the vacuum world example, by �lling in the missing rules.

How intuitive do you think the solution is? How elegant is it? How compact is

it?

6. [Level 2] Try using your favourite (imperative) programming language to code

a solution to the basic vacuum world example. How do you think it compares to

the logical solution? What does this tell you about trying to encode essentially

procedural knowledge (i.e., knowledge about what action to perform) as purely

logical rules?

7. [Level 2] If you are familiar with prolog, try encoding the vacuum world

example in this language and running it with randomly placed dirt. Make

use of the assert and retract meta-level predicates provided by prolog

to simplify your system (allowing the program itself to achieve much of the

operation of the next function).



72 Intelligent Agents

8. [Level 2] Develop a solution to the vacuum world example using the behavior-

based approach described in section 1.4.2. How does it compare to the logic-

based example?

9. [Level 2] Try scaling the vacuum world up to a 10�10 grid size. Approximately

how many rules would you need to encode this enlarged example, using the

approach presented above? Try to generalize the rules, encoding a more general

decision making mechanism.

10. [Level 3] Suppose that the vacuum world could also contain obstacles, which

the agent needs to avoid. (Imagine it is equipped with a sensor to detect

such obstacles.) Try to adapt the example to deal with obstacle detection and

avoidance. Again, compare a logic-based solution to one implemented in a

traditional (imperative) programming language.

11. [Level 3] Suppose the agent's sphere of perception in the vacuum world is

enlarged, so that it can see the whole of its world, and see exactly where the dirt

lay. In this case, it would be possible to generate an optimal decision-making

algorithm|one which cleared up the dirt in the smallest time possible. Try and

think of such general algorithms, and try to code them both in �rst-order logic

and a more traditional programming language. Investigate the e�ectiveness of

these algorithms when there is the possibility of noise in the perceptual input

the agent receives, (i.e., there is a non-zero probability that the perceptual

information is wrong), and try to develop decision-making algorithms that are

robust in the presence of such noise. How do such algorithms perform as the

level of perception is reduced?

12. [Level 2] Try developing a solution to the Mars explorer example from sec-

tion 1.4.2 using the logic-based approach. How does it compare to the reactive

solution?

13. [Level 3] In the programming language of your choice, implement the Mars

explorer example using the subsumption architecture. (To do this, you may

�nd it useful to implement a simple subsumption architecture \shell" for

programming di�erent behaviors.) Investigate the performance of the two

approaches described, and see if you can do better.

14. [Level 3] Using the simulator implemented for the preceding question, see what

happens as you increase the number of agents. Eventually, you should see that

overcrowding leads to a sub-optimal solution|agents spend too much time

getting out of each other's way to get any work done. Try to get around this

problem by allowing agents to pass samples to each other, thus implementing

chains. (See the description in [15, p305].)

15. [Level 4] Read about traditional control theory, and compare the problems

and techniques of control theory to what are trying to accomplish in building

intelligent agents. How are the techniques and problems of traditional control

theory similar to those of intelligent agent work, and how do they di�er?

16. [Level 4] One advantage of the logic-based approach to building agents is that


