
Chapter 1

Int ro duct ion

The theme of this book is building and using robot models for control .
The intent is to show that model -based control leads to performance
superior to control not based on carefully -constructed robot models . Thus
the book naturally falls into two parts : identifying a robot model , and
applying the model to control .

Building a robot model involves a mathematical foJ;"mulation of its
components :

parameters .
Controlling a robot involves both position and force variables . The

role of models in position control has been extensively elaborated , but less
so in force control . One contribution of this book is to show that robot

�
�

. motor models for joint torque control ,

. kinematic models of link lengths and of locations of joint axes, and

. inertial models of mass, center of mass, and moment of inertia for
loads and links .

The parameters of these models need to be measured or estimated by
appropriate procedures . The emphasis in this book is on. procedures that
allow the robot to calibrate itself with minimal human involvement . We

fancifully envision the robot waking up in the morning , stretching to cali -
brate its motors , moving around a bit to identify inertial parameters , and
visually observing its end effector in a few positions to identify kinematic
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Kinematic parameters of the manipulator were automatically cali -.

Inertial parameters of a grasped object or load were fully identified
by a dynamic estimation procedure after a small number of arm
movements .

.

brated using a motion tracking system.

models are as important for force control as they are for position control .
In addition , this book addresses the important new area of trajectory
learning , where a robot fine tunes one particular trajectory through rep-
etition . Here again the fidelity of the robot model will determine how
efficiently the robot can learn .

Despite voluminous publications on the theory of robot control , rang-
ing from PD to nonlinear control , there are almost no experimental results
on performance . To be sure, complicated proofs are often given , and oc-
casionally simulations , that supposedly validate an approach . If robot
control is to become a scientific endeavor rather than just the pursuit
of esoteric mathematics , it must incorporate experimentation to form a
critical hypothesize -and-test loop . There simply is no other way to verify
convincingly that particular control algorithms work or make a difference ,
or to guarantee that one is confronting real problems . Experimentation
also stimulates discovery, and in fact our results on kinematic instability
in force control , discussed later , serendipitously evolved from problems
with an actual implementation .

What makes this book relatively unique is its experimental basis: our
ideas have been tested and verified on a real robot . The experimental re-
sults in this book lend strong validity to our particular control ideas. To
a large extent this lack of experimental results is due to the unavailability
of high -performance manipulators that are suitable for experimentation .
Commercial robots are not suitable for such reasons as high gear ra-
tios , substantial joint fri 'Ction, and slow movement . A new generation
of robots based on direct drive technology is appearing that is promis -
ing for research. This book reports on experiments with our MIT Serial
Link Direct Drive Arm (DDArm ), currently one of the few manipulators
available anywhere for testing advanced control strategies (Figure 1.1).
We expect more of such experimentally suitable manipulators to become
available soon.

Specifically , we present a number of advanced implementations in
robot control , which either have not been done at all before or which
provide one of the few demanding tests of a control strategy .
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in a few arm movements .

Figure 1.1: MIT Serial Link Direct Drive Arm .

. Inertial parameters of each link of the manipulator were identified

. Computed torque control and the feedforward controller have been
tested for fast arm motion , where dynamic interactions are signifi -
cant .

. A trajectory learning scheme was implemented that converged in
three repetitions close to the repeatability level of the robot .

. A dynamically stable force controller was implemented that is stable
against stiff environments but that also has a fast response and
steady -state accuracy .

. Resolved acceleration force control , equivalent to the operational
space method , was implemented .

In addition to the experimental results , our work has evolved a number
of theoretical insights :

. We have shown that the rigid body dynamics of a manipulator
can be written as linear equations in terms of the intrinsic inertial
parameters , but also that certain of these parameters can only be
identified in linear combinations or not at all .



For current robots , planning is usually accomplished by a human pro-
grammer , although a goal of this and much other research is to incre-
mentally automate robot programming . Planning can be improved in
several ways: the world models used in planning can be refined , better
methods for solving the given task can be generated , and the planning
methods themselves can be changed. These processes are assumed to be
independent of improving execution of a given plan , and will not be ad-
dressed in what follows . We will take the plan as fixed , and will focus on
execution and making the effector system obey a given plan more closely.

A plan is a complete specification of the motion of the robot in some
coordinate system . Often the plan is expressed in task coordinates, for ex-
ample , the Cartesian coordinates of the hand . In Figure 1.2, the variables
Xd represent the desired position of the hand . The trajectory planner may
also specify the desired hand velocity Xd and acceleration Xd. Whether
the trajectory planner needs to do so depends on the particular controller

4 Chapter 1

.

.

.

1.1 Arm Trajectory Control

. control , i .e., carrying out the plan .

We have shown that trajectory learning schemes that do not use an
accurate dynamic model of the robot converge extremely slowly .

We have shown , along with others , that force control is essentially
high -gain position control , and that the stiffness of the environment
multiplies the force control gain to produce a highly underdamped
system . Many robot force controllers then become dynamically un-
stable in the face of noise and unmodeled dynamics .

We have found a surprising kinematic instability with certain hybrid
position / force control strategies . This kind of instability is a new
and important result , and occurs only because of the geometric
structure of a multi -joint manipulator .

By trajectory control , we intend the most general definition where po-
sition and force are simultaneously controlled . To provide a framework
for arm trajectory control , a prototypical robot control architecture is
outlined in Figure 1.2. The robot control problem consists of two parts :

. planning , where a detailed specification of manipulator position and
force is given for every instance of time , and
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Figure 1.2: A hybrid position/ force feedforward controller.

Planner

configuration . The trajectory plan may also specify the desired force ~ ,

when the manipulator is in contact with the environment . The desired

force may depend on the position variables , such as in stiffness control

or in impedance control . One reason for planning in task coordinates is

the ease of partitioning variables into position controlled Xd versus force

controlled fd variables .

In order to execute this plan , task coordinates are converted to joint

coordinates . To indicate how this is done , it is easiest to first write the

direct kinematics relationship between the position variables and the cor -

responding joint variables :

Xd = f ( (Jd) ( 1 . 1 )

Xd = JOd ( 1 .2 )

Xd = JOd + jOd ( 1 .3 )

The function f is a nonlinear transformation from the joint angles (Jd to

the endpoint positions xd , and depends on the kinematic parameters of

the robot . The fidelity of these kinematic parameters determines how
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and the topic is not further elaborated here. In our case, the MIT Serial
Link Direct Drive Arm only has three degrees of freedom , and inverse
kinematics is a relatively simple proposition .

The desired endpoint force ftl is directly transformed to .joint torques

T d by the fundamental mechanical relationship :

Td = JTfd (1.7)

This relation is one of statics rather than kinematics , but is grouped with
kinematics because the transformation involves just the transpose Jaco-
bian matrix JT . This relation is easy to understand , because the Jacobian

accurately the robot may be positioned , and kinematic calibration is one
of the basic model -building procedures to be discussed. The direct kine -
matic velocities and accelerations express linear relationships , with the

aid of the Jacobian matrix Jij = 8fi / 8Bj . Note the slightly more involved
expression for Xd.

The adjective direct in the expression direct kinematics refers to the
direction of the transformation , namely from the more internal variable as
input (joint variables ) to the more external variable as output (endpoint
variables ) . The inverse kinematics transformation is required to convert
the endpoint trajectory plan to joint variables , by inverting the direct
kinematic relationships (1.1)- (1.3) :

fJd = A (Xd) (1.4)

Od = J - IXd (1.5)
.. 1 . .
fJd = J - (Xd - JfJd) (1.6)

The nonlinear function A = f - l is a one-to -many mapping , and is prob -
lematic . For a six degree-of-freedom manipulator , unless the manipulator
has the proper kinematic structure , A cannot be expressed analytically
(Tsai and Morgan , 1985) . If there are redundancies , then some method
must be chosen to resolve the redundancies (Hollerbach and Suh, 1987) .
In general , we now know that A cannot be a continuous function covering
the whole workspace (Baker and Wampler , 1987) .

The expressions (1.5) and (1.6) would not actually be used to evalu-
ate Od and Od for efficiency reasons, but rather customized computations
would be formed that take advantage of regularities in t ~e robot 's kine-
matic structure (Hollerbach and Sahar , 1983) . There is a large volume
of literature dealing with the feasibility and computational efficiency of
the inverse kinematics transformation , as well as issues of singularities
and redundancies . A whole book could be devoted to inverse kinematics ,
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matrix is made up of the axes of rotation (Whitney, 1972) and the mo-
ment arms about them . In the present case, endpoint forces are reflected
to joint torques through the moment arms contained in the Jacobian , and
endpoint torques directly sum about the joint axes of rotation . In the po-
sitional transformation case, the moment arms produce linear velocities ,
and the axes of rotation produce angular velocities .

After the inverse kinematics and statics transformation , the next step

in making the robot follow a desired trajectory is supplying appropriate
commands to the actuators . The simplest approach is feedback control ,
which generates these commands by measuring the difference between
where the arm is and where it is supposed to be at any instant in time and
using some function (usually a linear function) of this error as the drive
signal to the actuators . In Figure 1.2, feedback control is indicated by a
box that contains feedback gains Kp for position error , Kv for velocity
error, and Kf for force error, to produce an output :

. . T
Tfb = Kp(Od - 0) + Kv (Od - 0) + J Kf (fd - f ) (1.8)

Note that the force error is computed in task coordinates , and after appli -
cation of the gain Kf must be converted to joint torques by the transpose
Jacobian JT .

Feedback control is useful and necessary to compensate for unpre -
dicted disturbances . In particular , when linear feedback control is used
alone, the rigid body dynamics of the manipulator are considered as dis-
turbances . These dynamics will cause substantial trajectory errors for
faster motions , unless gains in the feedback control are made correspond -
ingly higher . Yet there are practical limits to how high gains can be set,
given actuator saturation and stability problems .

To reduce the errors that need to be corrected by feedback, one ap-
proach is feed forward control, which uses a dynamic model il of the robot
to pred~ct actuator commands corresponding to a desired motion. This
model R hopefully represents the actual robot dynamics R fairly accu-
rately , so that the unmodeled dynamics will not cause significant per-
turbations . Besides the kinematic parameters , the inertial parameters of

the links go into the model il , and their accurate estimation is useful in
reducing trajectory errors .

The direct dynamics R refers to the transformation from the robot

input (joint torques) to the robot output (joint motion); in control terms,
R represents the plant dynamics . Again , the adjective direct refers to
the transformation from the more internal torque variables to the more

external joint variables . In Figure 1.2 the calculation of driving torques
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from a model of the robot and a desired trajectory is then referred to as
inverse dynamics R- 1, obtained by inverting the robot plant R . Since the
plant dynamics are not known exactly , only the estimated inverse il - l
may be used to predict the feed forward torques Tff .

In practice , there are always unexpected disturbances or modeling
errors that make feed forward control imperfect , and a feedback controller
is also included to compensate for unpredicted disturbances . Thus the
total output T to the robot is given by :

T = Tfb + Tff + Td (1.9)

Note that the desired torque Td based on the planned endpoint force
fd is also included in this calculation , and can also be thought of as
a feedforward command . This control scheme might be termed a hy-

1.2 Building Robot Models

The first step in any control design is the accurate modeling of the plant
to be controlled . In practice , especially with the availability of automatic
control design tools , this modeling step may occupy greater than 90% of
the control designer 's efforts . Hence, for controlling a direct drive arm ,
accurate modeling of the manipulator is important . The components of

brid position / force feedforward controller , and is only one way to achieve
simultaneous control of position and force . Other alternatives will be
considered in later sections .

All components of control can be improved using experience . One way
of improving the various coordinate transformations involved in robot
control is to refine the kinematic model of the robot using measurements
from redundant sensing such as vision of the robot tip and joint angle
sensing. To improve feedforward control the dynamic model of the robot
could be refined . We could also design a better feedback controller using
the past history of controller actions .

In this book we will discuss how to build and refine a model of robot

dynamics to be used for predicting the appropriate actuator commands
to drive the robot (feedforward control ) . We will discuss how to identify
certain types of loads . In addition we will show the role of the robot
model as the learning operator during movement practice , i .e., the robot
model transforms trajectory following errors into feedforward command
corrections .
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parameters independently of the arm dynamics .
Formulation and estimation of the model of the DDArm , consisting

of motor modeling , kinematic calibration , load inertial parameter estima -
tion , and link inertial parameter estimation , are presented in Chapters
2-5, and are briefly introduced below .

1 .2 .1 Motor Modeling

Motor models generally include not only the structure of the motor and
.amplifier , but also properties of the drive train . Although motor mod -
els can be quite complicated , they are in some sense simpler than rigid
link dynamic models because motor dynamics are typically confined to
a single joint . This reduces motor model identification to a single in-
put / single output modeling problem rather than the more difficult mul-
tiple input / multiple output modeling problem.

Because direct drive arms do not have gears , there are no drive train

dynamics to model . Hence motor modeling is much easier, because one
does not have to contend with friction and backlash . Moreover , the joints

are intrinsically stiff , so no extra dynamics are introduced by flexible gear
trains . Flexibility in gear trains causes a loss of endpoint precision , and is
one of the non-geometric factors that makes kinematic calibration more
complicated (Whitney, Lozinski, and Rourke, 1986). Another factor is
eccentricity in the gears, which introduces a periodic error in position .

The issue then reduces to how torque can be derived from the motor ,

given its structure and drive amplifier . The two basic alternatives for an
electric motor are current measurement or external torque measurement .

Of the two alternatives , current measurement is less accurate , because it

is based on a model of the motor : its winding structure , commutation

scheme, and magnetic pole location for electromagnetic motors . Sources
of error derive from cogging torques and imperfect position measurement .
With careful modeling and design, nevertheless, torque accuracies on the
order of 1% are now possible in new direct-drive motors (see Chapter 10).

External torque measurement is more accurate , provided that one can
design a sensor for the motor axis . The joint structure definitely becomes
more complex , especially if a flexible element is introduced to permit
sufficient strain to be produced for measurement (Asada, I "oucef-Toumi,
and Lim , 1984). Additional flexibility may introduce extra dynamics into
the system , as well as potential loss of endpoint resolution .

In Chapter 2, the structure of the DDArm is discussed, with particular
attention to joint torque control by the motors . Our torque measurement
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scheme is based on current measurement . Additional points of discussion
in that chapter include amplifier nonlinearities , significant inductances ,
and position inaccuracies of our motors .

1.2.2 Kinematic Calibration

No robot is ever manufactured perfectly . There will be slight variations in
kinematic parameters - link lengths that are a little off nominal values
or neighboring joint axes that are not quite parallel . The result can be
tip inaccuracies on the order of several millimeters for common industrial

robots . Kinematic calibration has come to be recognized as a necessary
process for any robot , because machining has limits of precision , assembly
may be imperfect , and striving for even greater precision is costly .

Other aspects of kinematic calibration , not treated here, include lo-
cating the robot with respect to an external reference frame and locating
an object within the grasp of the robot . These processes obviously must
be carried out whenever a robot is moved or a new object is picked up .

To proceed with kinematic calibration , one formulates how the end-

point position varies with the kinematic parameters . In (1.1) , the end-
point position was written only as a function of the joint angles, namely
x = f ((J) . For kinematic calibration , this relation becomes:

x = f (O, a , a, s) (1.10)

where the Denavit -Hartenberg (1955) parameters a , the skew angles be-
tween neighboring joint axes, a , the link lengths , and 5, the joint offsets,
represent the most commonly used kinematic parameters . Taking the
first difference ,

8f 8f 8f 8f~x = 8O~(J + ~~a + &~a + &~s (1.11)
The term 8f / 8 (J is just the ordinary Jacobian matrix J , defined in (1.2) .
The other partial derivatives of f with respect to the remaining three
Denavit -Hartenberg parameters are also different Jacobian matrices .

The difference t:J.x may be interpreted as the error in position of the
endpoint , obtained by subtracting the computed from the measured posi-
tion . The differences t:J.(J, t:J.a , t:J.a , and t:J.s may be viewed as the correc-
tions to the kinematic parameters . These corrections may be solved for by
combining many measurements throughout the workspace and inverting
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(1.11):

~ !!! ~ ~ ]t89 80; 8a 8s
[

(1.12)[~ (J ~ a ~ a ~ s] = ~ x

where the t indicates the generalized inverse of the enclosed matrix , giv -
ing a least squares solution for the parameter corrections . Since kinematic
calibration is a nonlinear estimation problem , one must iterate this pro-
cedure by reevaluating the J acobians at the updated parameter values.

The most difficult aspect of kinematic calibration is obtaining accu-
rate measurements of the endpoint position . Past work in kinematic
calibration has involved calibration fixtures with precision points (Hay-
ati and Roston, 1986), special apparatuses (Stone, Sanderson, and Neu-
man, 1986), or external position measurements with theodolites (Whit -
ney, Lozinski, and Rourke, 1986). Particularly the latter work achieved
extremely good results with theodolites , which are manually operated
surveying instruments , but one drawback is the extensive human involve -
ment in making the theodolite measurements . Special calibration fixtures
also require extensive human involvement , and do not address the issues
of locating a robot or an object in the robot 's grasp .

Our approach sacrifices to some extent the precision obtained with
the above techniques for convenience, so that the robot could in principle
calibrate itself . Recently , three -dimensional motion measuring systems
have become available that locate points with accuracies on the order of
a millimeter and resolutions around a quarter of a millimeter in a volume

typical of robot workspaces. We have used one such system , the Wats -
mart System , which is a commercial opto -electronic apparatus based on
triangulation of LED markers . The Watsmart system allows fast track -
ing of multiple LED markers , and hence the endpoint can be tracked in
real time . Kinematic calibration is a straightforward , convenient appli -
cation of this system , although the accuracies are not comparable to the
specialized techniques mentioned above. In Chapter 3 an iterative proce-
dure based on the linearized kinematic equations is presented , along with
experimental results using the Watsmart System .

1 .2 .3 Load Estimation

Since a load is essentially a part of the last link , the knowledge of the
inertial parameters of manipulator loads is important for accurate con-
trol of manipulators . One alternative is to use object models and precise
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Center of gravity

Origin

f mr-

Iw + uJ x IUJ-

In Newton 's equation , f is the net force on the body , m is its mass, and
f is the acceleration of the center of gravity . In Euler 's equation , n is
the net torque , I is the inertia and "" is the angular velocity . Since the
position of the center of gravity is not generally known , we decompose r
into the position of the wrist p plus the position of the load 's center of
gravity relative to the wrist c (Figure 1.3) . Then

r = f>+ w x c + UJ x (UJ x c) (1.15)

Substituting into (1.13),

f = mp + ~ x me + UJ x (UJ x mc ) (1.16)

Note that the inertial parameters of mass m , mass moment mc , and
inertia I appear linearly in the Newton -Euler equations (1.14) and (1.16) ,
even though the dynamic equations as a whole are nonlinear . The non-
linearity appears in the kinematic terms , however , which are known as
a result of measurement during the motion . By measuring force and

(1.13)
(1.14)

Figure 1.3: Locating the hand plus load center of gravity relative to the
wrist and origin .

knowledge of grasping to predict how the load affects the inertial param -
eters of the last link . A more general alternative would not rely on object
models or exact grasping , but would allow a robot to use sensing and an
appropriate system identification procedure to identify the load itself .

The general procedure for load estimation begins by writing the New-
ton - Euler equations for rigid -body motion :
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where the inertial parameters for all the links have been separated out
from k - l , leaving a function Q of the kinematic parameters only .

Unfortunately , it is not possible to invert ( 1.19) as before to obtain
the link inertial parameters . Aside from the limited sensing at each joint ,
the proximal links do not undergo general motion because of restricted
degrees of freedom . The manifestation of limited sensing and movement
in estimation is twofold .

Introduction 15

Another approach is CAD modeling of the parts , where computerized
geometric information can be combined with specific gravities of materials
to estimate the inertial parameters . Again , this approach requires inten -
sive human involvement , and is also subject to modeling errors . The
approach we present again emphasizes the robot calibrating itself , and
will be shown to compare favorably to the other alternatives .

Link inertial parameter estimation is similar to load estimation , in
that each link can be viewed as a load to the proximal joints . The inertial
parameters again appear . linearly in the dynamic equations , even though
the multi -link rigid body dynamics are nonlinear . A major difference
from load estimation is that there is not a six-axis force/ torque sensor at
each joint , and only the component of torque about the joint axis can be
measured . The inverse dynamics equation can be written as:

A-I ' ..T= R (0,0,0) (1.18)

, this can be rewritten

(1.19)

Since the inertial parameters appear linearly in R - 1
as:

T = Q(fJ, 9, O)[m mc IJ

1 . Not all parameters can be identified , since they do not influence the
joint torques . For example , consider link 1 attached to the robot

base by joint 1. Only the link 1 inertia about the first joint is
reflected in the joint 1 torque for an arm on a stationary base; all
other link 1 inertial parameters cannot be identified .

2. Other inertial parameters can only be determined in linear combi -
nations .

In Chapter 5, we discuss various ways of solving this rank -deficient least
squares problem , and present experimental results for our DDArm . One
practical aspect is that the parameters that cannot be estimated are

unimportant for control , because they do not affect the torques necessary
to drive the robot .
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(A) (8)

Figure 1.4: Independent -joint PD control with (B ) and without (A ) ve-
locity reference.

Position Control1.3

An example of a model - based position / force controller was presented in

the beginning of this chapter . This section goes into greater detail about

position control , examining the alternatives of how a robot model can be

incorporated to improve position control . In a later section we discuss

how force control is also improved by using a robot model . We will discuss

three basic types of position controllers proposed for robotics :

. independent - joint proportional - derivative ( PD ) control ,

. feedforward control ( Liegeois , Fournier , and Aldon , 1980 ) , and

. computed torque control ( Paul , 1972 ) .

Independent - joint PD control ( Paul , 1981 ) is by far the most popular

feedback controller for robots . As mentioned earlier , independent - joint

PD feedback control is distinguished from feedforward control in that the

latter uses a model of the robot . Two particular kinds of feedforward

control are the feedforward controller and the computed torque controller ,

which differ in how the dynamic model is used in conjunction with a

feedback loop . Unfortunately , there is a potential confusion in the term

feedforward controller , which has come to mean in robotics a particular

kind of feedforward control . We emphasize again that while much has

been written about these and other kinds of robot control , there are too

few experimental evaluations of them .

1 . 3 . 1 Independent - Joint PD Control

Feedback control can be defined as any control action based on the ac -

tual state history of the controlled system . We will restrict the focus to
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independent -joint PD control . The basic structure of this controller is
shown in Figure 1.4A . A reference position (Jd is compared to an actual
position (J, and the difference is multiplied by a position gain Kp to pro-
duce an output to the actuator or plant . To provide stability , a damping
term is added to the output based on the actual velocity 0 multiplied by
a velocity gain Kv :

T = Kp((Jd - (J) - KvO (1.20)
The output torque 1" is applied to the robot , represented by the direct
dynamics transformation R, which undergoes a motion {}(t ) . Note that
feedback control does. not include a model of the robot , and is purely error
driven . This controller is duplicated for each joint () of the robot , and
the control action at each joint is totally independent of control actions
at other joints . Hence the name independent -joint PD control is derived .

One feature of this form of PD control is that there is heavy damping
during the fastest parts of movement , where it is not particularly needed.
To remedy this situation , P D control with velocity reference is often pro-

posed (Figure 1.4B),.which now requires the trajectory planner to specify
the desired velocity (}d as well as the desired position . Now the damping
during the fast parts of movement is reduced to Kv(Od - 0).

T = Kp(Od - 0) - Kv(Od - 0) (1.21)

Much effort has gone into robot feedback controller design, but there
are limits on feedback control . Many proofs of stability for various robot
feedback controllers amount to infinite actuator arguments , since it is

presumed that actuators do not limit the ability to increase gains to the
point where disturbances can be overcome and errors reduced to a desired
level . In reality , actuator saturation prevents this easy solution . More -
over, gains cannot be increased to high levels to reduce errors , because of
potential instabilities that may arise from modeling error , parameter vari -

0

ations, and measurement or command noise (Astrom and Wittenmark ,
1984). In general , non-minimum phase elements such as delays and right
half plane zeros set limits on maximum feedback gains.

Control of terminal compliance or , more generally , impedance has
been proposed as a goal for robotic control . Force control may require
limiting feedback gains , if the desired compliance is implemented as a
low gain position servo. For non-redundant robots with no terminal
force/ torque sensing, choosing an impedance specifies the feedback con-
troller completely . The use of force sensors at the interface between the
robot and its load or environment may allow differential rejection of mod-
eling errors and external forces, but has not yet been shown to work well .
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1.3.2

The feedforward controller (Figure 1.5) predicts the output to the actua -
tors from a dynamic model k - l of the robot , based on desired position ,
velocity , and acceleration . It represents just the position control part of
Figure 1.2. Once again , to alleviate a potential source of confusion , it
should be repeated that the feedforward controller is a particular kind of
the more generic feedforward control .

The trajectory plann ~! must specify not only the desired velocity , but
the desired acceleration Od as well . This should be no problem , because
the position commands , being internal to the controller , are assumed to
have negligible noise and derivative operators can accurately be applied
to the command . In parallel with the feedforward computation , there is
an independent -joint PD controller with velocity reference. The sum of
the feedforward output and the feedback controller output then drives
the robot :

A - 1 . .. . .
'T = R ((Jd, (Jd, (Jd) + Kp((Jd - (J) + Kv( (Jd - (J) (1.22)

Presumably the feedforward computation has compensated for the dy-
namics of the robot fairly well , and only small perturbations or unmod -
eled dynamics remain for the feedback controller to compensate . Hence
the gains of the PD controller can be kept low to avoid stability problems .

One issue is the fidelity of the dynamic model R of the robot . If the
model is not very good , then the feed forward computation can degrade
system performance . Our experiments in identification and control with
the direct drive arm , however , indicate that this is not a problem .

That the dynamics computation R- 1 ((Jd, Od, Od) in the feedforward
controller is done on the basis of the planned trajectory , and hence can

Figure 1.5: Feedforward controller.

Feedforward Controller

ed

. . e

~ .e

9d
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-

ed + Kp

~ ~e

9d

Figure 1.6: Computed torque control.

be done off-line , is an advantage over the computed torque controller dis-
cussed next . This may have been an important issue in the past , but
it is much less of one today due to increases in computational power of
real-time control systems (Narasimhan et al ., 1986), and in the efficiency
of dynamics computation (Hollerbach and Sahar, 1983) . A disadvantage
of the feedforward controller is that the PD portion of the controller acts
independently of the dynamics and produces perturbations at neighbor -
ing joints . That is to say, a corrective torque at one joint perturbs the
other joints , whereas ideally the corrective torques would decouple joint
interactions . It is to this latter problem that computed torque control is
addressed.

1.3.3 Computed Torque Control

Computed torque control is a form of control called non -linearity can-
cellation , because if the dynamic model is exact (R = R ) , the nonlinear

In computed torque control , the feedback controller sends its output through

the dynamic model ( Figure 1 . 6 ) . The feedback control law comprises an

independent - joint PD controller with velocity reference , plus the desired

acceleration . This yields a corrected acceleration which is then input to

the inverse dynamics model :

. . * . . . .

0 = Od + Kp ( Od - 0 ) + Kv ( Od - 0 ) ( 1 . 23 )

~ - 1 . . ' *

T = R ( 0 , 0 , 0 ) ( 1 . 24 )

Note that 0 * , derived from the feedback law , is the nominal rather than
A . . ' *

the actual acceleration . The feedforward computation R - 1 ( O , 0 , 0 ) is

done on the basis of the actual trajectory , so that the dynamics compu -

tation must be on - line .
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dynamic perturbations are exactly canceled (k - l (R (T)) = I (T), where
I (T) = T is the identity transformation ) . What is left is a decoupled
linear system that can be controlled according to standard techniques .
In principle , computed torque control should be more accurate than the
feedforward controller , because the action of the feedback controller is
decoupled through the dynamics .

As will be seen in Chapter 6, surprisingly the experimental results do
not bear out this expectation . Computed torque control and the feed-
forward controller were about equally accurate in following a trajectory .
These results cast into doubt the utility of the ever more sophisticated ,
or at least complicated , nonlinear feedforward controllers that are being
proposed . Once again the importance of experimental testing should be
emphasized .

1 . 4 Trajectory Learning

The implementation of the model building procedures on the DDArm
reveals that good models can be identified quickly and are useful for
control . Nevertheless , the models used to represent the arm and load
dynamics have limited degrees of freedom , and cannot represent the full
complexity of the true dynamics . The models do not represent well de-
viations from the assumed model structure , which are always present to
some degree. Thus , on any particular trajectory execution , a rigid body
dynamics model will have small errors . Changing the model parameters
to fit this trajectory more exactly will degrade performance on other tra -
jectories . What is required is an additional level of modeling that allows
representation of fine details of the dynamics .

A solution to this problem , trajectory learning , has recently become an
important topic in robotics , and arises from the recognition that robots
often repeat the same motion over and over again . Hence the possibility
arises to tune the output for this single trajectory through repetition to
reduce the errors to a very low level . The key issues here are the stability
and convergence rate of the iterative process, and how to design the
learning operator . One drawback of this approach is that it only produces
the appropriate command for a single trajectory . There is little guidance
at present as to how to modify that command for similar trajectories .

In trajectory learning , torques are initially generated based on some
form of feedforward or feedback controller . The torque profiles are re-
membered , and refined on a point -by-point basis after each iteration of
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Figure 1.7: Trajectory learning scheme.

the trajectory . The errors during the trajectory are also remembered ,
and are converted off-line into corrective torques to the torque profiles .
One such learning scheme is presented in Figure 1.7, and is similar to one
presented in (Arimoto et al., 1984a-c, 1985):

T = Kp(()d - ()) + Kv(Od - 0) + f (1.25)
~+1 = ~ + Ka(Od - 0) (1.26)

In (1.25) there is a PD position controller with velocity reference, and
in addition there is a feed forward torque ~ (t ) derived from a learning
operator after the ith repetition of a movement . At the initial repetition
the feedforward torque fJ(t ) = 0, so that the controller is a pure PD
position controller the first time . In Figure 1.7, this phase is labeled
Execution . After the ith repetition , the acceleration error is multiplied
by a gain term, and added to the current feedforward torques ~ in (1.26)
to yield the feedforward torques ~+1 for the next movement repetition .
This phase is labeled Learning in the figure .

This scheme has been shown to converge eventually to a torque profile
" N that drives the manipulator along a trajectory with small errors . One
aspect of this scheme is that a dynamic model k of the manipulator is
not used. This can be viewed as an advantage in those cases in which a
model is not easily obtained . A disadvantage is that the convergence can
be very slow .
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The relation (1.26) derives a corrective torque by constant scaling of
acceleration , but we know from the inverse dynamics R- 1 that torque
and acceleration are not this simply related :

T = R- 1(O, 0, 0) = H (O)O + O. C(O) . 0 + g(O) (1.27)
. .

where H is the inertia matrix , (J . C . (J represents the centripetal and
Coriolis torques , and g represents the gravity torques . This suggests
that a better learning scheme would take the manipulator dynamics into
account , because one must use an accurate model of the controlled system

to make sense of trajectory errors , i .e., convert the errors into corrections
to feedforward commands .

Without an accurate model , attempts to improve trajectory perfor -
mance can actually degrade performance . We have mathematically ana-
lyzed the effect of various proposed trajectory learning algorithms such
as in Figure 1.7, and can explain why one learning operator works better
than another . The most important result is that the convergence rates

of the algorithms are determined by the quality of the learning operators
used. We can put mathematical bounds on acceptable modeling error for
the linear case .

The model used in the trajectory learning work of Chapter 7 is the
identified arm model presented in Chapter 5. Thus , starting with only
knowledge of system structure , we have demonstrated a system that can
build a general model of itself after only three or four movements , and
then can learn to execute any particular trajectory to almost the limits of
the system repeatability in an additional three or four movements . This
work demonstrates the role of knowledge in analyzing past behavior and
correcting previous mistakes , and should be compared to other trajectory
learning schemes, to table -based schemes to learn arm dynamics , and to
much of traditional adaptive control .

1 . 5 Force Control

Force control is the most general form of trajectory control , because the
manipulator is allowed to contact the environment as it executes a tra -
jectory . Instead of just position variables to plan and control , there are
now additionally force variables to plan and control . When we use the
term force control , we mean the simultaneous control of both force and
position .



Force control is much less well understood than position control , and
there have been correspondingly fewer real implementations . As men-
tioned before , conventional robots are not well suited for implementing
force control algorithms since they are essentially positioning devices.
Therefore , previous implementations seldom produced satisfactory re-
sults (Caine , 1985) , and researchers in the past have experienced sig-
nificant instability problems associated with force controllers (Whitney ,
1987) . Another goal of this book is to understand some of the stability
and performance problems associated with force control , and suggest and
demonstrate some remedies to those problems using the DDArm .

In this section , two different aspects of stability in force control are
discussed. The first aspect we call dynamic instability , which arises when
manipulators are in contact with stiff environments . This instability
arises whether the robot has single or multiple joints , and is the source of
instability in force control most commonly described . The second aspect
we call kinematic instability , and arises in some Cartesian -based force
control schemes only for certain multiple -joint manipulators . We also
introduce various types of force controllers , beginning with single-joint
controllers and then moving to multiple -joint controllers .
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Figure 1.8: (A ) A simple model of the robot in contact with the environ -
ment . (B) A simple proportional force controller .

1 . 5 .1 Dynamic Instability in Force Control

Many robot force controllers go unstable during hard contact , such as
against metal . The robot chatters uncontrollably , bouncing back and
forth against the surface . To illustrate the problem , Figure I .8A shows
a simple model of the robot and its environment . The robot is modeled
as a pure mass m , and the environment is modeled as a pure stiffness
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  KE . We presume there is a stiff and massless force sensor between the
robot and environment that measures the contact force f = KEx , where

x is the displacement . The force controller in Figure 1.8B is a simple
proportional controller , multiplying the force error fd - f by a gain K f ,
where fd is the desired force. Hence the applied force f from the force
control law is :

f = Kf (fd - KEx ) (1.28)

The pertinent feature of this equation is that force control is essentially
high-gain position co.ntrol . The stiffness of the environment multiplies the
force control gain , yielding a large effective position gain of K f KE . Sys-
tems with such large feedback gains in general exhibit unstable behavior .
Sources of instability include unmodeled dynamics , such as flexibility in
the manipulator joints or link . Since flexibility is present in all manipula -
tors , the chattering behavior mentioned earlier is manifested in virtually
all force controllers .

There are a number of ways in which this dynamic instability can be
overcome . One way is to dominate the stiffness of the environment with

a soft skin or covering or with a soft spring attaching the force sensor
to the robot . Disadvantages with this approach include loss of position
resolution and a reduction in the speed of response. The damping in the
controller can also be elevated to match the high position gain , but again

the response speed would be slowed.
In Chapter 8 we propose a two -part force controller that is dynam -

ically stable but that is still fast and accurate . The fast part of the
controller is based on open-loop joint torque control . The stiffness of the
environment does not enter into this feedback loop because the external

force sensor is not being employed there , and hence the response is al-
ways stable . A slower force control loop based on an external force sensor
is also used to maintain steady-state accuracy, but the force sensing is
low-pass filtered to prevent the environmental stiffness from destabilizing
the system . Experimental results are presented with the DDArm .

1 .5 .2 Cartesian - Based Position Control

As a way of introducing the Cartesian -based force controllers of the next
section , it will be helpful to discuss Cartesian -based position controllers at
this point . The position controllers discussed earlier (independent-joint
PD control , the feedforward controller , and computed torque control )
are based on joint coordinates . If the trajectory is initially specified in
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terms of Cartesian coordinates of the endpoint , then inverse kinematic

transformations are required to convert to joint angles .

It is also possible to specify the control law in terms of Cartesian

coordinates rather than in terms of joint coordinates . The reason that

Cartesian - based pos .ition control has been proposed is that the control law

is often best cast into the task variables according to which the trajectory

is planned . This is particularly true of force control , where variables are

partitioned into those that can be controlled for position versus those

that are controlled for force . For example , a Cartesian - based P D position

controller could be defined by :

f = Kp ( Xd - x ) + Kv ( Xd - x ) ( 1 . 29 )

where f is the endpoint force that the manipulator generates in response

to a perturbation . That is to say , the endpoint of the manipulator acts

like a spring plus damper .

To evaluate this control law , joint positions and velocities must be

converted to endpoint positions and velocities . The endpoint force can

be converted into joint torques in several ways . One way is to directly

convert to joint torques by the relation T = JTf ( Figure 1 . 9 ) :

T = JT ( Kp ( Xd - x ) + Kv ( Xd - x ) ) ( 1 . 30 )

  This equation is closely related to Salisbury ' s stiffness controller , dis -

cussed in Chapter 9 .

Another way ( Figure 1 . 9B ) is to note that 6x = Xd - x is usually small

and can be approximated by th ~ incremental relation 6x = .J6 ( } , . whe ~ e

6 ( } = ( } d - ( ) . Similarly , 6x = J6 ( ) , where 6x = Xd - x and 6 ( } = ( } d - ( ) .

Inverting the Jacobian yields 6 ( ) = J - 16x and 60 = J - 16x . The gains Kp

and Kv are now interpreted as joint position and velocity gains , so that

T = KpJ - 1 ( Xd - x ) + KvJ - l ( Xd - x ) ( 1 . 31 )

This equation is closely related to the hybrid position / force controller of

Raibert and Craig , discussed in the next section . .

These different implementations of a Cartesian - based PD position

controller are pure feedback controllers and do not incorporate a dynamic

model of the robot . One could define Cartesian - based position controllers

analogous to both the feedforward controller and computed torque con -

trol . The position control part of Figure 1 . 2 would be a hypothetical

implementation of a Cartesian - based feedforward controller . In actual
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(A)

( B )

Figure 1 . 9 : ( A ) Cartesian position control based on the transpose Jaco -

bian matrix . ( B ) Cartesian position control based on the inverse Jacobian

matrix .

implementations and the literature , only the Cartesian - based computed

torque controller has been proposed , and is called resolved acceleration

position control ( Luh , Walker , and Paul , 1980b ) .

Resolved acceleration position control is quite similar to computed

torque control , except that the desired trajectory and the feedback law

are expressed in terms of task coordinates x ( Figure 1 . 10 ) :

X * = Xd + Kp ( Xd - x ) + Kv ( Xd - x ) ( 1 . 32 )

Direct kinematic transformations are required to compute the actual end -

point positions and velocities from the joint positions and velocities , and

an inverse kinematic transformation is required to convert the nominal
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Resolved acceleration position control .

endpoint acceleration to a nominal joint acceleration . The nominal joint

acceleration is then substituted into the inverse dynamics to yield the

joint torques , according to :

0 * = j - 1 ( X * - jO ) ( 1 . 33 )

A - I ' .. *
T = R ( fJ , fJ , fJ ) ( 1 . 34 )

Resolved acceleration position control is the basis for several Cartes -

ian - based force control schemes discussed next . We have experimentally

compared resolved acceleration position control to Cartesian - based PD

position control , and found that the former did indeed track the trajectory

more accurately .

1 . 5 . 3 Cartesian - Based Force Control

When the tip of the manipulator contacts the environment , it will be able

to generate positions in certain directions and forces in other directions .

Thus the geometry of the environment provides the best coordinate sys -

tem to partition variables into position - controlled versus force - controlled

and to plan the movement ( Mason , 1981 ) .

Just as in position control , there are issues of feedback versus feedfor -

ward control , and of the role of a model in accurate trajectory tracking .

In addition , it turns out there is an issue of instability as well ; that is to

say , not using a dynamic model can make force control unstable as well

as inaccurate . Figures 1 . 11 and 1 . 12 illustrate two alternatives of using

or not using a model in force control .
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Figure 1.11: Hybrid position/ force control.

The controller in Figure 1.11 is known as hybrid position / force con-
trol (Raibert and Craig , 1981), and does not use a model of the robot .
It differs from the Cartesian -based PD position controller based on the
inverse Jacobian matrix (Figure 1.9B) only by the inclusion of a force
control loop .

T = KpJ- 1S(Xd - x) + KvJ- lS(Xd - x) + KfJT (I - S)(fd - f ) (1.35)

The force error fd - f is transformed to joint coordinates by the Jacobian
matrix JT and then multiplied by the force gain Kf . The force and
position feedbacks are summed to provide torques to the robot 's joints .

The external variables are presumed to have been partitioned into
position -controlled x versus force-controlled f , and desired trajectories
xd and fd have been specified for each. In the figure , this partitioning
is indicated by projection matrices Sand 1 - S, where S selects the
variables to be position -controlled (by diagonal elements of 0 and 1) , and
1- S selects the complementary force variables (I is the identity matrix ).

Resolved acceleration force control (Shin and Lee, 1985) is a simple ex-
tension to resolved acceleration position control (Figure 1.10), by adding
a force loop (Figure 1.12):

T = il - l (O, 0, 0*) + JT(I - S)K , (fd - f ) (1.36)

A force error fd - f is multiplied first by a force gain Kf and then by a
selection matrix 1- S to ensure the correct partitioning between position
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variables and force variables . The transformation to joint torques is then
accomplished with the transpose Jacobian matrix JT ; note the different
order of transformations in force for hybrid position / force control (Figure
1.11) . Finally , the outputs from the position and force controllers are
summed to produce the joint torques .

Thus the dynamic model is applied to the position control loop , en-
tirely analogous to computed torque control or resolved acceleration po-
sition control , and the force control loop adds in separately . Because the
transpose Jacobian matrix JT directly maps endpoint forces and torques
into joint torques , there is no need to map the force control loop through
the dynamic model . Resolved acceleration force control is virtually iden-
tical to other Cartesian -based force controllers , such as impedance control
(Hogan , 1985a-c) and the operational space method (Khatib , 1987) , with
an advantage perhaps that it is more transparent .

Although hybrid position / force control (Figure 1.11) is quite well
known , Chapter 9 presents the surprising result that this control is fun -
damentally unstable for revolute manipulators . This is a new form of
instability that has not been recognized before , and which we call kine-
matic instability . This instability evidently arises from the interaction of
the inverse Jacobian matrix J - l with the selection matrix S and the iner -

tia matrix H . Kinematic instability depends on the geometric structure
of the manipulator , since polar manipulators do not exhibit this form of
instability . The original implementation of Raibert and Craig (1981) was
on the Stanford manipulator , which is a polar manipulator , and hence
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Figure 1.12: Resolved acceleration force control .
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they did not observe any stability problems .
Resolved acceleration force control solves the problem , and is always

stable , as long as the dynamic model is reasonably accurate . Note that if
the inverse dynamics transformation is modeled as the identity matrix in
Figure 1.12, then resolved acceleration force control essentially reduces to
hybrid position / force control (Figure 1.11) . This poignantly illustrates
the importance of a dynamic model in force control as well as in position
control , since a substantial modeling error (the identity matrix ) makes
the controller unstable .

Chapter 9 also presents experiments on resolved acceleration force
control with the direct drive arm . The estimated dynamic model from
Chapter 5 is used, as well as the two -part dynamically stable force control
loop from Chapter 8. The results indicate fast , stable , and accurate force
control .


