
1 Learning, Regularity, and
Compression

Overview The task of inductive inference is to find laws or regularities un-
derlying some given set of data. These laws are then used to gain insight
into the data or to classify or predict future data. The minimum description
length (MDL) principle is a general method for inductive inference, based on
the idea that the more we are able to compress (describe in a compact manner)
a set of data, the more regularities we have found in it and therefore, the more
we have learned from the data. In this chapter we give a first, preliminary and
informal introduction to this principle.

Contents In Sections 1.1 and 1.2 we discuss some of the fundamental ideas
relating description length and regularity. In Section 1.3 we describe what
was historically the first attempt to formalize these ideas. In Section 1.4 we
explain the problems with using the original formalization in practice, and
indicate what must be done to make the ideas practicable. Section 1.5 in-
troduces the practical forms of MDL we deal with in this book, as well as
the crucial concept of “universal coding.” Section 1.6 deals with some issues
concerning model selection, which is one of the main MDL applications. The
philosophy underlying MDL is discussed in Section 1.7. Section 1.8 shows
how the ideas behind MDL are related to “Occam’s razor.” We end in Sec-
tion 1.9 with a brief historical overview of the field and its literature.

Fast Track This chapter discusses, in an informal manner, several of the
complicated issues we will deal with in this book. It is therefore essential for
readers without prior exposure to MDL. Readers who are familiar with the
basic ideas behind MDL may just want to look at the boxes.
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1.1 Regularity and Learning

We are interested in developing a method for learning the laws and regulari-
ties in data. The following example will illustrate what we mean by this and
give a first idea of how it can be related to descriptions of data.

Example 1.1 We start by considering binary data. Consider the following
three sequences. We assume that each sequence is 10000 bits long, and we
just list the beginning and the end of each sequence.

00010001000100010001 . . . 0001000100010001000100010001 (1.1)

01110100110100100110 . . . 1010111010111011000101100010 (1.2)

00011000001010100000 . . . 0010001000010000001000110000 (1.3)

The first of these three sequences is a 2500-fold repetition of 0001. Intu-
itively, the sequence looks regular; there seems to be a simple “law” under-
lying it; it might make sense to conjecture that future data will also be subject
to this law, and to predict that future data will behave according to this law.
The second sequence has been generated by tosses of a fair coin. It is, in-
tuitively speaking, as “random as possible,” and in this sense there is no
regularity underlying it.1 Indeed, we cannot seem to find such a regularity
either when we look at the data. The third sequence contains exactly four
times as many 0s as 1s. It looks less regular, more random than the first; but
it looks less random than the second. There is still some discernible regu-
larity in these data, but of a statistical rather than of a deterministic kind.
Again, noticing that such a regularity is there and predicting that future data
will behave according to the same regularity seems sensible.

1.2 Regularity and Compression

What do we mean by a “regularity”? The fundamental idea behind the MDL
principle is the following insight: every regularity in the data can be used
to compress the data, i.e. to describe it using fewer symbols than the number
of symbols needed to describe the data literally. Such a description should
always uniquely specify the data it describes - hence given a description or

1. Unless we call “generated by a fair coin toss” a “regularity” too. There is nothing wrong with
that view - the point is that, the more we can compress a sequence, the more regularity we have
found. One can avoid all terminological confusion about the concept of “regularity” by making
it relative to something called a “base measure,” but that is beyond the scope of this book (Li and
Vitányi 1997).
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encoding D′ of a particular sequence of data D, we should always be able to
fully reconstruct D using D′.

For example, sequence (1.1) above can be described using only a few words;
we have actually done so already: we have not given the complete sequence
— which would have taken about the whole page — but rather just a one-
sentence description of it that nevertheless allows you to reproduce the com-
plete sequence if necessary. Of course, the description was done using natu-
ral language and we may want to do it in some more formal manner.

If we want to identify regularity with compressibility, then it should also
be the case that nonregular sequences can not be compressed. Since se-
quence (1.2) has been generated by fair coin tosses, it should not be compress-
ible. As we will show below, we can indeed prove that whatever description
method C one uses, the length of the description of a sequence like (1.2) will,
with overwhelming probability, be not much shorter than sequence (1.2) it-
self.

Note that the description of sequence (1.3) that we gave above does not
uniquely define sequence (1.3). Therefore, it does not count as a “real” de-
scription: one cannot regenerate the whole sequence if one has the descrip-
tion. A unique description that still takes only a few words may look like
this: “Sequence (1.3) is one of those sequences of 10000 bits in which there
are four times as many 0s as there are 1s. In the lexicographical ordering of
those sequences, it is number i.” Here i is some large number that is explic-
itly spelled out in the description. In general, there are 2n binary sequences
of length n, while there are only

(
n
νn

)
sequences of length n with a fraction

of ν 1s. For every rational number ν except ν = 1/2, the ratio of
(
n
νn

)
to 2n

goes to 0 exponentially fast as n increases (this is shown formally in Chap-
ter 4; see Equation (4.36) on page 129 and the text thereunder; by the method
used there one can also show that for ν = 1/2, it goes to 0 as O(1/

√
n)).

It follows that compared to the total number of binary sequences of length
10000, the number of sequences of length 10000 with four times as many 0s
as 1s is vanishingly small. Direct computation shows it is smaller than 27213,
so that the ratio between the number of sequences with four times as many
0s than 1s and the total number of sequences is smaller than 2−2787. Thus,
i < 27213 � 210000 and to write down i in binary we need approximately
(log2 i) < 7213 � 10000 bits.

Example 1.2 [Compressing Various Regular Sequences] The regularities un-
derlying sequences (1) and (3) were of a very particular kind. To illustrate
that any type of regularity in a sequence may be exploited to compress that
sequence, we give a few more examples:
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The Number π Evidently, there exists a computer program for generating the
first n digits of π – such a program could be based, for example, on an
infinite series expansion of π. This computer program has constant size, ex-
cept for the specification of nwhich takes no more than O(log n) bits. Thus,
when n is very large, the size of the program generating the first n digits of
π will be very small compared to n: the π-digit sequence is deterministic,
and therefore extremely regular.

Physics Data Consider a two-column table where the first column contains
numbers representing various heights from which an object was dropped.
The second column contains the corresponding times it took for the object
to reach the ground. Assume both heights and times are recorded to some
finite precision. In Section 1.5 we illustrate that such a table can be substan-
tially compressed by first describing the coefficients of the second-degree
polynomial H that expresses Newton’s law; then describing the heights;
and then describing the deviation of the time points from the numbers pre-
dicted by H .

Natural Language Most sequences of words are not valid sentences accord-
ing to the English language. This fact can be exploited to substantially
compress English text, as long as it is syntactically mostly correct: by first
describing a grammar for English, and then describing an English text D
with the help of that grammar (Grünwald 1996), D can be described using
much less bits than are needed without the assumption that word order is
constrained.

Description Methods In order to formalize our idea, we have to replace
the part of the descriptions above that made use of natural language by some
formal language. For this, we need to fix a description method that maps se-
quences of data to their descriptions. Each such sequence will be encoded as
another sequence of symbols coming from some finite or countably infinite
coding alphabet. An alphabet is simply a countable set of distinct symbols.
An example of an alphabet is the binary alphabet B = {0, 1}; the three data
sequences above are sequences over the binary alphabet. A sequence over a
binary alphabet will also be called a binary string. Sometimes our data will
consist of real numbers rather than binary strings. In practice, however, such
numbers are always truncated to some finite precision. We can then again
model them as symbols coming from a finite data alphabet.

More precisely, we are given a sample or equivalently data sequence D =
(x1, . . . , xn) where each xi is a member of some set X , called the space of
observations or the sample space for one observation. The set of all potential
samples of length n is denoted Xn and is called the sample space. We call
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xi a single observation or, equivalently, a data item. For a general note about
how our terminology relates to the usual terminology in statistics, machine
learning and pattern recognition, we refer to the box on page 72.

Without any loss of generality we may describe our data sequences as bi-
nary strings (this is explained in Chapter 3, Section 3.2.2). Hence all the de-
scription methods we consider map data sequences to sequences of bits. All
description methods considered in MDL satisfy the unique decodability prop-
erty: given a descriptionD′, there is at most one (“unique”)D that is encoded
asD′. Therefore, given any description D′, one should be able to fully recon-
struct the original sequence D. Semiformally:

Description Methods

Definition 1.1 A description method is a one-many relation from the sample
space to the set of binary strings of arbitrary length.

A truly formal definition will be given in Chapter 3, Section 3.1. There we
also explain how our notion of “description method” relates to the more
common and closely related notion of a “code.” Until then, the distinction
between codes an description methods is not that important, and we use the
symbol C to denote both concepts.

Compression and Small Subsets We are now in a position to show that
strings which are “intuitively” random cannot be substantially compressed.
We equate intuitively random with “having been generated by independent
tosses of a fair coin.” We therefore have to prove that it is virtually impossi-
ble to substantially compress sequences that have been generated by fair coin
tosses. By “it is virtually impossible” we mean “it happens with vanishing
probability.” Let us take some arbitrary but fixed description method C over
the data alphabet consisting of the set of all binary sequences of length ≥ 1.
Such a code maps binary strings to binary strings. Suppose we are given a
data sequence of length n (in Example 1.1, n = 10000). Clearly, there are 2n

possible data sequences of length n. We see that only two of these can be
mapped to a description of length 1 (since there are only two binary strings
of length 1: 0 and 1). Similarly, only a subset of at most 2m sequences can
have a description of length m. This means that at most

∑m
i=1 2i < 2m+1

data sequences can have a description length ≤ m. The fraction of data se-
quences of length n that can be compressed by more than k bits is therefore at
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most 2−k and as such decreases exponentially in k. If data are generated by
n tosses of a fair coin, then all 2n possibilities for the data are equally prob-
able, so the probability that we can compress the data by more than k bits
is smaller than 2−k. For example, the probability that we can compress the
data by more than 20 bits is smaller than one in a million.

Most Data Sets Are Incompressible
Suppose our goal is to encode a binary sequence of length n. Then

• No matter what description method we use, only a fraction of at most
2−k sequences can be compressed by more than k bits.

• Thus, if data are generated by fair coin tosses, then no matter what
code we use, the probability that we can compress a sequence by more
than k bits is at most 2−k.

• This observation will be generalized to data generated by an arbitrary
distribution in Chapter 3. We then call it the no-hypercompression in-
equality. It can be found in the box on page 103.

Seen in this light, having a short description length for the data is equiv-
alent to identifying the data as belonging to a tiny, very special subset out
of all a priori possible data sequences; see also the box on page 31.

1.3 Solomonoff’s Breakthrough – Kolmogorov Complexity

It seems that what data are compressible and what are not is extremely de-
pendent on the specific description method used. In 1964 – in a pioneering
paper that may be regarded as the starting point of all MDL-related research
(Solomonoff 1964) – Ray Solomonoff suggested the use of a universal com-
puter language as a description method. By a universal language we mean
a computer language in which a universal Turing machine can be imple-
mented. All commonly used computer languages, like Pascal, LISP, C, are
“universal.” Every data sequence D can be encoded by a computer program
P that prints D and then halts. We can define a description method that
maps each data sequence D to the shortest program that prints D and then



1.3 Solomonoff’s Breakthrough – Kolmogorov Complexity 9

halts.2 Clearly, this is a description method in our sense of the word in that it
defines a 1-many (even 1-1) mapping from sequences over the data alphabet
to a subset of the binary sequences.

The shortest program for a sequence D is then interpreted as the optimal
hypothesis for D. Let us see how this works for sequence (1.1) above. Using a
language similar to C, we can write a program

for i = 1 to 2500 ; do {print ′0001′} ; halt

which prints sequence (1.1) but is clearly a lot shorter than it. If we want
to make a fair comparison, we should rewrite this program in a binary al-
phabet; the resulting number of bits is still much smaller than 10000. The
shortest program printing sequence (1.1) is at least as short as the program
above, which means that sequence (1.1) is indeed highly compressible using
Solomonoff’s code. By the arguments of the previous section we see that,
given an arbitrary description method C, sequences like (1.2) that have been
generated by tosses of a fair coin are very likely not substantially compress-
ible using C. In other words, the shortest program for sequence (1.1) is, with
extremely high probability, not much shorter than the following:

print ′01110100110100001010........10111011000101100010′; halt

This program has size about equal to the length of the sequence. Clearly, it is
nothing more than a repetition of the sequence.

Kolmogorov Complexity We define the Kolmogorov complexity of a sequence
as the length of the shortest program that prints the sequence and then halts.
Kolmogorov complexity has become a large subject in its own right; see (Li
and Vitányi 1997) for a comprehensive introduction.

The lower the Kolmogorov complexity of a sequence, the more regular or
equivalently, the less random, or, yet equivalently, the simpler it is. Measur-
ing regularity in this way confronts us with a problem, since it depends on
the particular programming language used. However, in his 1964 paper, Ray
Solomonoff (Solomonoff 1964) showed that asymptotically it does not matter
what programming language one uses, as long as it is universal: for every
sequence of data D = (x1, . . . , xn), let us denote by LUL(D) the length of the
shortest program for D using universal language UL. We can show that for

2. If there exists more than one shortest program, we pick the one that comes first in enumera-
tion order.
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every two universal languages UL1 and UL2, the difference between the two
lengths LUL1(D) − LUL2(D) is bounded by a constant that depends on UL1

and UL2 but not on the length n of the data sequence D. This implies that
if we have a lot of data (n is large), then the difference in the two descrip-
tion lengths is negligible compared to the size of the data sequence. This
result is known as the invariance theorem and was proved independently in
(Solomonoff 1964), (Kolmogorov 1965) (hence the name Kolmogorov com-
plexity), and (Chaitin 1969). The proof is based on the fact that one can
write a compiler for every universal language UL1 in every other univer-
sal language UL2. Such a compiler is a computer program with length L1→2.
For example, we can write a program in Pascal that translates every C pro-
gram into an equivalent Pascal program. The length (in bits) of this program
would then be LC→Pascal. We can simulate each program P1 written in lan-
guage UL1 by program P2 written in UL2 as follows: P2 consists of the com-
piler from UL1 to UL2, followed by P1. The length of program P2 is bounded
by the length of P1 plus L1→2. Hence for all data D, the maximal difference
between LUL1(D) and LUL2(D) is bounded by max{L1→2, L2→1}, a constant
which only depends on UL1 and UL2 but not on D.

1.4 Making the Idea Applicable

Problems There are two major problems with applying Kolmogorov com-
plexity to practical learning problems:

1. Uncomputability. The Kolmogorov complexity cannot be computed in
general;

2. Large constants. The description length of any sequence of data involves
a constant depending on the description method used.

By “Kolmogorov complexity cannot be computed” we mean the following:
there is no computer program that, for every sequence of dataD, when given
D as input, returns the shortest program that prints D and halts. Neither
can there be a program, that for every data D returns only the length of the
shortest program that prints D and then halts. Assuming such a program
exists leads to a contradiction (Li and Vitányi 1997).

The second problem relates to the fact that in many realistic settings, we are
confronted with very small data sequences for which the invariance theorem
is not very relevant since the length of D is small compared to the constant
L1→2.
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“Idealized” or “Algorithmic” MDL If we ignore these problems, we may
use Kolmogorov complexity as our fundamental concept and build a the-
ory of idealized inductive inference on top of it. This road has been taken by
Solomonoff (1964, 1978), starting with the 1964 paper in which he introduced
Kolmogorov complexity, and by Kolmogorov, when he introduced the Kol-
mogorov minimum sufficient statistic (Li and Vitányi 1997; Cover and Thomas
1991). Both Solomonoff’s and Kolmogorov’s ideas have been substantially
refined by several authors. We mention here P. Vitányi (Li and Vitányi 1997;
Gács, Tromp, and Vitányi 2001; Vereshchagin and Vitányi 2002; Vereshchagin
and Vitányi 2004; Vitányi 2005), who concentrated on Kolmogorov’s ideas,
and M. Hutter (2004), who concentrated on Solomonoff’s ideas. Different
authors have used different names for this area of research: “ideal MDL,”
“idealized MDL,” or “algorithmic statistics.” It is closely related to the cele-
brated theory of random sequences due to P. Martin-Löf and Kolmogorov (Li
and Vitányi 1997). We briefly return to idealized MDL in Chapter 17, Sec-
tion 17.8.

Practical MDL Like most authors in the field, we concentrate here on non-
idealized, practical versions of MDL that explicitly deal with the two prob-
lems mentioned above. The basic idea is to scale down Solomonoff’s ap-
proach so that it does become applicable. This is achieved by using descrip-
tion methods that are less expressive than general-purpose computer lan-
guages. Such description methods C should be restrictive enough so that for
any data sequence D, we can always compute the length of the shortest de-
scription of D that is attainable using method C; but they should be general
enough to allow us to compress many of the intuitively “regular” sequences.
The price we pay is that, using the “practical” MDL principle, there will al-
ways be some regular sequences which we will not be able to compress. But
we already know that there can be no method for inductive inference at all
which will always give us all the regularity there is — simply because there
can be no automated method which for any sequence D finds the shortest
computer program that prints D and then halts. Moreover, it will often be
possible to guide a suitable choice of C by a priori knowledge we have about
our problem domain. For example, below we consider a description method
C that is based on the class of all polynomials, such that with the help of C
we can compress all data sets which can meaningfully be seen as points on
some polynomial.
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1.5 Crude MDL, Refined MDL and Universal Coding

Let us recapitulate our main insights so far:

MDL: The Basic Idea
The goal of statistical inference may be cast as trying to find regularity
in the data. “Regularity” may be identified with “ability to compress.”
MDL combines these two insights by viewing learning as data compression:
it tells us that, for a given set of hypotheses H and data set D, we should
try to find the hypothesis or combination of hypotheses in H that com-
presses D most.

This idea can be applied to all sorts of inductive inference problems, but it
turns out to be most fruitful in (and its development has mostly concentrated
on) problems of model selection and, more generally, dealing with overfitting.
Here is a standard example (we explain the difference between “model” and
“hypothesis” after the example).

Example 1.3 [Model Selection and Overfitting] Consider the points in Fig-
ure 1.1. We would like to learn how the y-values depend on the x-values.
To this end, we may want to fit a polynomial to the points. Straightforward
linear regression will give us the leftmost polynomial - a straight line that
seems overly simple: it does not capture the regularities in the data well.
Since for any set of n points there exists a polynomial of the (n− 1)st degree
that goes exactly through all these points, simply looking for the polyno-
mial with the least error will give us a polynomial like the one in the second
picture. This polynomial seems overly complex: it reflects the random fluc-
tuations in the data rather than the general pattern underlying it. Instead of
picking the overly simple or the overly complex polynomial, it seems more
reasonable to prefer a relatively simple polynomial with small but nonzero
error, as in the rightmost picture. This intuition is confirmed by numerous
experiments on real-world data from a broad variety of sources (Rissanen
1989; Vapnik 1998; Ripley 1996): if one naively fits a high-degree polyno-
mial to a small sample (set of data points), then one obtains a very good fit
to the data. Yet if one tests the inferred polynomial on a second set of data
coming from the same source, it typically fits this test data very badly in the
sense that there is a large distance between the polynomial and the new data
points. We say that the polynomial overfits the data. Indeed, all model selec-
tion methods that are used in practice either implicitly or explicitly choose
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Figure 1.1 A simple, a complex and a tradeoff (third-degree) polynomial.

a tradeoff between goodness-of-fit and complexity of the models involved.
In practice, such tradeoffs lead to much better predictions of test data than
one would get by adopting the “simplest” (one degree) or most “complex”3

(n−1-degree) polynomial. MDL provides one particular means of achieving
such a tradeoff.

It will be useful to distinguish between “model”, “model class” and “(point)
hypothesis.” This terminology is explained in the box on page 15, and will
be discussed in more detail in Section 2.4, page 69. In our terminology, the
problem described in Example 1.3 is a “point hypothesis selection problem”
if we are interested in selecting both the degree of a polynomial and the cor-
responding parameters; it is a “model selection problem” if we are mainly
interested in selecting the degree.

To apply MDL to polynomial or other types of hypothesis and model selec-
tion, we have to make precise the somewhat vague insight “learning may be
viewed as data compression.” This can be done in various ways. We first
explain the earliest and simplest implementation of the idea. This is the so-
called two-part code version of MDL:

3. Strictly speaking, in our context it is not very accurate to speak of “simple” or “complex”
polynomials; instead we should call the set of first degree polynomials “simple,” and the set of
100th-degree polynomials “complex.”
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Crude Two-Part Version of MDL Principle (Informally Stated)
Let H1,H2, . . . be a list of candidate models (e.g., Hγ is the set of γth
degree polynomials), each containing a set of point hypotheses (e.g., in-
dividual polynomials). The best point hypothesis H ∈ H = H1 ∪H2 ∪ . . .
to explain the dataD is the one which minimizes the sumL(H)+L(D|H),
where

• L(H) is the length, in bits, of the description of the hypothesis; and

• L(D|H) is the length, in bits, of the description of the data when en-
coded with the help of the hypothesis.

The best model to explain D is the smallest model containing the selected
H .

The terminology “crude MDL” is explained in the next subsection. It is not
standard, and it is introduced here for pedagogical reasons.

Example 1.4 [Polynomials, cont.] In our previous example, the candidate
hypotheses were polynomials. We can describe a polynomial by describing
its coefficients at a certain precision (number of bits per parameter). Thus,
the higher the degree of a polynomial or the precision, the more bits we need
to describe it and the more “complex” it becomes. A description of the data
“with the help of” a hypothesis means that the better the hypothesis fits the
data, the shorter the description will be. A hypothesis that fits the data well
gives us a lot of information about the data. Such information can always be
used to compress the data. Intuitively, this is because we only have to code
the errors the hypothesis makes on the data rather than the full data. In our
polynomial example, the better a polynomial H fitsD, the fewer bits we need
to encode the discrepancies between the actual y-values yi and the predicted
y-valuesH(xi). We can typically find a very complex point hypothesis (large
L(H)) with a very good fit (small L(D|H)). We can also typically find a very
simple point hypothesis (small L(H)) with a rather bad fit (large L(D|H)).
The sum of the two description lengths will be minimized at a hypothesis
that is quite (but not too) “simple,” with a good (but not perfect) fit.

1.5.1 From Crude to Refined MDL

Crude MDL picks the H minimizing the sum L(H) + L(D|H). To make
this procedure well defined, we need to agree on precise definitions for the
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Models and Model Classes; (Point) Hypotheses
We use the word model to refer to a set of probability distributions or func-
tions of the same functional form. E.g., the “first-order Markov model” is
the set of all probability distributions that are first-order Markov chains.
The “model of kth degree polynomials” is the set of all kth degree poly-
nomials for some fixed k.
We use the word model class to refer to a family (set) of models, e.g. “the
model class of all polynomials” or “the model class of all Markov chains
of each order.” The definitions of “model” and “model class” are chosen
so that they agree with how these words are used in statistical practice.
Therefore they are intentionally left somewhat imprecise.
We use the word hypothesis to refer to an arbitrary set of probability dis-
tributions or functions. We use the word point hypothesis to refer to a
single probability distribution (e.g. a Markov chain with all parameter
values specified) or function (e.g. a particular polynomial). In parametric
inference (Chapter 2), a point hypothesis corresponds to a particular pa-
rameter value. A point hypothesis may also be viewed as an instantiation
of a model.

What we call “point hypothesis” is called “simple hypothesis” in the
statistics literature; our use of the word “model (selection)” coincides
with its use in much of the statistics literature; see Section 2.3, page 62
where we give several examples to clarify our terminology.

Figure 1.2 Models and Model Classes; (Point) Hypotheses.

codes (description methods) giving rise to lengths L(D|H) and L(H). We
now discuss these codes in more detail. We will see that the definition of
L(H) is problematic, indicating that we somehow need to “refine” our crude
MDL principle.

Definition of L(D|H) Consider a two-part code as described above, and
assume for the time being that all H under consideration define probability
distributions. If H is a polynomial, we can turn it into a distribution by mak-
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ing the additional assumption that the Y -values are given by Y = H(X)+Z ,
where Z is a normally distributed noise term with mean 0.

For each H we need to define a code with length L(· | H) such that
L(D|H) can be interpreted as “the codelength of D when encoded with the
help of H .” It turns out that for probabilistic hypotheses, there is only one
reasonable choice for this code; this is explained at length in Chapter 5. It
it is the so-called Shannon-Fano code, satisfying, for all data sequences D,
L(D|H) = − logP (D|H), where P (D|H) is the probability mass or density
of D according to H . Such a code always exists, as we explain in Chapter 3,
in the box on page 96.

Definition of L(H): A Problem for Crude MDL It is more problematic
to find a good code for hypotheses H . Some authors have simply used “in-
tuitively reasonable” codes in the past, but this is not satisfactory: since the
description length L(H) of any fixed point hypothesis H can be very large
under one code, but quite short under another, our procedure is in danger
of becoming arbitrary. Instead, we need some additional principle for designing a
code for H.

In the first publications on MDL (Rissanen 1978; Rissanen 1983), it was im-
plicitly advocated to choose some sort of minimax code for each Hγ , minimiz-
ing the shortest worst-case total description length L(H) + L(D|H), where
the worst-case is over all possible data sequences. Thus, the MDL principle
is employed at a “meta-level” to choose a code for Hγ . This idea, already
implicit in Rissanen’s early work abut perhaps for the first time stated and
formalized in a completely precise way Barron and Cover (1991), is the first
step towards “refined” MDL.

More Problems for Crude MDL We can use crude MDL to code any se-
quence of data D with a total description length L(D):=minH{L(D|H) +
L(H)}. But it turns out that this code is incomplete: one can show that there
exist other codes L′ which for some D achieve strictly smaller codelength
(L′(D) < L(D)), and for no D achieve larger codelength (Chapter 6, Exam-
ple 6.4). It seems strange that our “minimum description length” principle
should be based on codes which are incomplete (inefficient) in this sense. An-
other, less fundamental problem with two-part codes is that, if designed in a
minimax way as indicated above, they require a cumbersome discretization
of the model space H, which is not always feasible in practice. The final prob-
lem we mention is that, while it is clear how to use crude two-part codes for
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point hypothesis and model selection, it is not immediately clear how they
can be used for prediction.

Later, Rissanen (1984) realized that these problems could be side-stepped
by using one-part rather than two-part codes. As we explain below, it depends
on the situation at hand whether a one-part or a two-part code should be
used. Combining the idea of designing codes so as to achieve essentially
minimax optimal codelengths with the combined use of one-part and two-
part codes (whichever is appropriate for the situation at hand) has culmi-
nated in a theory of inductive inference that we call refined MDL. We discuss
it in more detail in the next subsection.

Crude Two-Part MDL (Part I, Chapter 5 of this book)
In this book, we use the term “crude MDL” to refer to applications of
MDL for model and hypothesis selection of the type described in the box
on page 14, as long as the hypotheses H ∈ H are encoded in “intuitively
reasonable” but ad-hoc ways.
Refined MDL is sometimes based on one-part codes, sometimes on two-
part codes, and sometimes on a combination of these, but, in contrast to
crude MDL, the codes are invariably designed according to some min-
imax principles. If there is a choice, one should always prefer refined
MDL, but in some exotic modeling situations, the use of crude MDL is
inevitable.
Part I of this book first discusses all probabilistic, statistical and
information-theoretic preliminaries (Chapters 2–4) and culminates in a
description of crude two-part MDL (Chapter 5). Refined MDL is de-
scribed only in Part III.

1.5.2 Universal Coding and Refined MDL

In refined MDL, we associate a code for encoding D not with a single H ∈ H,
but with the full model H. Thus, given model H, we encode data not in two
parts but we design a single one-part code with lengths L̄(D|H). This code
is designed such that whenever there is a member of (parameter in) H that fits
the data well, in the sense that L(D | H) is small, then the codelength L̄(D|H)
will also be small. Codes with this property are called universal codes in the
information-theoretic literature (Barron, Rissanen, and Yu 1998):
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Universal Coding (Part II of This Book)
There exist at least four types of universal codes:

1. The normalized maximum likelihood (NML) code and its variations.

2. The Bayesian mixture code and its variations.

3. The prequential plug-in code

4. The two-part code

These codes are all based on entirely different coding schemes, but in
practice, lead to very similar codelengths L̄(D|H). Part II of this book is
entirely devoted to universal coding. The four types of codes are intro-
duced in Chapter 6. This is follows by a separate chapter for each code.

For each model H, there are many different universal codes we can asso-
ciate with H. When applying MDL, we have a preference for the one that is
minimax optimal in a sense made precise in Chapter 6. For example, the set H3

of third-degree polynomials is associated with a code with lengths L̄(· | H3)
such that, the better the data D are fit by the best-fitting third-degree poly-
nomial, the shorter the codelength L̄(D | H). L̄(D | H) is called the stochastic
complexity of the data given the model.

Refined MDL is a general theory of inductive inference based on universal
codes that are designed to be minimax, or close to minimax optimal. It has
mostly been developed for model selection, estimation and prediction. To
give a first flavor, we initially discuss model selection, where, arguably, it
has the most new insights to offer:

1.5.3 Refined MDL for Model Selection

Parametric Complexity A fundamental concept of refined MDL for model
selection is the parametric complexity of a parametric model H which we de-
note by COMP(H). This is a measure of the “richness” of model H, indicat-
ing its ability to fit random data. This complexity is related to the number
of degrees-of-freedom (parameters) in H, but also to the geometrical struc-
ture of H; see Example 1.5. To see how it relates to stochastic complexity,
let, for given data D, Ĥ denote the distribution in H which maximizes the
probability, and hence minimizes the codelength L(D | Ĥ) of D. It turns out
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that

L̄(D | H) = stochastic complexity of D given H = L(D | Ĥ) + COMP(H).

Refined MDL model selection between two parametric models H1 and H2

(such as the models of first and second degree polynomials) now proceeds
as follows. We encode data D in two stages. In the first stage, we encode
a number j ∈ {1, 2}. In the second stage, we encode the data using the
universal code with lengths L̄(D | Hj). As in the two-part code principle, we
then select the Mj achieving the minimum total two-part codelength,

min
j∈{1,2}

{L(j)+ L̄(D | Hj)} = min
j∈{1,2}

{L(j)+L(D | Ĥ)+ COMP(H)}. (1.4)

Since the worst-case optimal code to encode j needs only 1 bit to encode ei-
ther j = 1 or j = 2, we use a code for the first-part such that L(1) = L(2) = 1.
But this means that L(j) plays no role in the minimization, and we are ef-
fectively selecting the model such that the stochastic complexity of the given
data D is smallest.4 Thus, in the end we select the model minimizing the
one-part codelength of the data. Nevertheless, refined MDL model selection in-
volves a tradeoff between two terms: a goodness-of-fit term L(D | Ĥ) and a
complexity term COMP(H). However, because we do not explicitly encode
hypotheses H anymore, there is no potential for arbitrary codelengths any-
more. The resulting procedure can be interpreted in several different ways,
some of which provide us with rationales for MDL model selection beyond
the pure coding interpretation (Chapter 14):

1. Counting/differential geometric interpretation The parametric complex-
ity of a model is the logarithm of the number of essentially different, distin-
guishable point hypotheses within the model.

2. Two-part code interpretation For large samples, the stochastic complex-
ity can be interpreted as a two-part codelength of the data after all, where
hypotheses H are encoded with a special code that works by first dis-
cretizing the model space H into a set of “maximally distinguishable hy-
potheses,” and then assigning equal codelength to each of these.

3. Bayesian interpretation In many cases, refined MDL model selection co-
incides with Bayes factor model selection based on a noninformative prior
such as Jeffreys’ prior (Bernardo and Smith 1994).

4. The reason we include L(j) at all in (1.4) is to maintain consistency with the case where we
need to select between an infinite number of models. In that case, it is necessary to include L(j).
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4. Prequential interpretation MDL model selection can be interpreted as se-
lecting the model with the best predictive performance when sequentially
predicting unseen test data, in the sense described in Chapter 6, Section 6.4
and Chapter 9. This makes it an instance of Dawid’s (1984) prequential
model validation and also relates it to cross-validation methods; see Chap-
ter 17, Sections 17.5 and 17.6.

In Section 1.6.1 we show that refined MDL allows us to compare models of
different functional form. It even accounts for the phenomenon that different
models with the same number of parameters may not be equally “complex.”

1.5.4 General Refined MDL: Prediction and Hypothesis Selection

Model selection is just one application of refined MDL. The two other main
applications are point hypothesis selection and prediction. These applications
can also be interpreted as methods for parametric and nonparametric estima-
tion. In fact,it turns out that large parts of MDL theory can be reinterpreted as
a theory about sequential prediction of future data given previously seen data. This
“prequential” interpretation of MDL (Chapter 15) is at least as important as
the coding interpretation. It is based on the fundamental correspondence be-
tween probability distributions and codes via the Shannon-Fano code that
we alluded to before, when explaining the code with lengths L(D | H); see
the box on page 96. This correspondence allows us to view any universal
code L̄(· | H) as a strategy for sequentially predicting data, such that the
better H is suited as a model for the data, the better the predictions will be.

MDL prediction and hypothesis selection are mathematically cleaner than
MDL model selection: in Chapter 15, we provide theorems (Theorem 15.1
and Theorem 15.3) which, in the respective contexts of prediction and hy-
pothesis selection, express that, in full generality, good data compression implies
fast learning, where “learning” is defined as “finding a hypothesis that is in
some sense close to an imagined “true state of the world.” There are simi-
lar theorems for model selection, but these lack some of the simplicity and
elegance of Theorem 15.1 and Theorem 15.3.

Probabilistic vs. Nonprobabilistic MDL Like most other authors on MDL,
in this book we confine ourselves to probabilistic hypotheses, also known as
probabilistic sources. These are hypotheses that take the form of probability dis-
tributions over the space of possible data sequences. The examples we give in
this chapter (Examples 1.3 and 1.5) involve hypotheses H that are functions
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from some space X to another space Y ; at first sight, these are not “proba-
bilistic.” We will usually assume that for any given x, we have y = H(x) +Z

where Z is a noise term with a known distribution. Typically, the noise Z
will be assumed to be Gaussian (normally) distributed. With such an ad-
ditional assumption, we may view “functional” hypotheses H : X → Y as
“probabilistic” after all. Such a technique of turning functions into proba-
bility distributions is customary in statistics, and we will use it throughout
large parts of this book. Whenever we refer to MDL, we implicitly assume
that we deal with probabilistic models. We should note though that there
exists variations of MDL that directly work with universal codes relative to
functional hypotheses such as polynomials (see Section 1.9.1, and Chapter 17,
Section 17.10).

Fixing Notation
We use the symbol H for general point hypotheses, that may either repre-
sent a probabilistic source or a deterministic function. We use H for sets of
such general point hypotheses. We reserve the symbol M for probabilis-
tic models and model classes. We denote probabilistic point hypotheses
by P , and point hypotheses that are deterministic functions by h.

Individual-Sequence vs. Expectation-based MDL Refined MDL is based
on minimax optimal universal codes. Broadly speaking, there are two differ-
ent ways to define what we mean by minimax optimality. One is to look at
the worst-case codelength over all possible sequences. We call this individual-
sequence MDL. An alternative is to look at expected codelength, where the ex-
pectation is taken over some probability distribution, usually but not always
assumed to be a member of the model class M under consideration. We call
this expectation-based MDL. We discuss the distinction in detail in Part III of
the book; see also the box on page 407. The individual-sequence approach is
the one taken by Rissanen, the main originator of MDL, and we will mostly
follow it throughout this book.

The Luckiness Principle In the individual-sequence approach, the mini-
max optimal universal code is given by the normalized maximum likelihood
(NML) code that we mentioned above. A problem is that for many (in fact,
most) practically interesting models, the NML code is not well defined. In
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such cases, a minimax optimal code does not exist. As we explain in Chap-
ter 11, in some cases one can get around this problem using so-called “condi-
tional NML” codes, but in general, one needs to use codes based on a modi-
fied minimax principle, which we call the luckiness principle. Although it has
been implicitly used in MDL since its inception, I am the first to use the term
“luckiness principle” in an MDL context; see the box on page 92, Chapter 3;
the developments in Chapter 11, Section 11.3, where we introduce the con-
cept of a luckiness function; and the discussion in Chapter 17, Section 17.2.1.

The luckiness principle reintroduces some subjectivity in MDL code de-
sign. This seems to bring us back to the ad-hoc codes used in crude two-part
MDL. The difference however is that with luckiness functions, we can pre-
cisely quantify the effects of this subjectivity: for each possible data sample
D that we may observe, we can indicate how “lucky” we are on the sample,
i.e. how many extra bits we need compared to encode D compared to the
best hypothesis that we have available for D. This idea significantly extends
the applicability of refined MDL methods.

MDL is a Principle Contrary to what is often thought, MDL, and even,
“modern, refined MDL” is not a unique, single method of inductive infer-
ence. Rather, it represents a general principle for doing inductive inference.
The principle may (and will) be formulated precisely enough to allow us to
establish, for many given methods (procedures, learning algorithms) “this
method is an instance of MDL” or “this is not an instance of MDL. But nev-
ertheless:

MDL Is a Principle, Not a Unique Method
Being a principle, MDL gives rise to several methods of induc-
tive inference. There is no single “uniquely optimal MDL
method/procedure/algorithm.” Nevertheless, in some special situations
(e.g. simple parametric statistical models), one can clearly distinguish
between good and not so good versions of MDL, and something close to
“an optimal MDL method” exists.
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Summary: Refined MDL (Part III of This Book)
Refined MDL is a method of inductive inference based on universal codes
which are designed to have some minimax optimality properties. Each
model H under consideration is associated with a corresponding univer-
sal code. In this book we restrict ourselves to probabilistic H. Refined
MDL has mainly been developed for model selection, point hypothesis
selection and prediction.
Refined MDL comes in two versions: individual-sequence and
expectation-based refined MDL, depending on whether the universal
codes are designed to be optimal in an individual-sequence or in an ex-
pected sense. If the minimax optimal code relative to a model M is not
defined, some element of subjectivity is introduced into the coding us-
ing a luckiness function. A more precise overview is given in the box on
page 406.

In the remainder of this chapter we will mostly concentrate on MDL for
model selection.

1.6 Some Remarks on Model Selection

Model selection is a controversial topic in statistics. Although most people
agree that it is important, many say it can only be done on external grounds,
and never by merely looking at the data. Still, a plethora of automatic model
selection methods has been suggested in the literature. These can give wildly
different results on the same data, one of the main reasons being that they
have often been designed with different goals in mind. This section starts
with a further example that motivates the need for model selection, and it
then discusses several goals that one may have in mind when doing model
selection. These issues are discussed in a lot more detail in Chapter 14. See
also Chapter 17, especially Section 17.3, where we compare MDL model se-
lection to the standard model selection methods AIC and BIC.

1.6.1 Model Selection among Non-Nested Models

Model selection is often used in the following context: two researchers or
research groups A and B propose entirely different models MA and MB as
an explanation for the same data D. This situation occurs all the time in ap-
plied sciences like econometrics, biology, experimental psychology, etc. For
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example, group A may have some general theory about the phenomenon at
hand which prescribes that the trend in dataD is given by some polynomial.
Group B may think that the trend is better described by some neural net-
work; a concrete case will be given in Example 1.3 below. A and B would
like to have some way of deciding which of their two models is better suited
for the data at hand. If they simply decide on the model containing the hy-
pothesis (parameter instantiation) that best fits the data, they once again run
the risk of overfitting: if model MA has more degrees of freedom (parame-
ters) than model MB , it will typically be able to better fit random noise in
the data. It may then be selected even if MB actually better captures the un-
derlying trend (regularity) in the data. Therefore, just as in the hypothesis
selection example, deciding whether MA or MB is a better explanation for
the data should somehow depend on how well MA and MB fit the data and
on the respective “complexities” of MA and MB .

In the polynomial case discussed before, there was a countably infinite
number of “nested” Mγ (i.e. Mγ ⊂ Mγ+1). In contrast, we now deal with
a finite number of entirely unrelated models Mγ . But there is nothing that
stops us from using MDL model selection as “defined” above.

Example 1.5 [Selecting Between Models of Different Functional Form]
Consider two models from psychophysics describing the relationship be-
tween physical dimensions (e.g., light intensity) and their psychological coun-
terparts (e.g. brightness) (Myung, Balasubramanian, and Pitt 2000): y =
axb + Z (Stevens’s model) and y = a ln(x + b) + Z (Fechner’s model) where
Z is a normally distributed noise term. Both models have two free parame-
ters; nevertheless, according to the refined version of MDL model selection
to be introduced in Part III, Chapter 14 of this book, Stevens’s model is in a
sense “more complex” than Fechner’s (see page 417). Roughly speaking, this
means there are a lot more data patterns that can be explained by Stevens’s
model than can be explained by Fechner’s model. Somewhat more precisely,
the number of data patterns (sequences of data) of a given length that can be
fit well by Stevens’s model is much larger than the number of data patterns
of the same length that can be fit well by Fechner’s model. Therefore, using
Stevens’s model we run a larger risk of “overfitting.”

In the example above, the goal was to select between a power law and a log-
arithmic relationship. In general, we may of course come across model selec-
tion problems involving neural networks, polynomials, Fourier or wavelet
expansions, exponential functions - anything may be proposed and tested.
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1.6.2 Goals of Model vs. Point Hypothesis Selection

The goal of point hypothesis selection is usually just to infer a hypothesis
from the data and use that to make predictions of, or decisions about, future
data coming from the same source. Model selection may be done for several
reasons:

1. Deciding between “general” theories. This is the application that was il-
lustrated in the example above. Often, the research groups A and B are
only interested in the models MA and MB , and not in particular hypothe-
ses (corresponding to parameter settings) within those models. The rea-
son is that the models MA and MB are proposed as general theories for
the phenomenon at hand. The claim is that they work not only under
the exact circumstances under which the experiment giving rise to dataD
took place but in many other situations as well. In our case, the research
group proposing model MA may claim that the functional relationship
underlying model MA provides a good description of the relationship
between light intensity and brightness under a variety of circumstances;
however, the specific parameter settings may vary from situation to situ-
ation. For example, it should be an appropriate model both in daylight
(for parameter setting (a0, b0)) and in artificial light (for parameter setting
(a1, b1)).

2. Gaining insight. Sometimes, the goal is not to make specific predictions
but just to get a first idea of the process underlying the data. Such a rough,
first impression may then be used to guide further experimentation about
the phenomenon under investigation.

3. Determining relevant variables. In Example 1.3 the instances xi were all
real numbers. In practice, the yi may often depend on several quantities,
which may be modeled by taking the xi to be real vectors xi = xi1, . . . , xik.
We say that there are k regressor variables. In such a setting, an important
model selection problem is to determine which variables are relevant and
which are not. This is sometimes called the selection-of-variables problem.
Often, for each j, there is a cost associated with measuring xij . We would
therefore like to learn, from some given set of empirical data, which of the
regressor variables are truly relevant for predicting the values of y. If there
are k regressor variables, this involves model selection between 2k differ-
ent models. Each model corresponds to the set of all linear relationships
between a particular subset of the regressor variables and y.
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4. Prediction by weighted averaging. Even if our sole goal is prediction of
future data, model selection may be useful. In this context, we first infer
a model (set of hypotheses) for the data at hand. We then predict future
data by combining all the point hypotheses within the model to arrive at a predic-
tion. Usually this is done by taking a weighted average of the predictions
that would be optimal according to the different hypotheses within the
model. Here the weights of these predictions are determined by the per-
formance of the corresponding hypotheses on past data. There are abun-
dant examples in the literature on Bayesian statistics (Lee 1997; Berger
1985; Bernardo and Smith 1994) which show that, both in theory and in
“the real world,” prediction by weighting averaging usually works sub-
stantially better than prediction by a single hypothesis. In Chapter 15, we
discuss model-based MDL prediction, which is quite similar to Bayesian
prediction.

1.7 The MDL Philosophy

The first central MDL idea is that every regularity in data may be used to
compress that data; the second central idea is that learning can be equated
with finding regularities in data. Whereas the first part is relatively straight-
forward, the second part of the idea implies that methods for learning from data
must have a clear interpretation independent of whether any of the models under
consideration is “true” or not. Quoting J. Rissanen (1989), the main originator
of MDL:

“We never want to make the false assumption that the observed data actually
were generated by a distribution of some kind, say Gaussian, and then go on to
analyze the consequences and make further deductions. Our deductions may
be entertaining but quite irrelevant to the task at hand, namely, to learn useful
properties from the data.”

Jorma Rissanen [1989]

Based on such ideas, Rissanen has developed a radical philosophy of learn-
ing and statistical inference that is considerably different from the ideas un-
derlying mainstream statistics, both frequentist and Bayesian. We now de-
scribe this philosophy in more detail; see also Chapter 17, where we compare
the MDL philosophy to the ideas underlying other statistical paradigms.
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1. Regularity as Compression According to Rissanen, the goal of induc-
tive inference should be to “squeeze out as much regularity as possible”
from the given data. The main task is to distill the meaningful information
present in the data, i.e. to separate structure (interpreted as the regularity,
the “meaningful information”) from noise (interpreted as the “accidental in-
formation”). For the three sequences of Example 1.1, this would amount to
the following: the first sequence would be considered as entirely regular and
“noiseless.” The second sequence would be considered as entirely random -
all information in the sequence is accidental, there is no structure present. In
the third sequence, the structural part would (roughly) be the pattern that 4
times as many 0s as 1s occur; given this regularity, the description of exactly
which one among all sequences with four times as many 0s as 1s actually
occurs, is the accidental information.

2. Models as Languages Rissanen interprets models (sets of hypotheses) as
nothing more than languages for describing useful properties of the data – a
model H is identified with its corresponding universal code L̄(· | H). Different
individual hypotheses within the models express different regularities in the
data, and may simply be regarded as statistics, that is, summaries of certain
regularities in the data. These regularities are present and meaningful indepen-
dently of whether some H∗ ∈ H is the “true state of nature” or not. Suppose that
the model H = M under consideration is probabilistic. In traditional theo-
ries, one typically assumes that some P ∗ ∈ M generates the data, and then
“noise” is defined as a random quantity relative to this P ∗. In the MDL view
“noise” is defined relative to the model M as the residual number of bits
needed to encode the data once the model M is given. Thus, noise is not a
random variable: it is a function only of the chosen model and the actually ob-
served data. Indeed, there is no place for a “true distribution” or a “true state
of nature” in this view – there are only models and data. To bring out the
difference to the ordinary statistical viewpoint, consider the phrase “these
experimental data are quite noisy.” According to a traditional interpretation,
such a statement means that the data were generated by a distribution with
high variance. According to the MDL philosophy, such a phrase means only
that the data are not compressible with the currently hypothesized model –
as a matter of principle, it can never be ruled out that there exists a different
model under which the data are very compressible (not noisy) after all!
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3. We Have Only the Data Many (but not all5) other methods of induc-
tive inference are based on the idea that there exists some “true state of na-
ture,” typically a distribution assumed to lie in some model M. The methods
are then designed as a means to identify or approximate this state of nature
based on as little data as possible. According to Rissanen,6 such methods are
fundamentally flawed. The main reason is that the methods are designed un-
der the assumption that the true state of nature is in the assumed model M,
which is often not the case. Therefore, such methods only admit a clear interpre-
tation under assumptions that are typically violated in practice. Many cherished
statistical methods have been designed in this way - we mention hypothe-
sis testing, minimum-variance unbiased estimation, several nonparametric
methods, and even some forms of Bayesian inference – see Chapter 17, Sec-
tion 17.2.1. In contrast, MDL has a clear interpretation which depends only on
the data, and not on the assumption of any underlying “state of nature.”

Example 1.6 [Models That are Wrong, Yet Useful] Even though the models
under consideration are often wrong, they can nevertheless be very useful.
Examples are the successful “Naive Bayes” model for spam filtering, hidden
Markov models for speech recognition (is speech a stationary ergodic process?
probably not), and the use of linear models in econometrics and psychology.
Since these models are evidently wrong, it seems strange to base inferences on
them using methods that are designed under the assumption that they contain
the true distribution. To be fair, we should add that domains such as spam
filtering and speech recognition are not what the fathers of modern statis-
tics had in mind when they designed their procedures – they were usually
thinking about much simpler domains, where the assumption that some dis-
tribution P ∗ ∈ M is “true” may not be so unreasonable; see also Chapter 17,
Section 17.1.1.

4. MDL and Consistency Let M be a probabilistic model, such that each
P ∈ M is a probability distribution. Roughly, a statistical procedure is called
consistent relative to M if, for all P ∗ ∈ M, the following holds: suppose
data are distributed according to P ∗. Then given enough data, the learning
method will learn a good approximation of P ∗ with high probability. Many
traditional statistical methods have been designed with consistency in mind
(Chapter 2, Section 2.5).

5. For example, cross-validation cannot easily be interpreted in such terms of “a method hunt-
ing for the true distribution.” The same holds for some – not all – Bayesian methods; see Chap-
ter 17.
6. The present author’s own views are somewhat milder in this respect, but this is not the place
to discuss them.



1.8 MDL, Occam’s Razor, and the “True Model” 29

The fact that in MDL, we do not assume a true distribution may suggest
that we do not care about statistical consistency. But this is not the case: we
would still like our statistical method to be such that in the idealized case
where one of the distributions in one of the models under consideration ac-
tually generates the data, our method is able to identify this distribution,
given enough data. If even in the idealized special case where a “truth” ex-
ists within our models, the method fails to learn it, then we certainly cannot
trust it to do something reasonable in the more general case, where there
may not be a “true distribution” underlying the data at all. So: consistency is
important in the MDL philosophy, but it is used as a sanity check (for a method
that has been developed without making distributional assumptions) rather than as
a design principle; see also Chapter 17, Section 17.1.1.

In fact, mere consistency is not sufficient. We would like our method to
converge to the imagined true P ∗ fast, based on as small a sample as possible.
Theorems 15.1 and 15.3 of Chapter 15 show that this indeed happens for
MDL prediction and hypothesis selection – as explained in Chapter 16, MDL
convergence rates for estimation and prediction are typically either minimax
optimal or within a factor logn of minimax optimal.

Summarizing this section, the MDL philosophy is agnostic about whether
any of the models under consideration is “true,” or whether something like
a “true distribution” even exists. Nevertheless, it has been suggested (Webb
1996; Domingos 1999) that MDL embodies a naive belief that “simple mod-
els” are “a priori more likely to be true” than complex models. Below we
explain why such claims are mistaken.

1.8 Does It Make Any Sense?
MDL, Occam’s Razor, and the “True Model”

When two models fit the data equally well, MDL will choose the one that
is the “simplest” in the sense that it allows for a shorter description of the
data. As such, it implements a precise form of Occam’s razor – even though as
more and more data become available, the model selected by MDL may become more
and more complex! Throughout the ages, Occam’s razor has received a lot of
praise as well as criticism. Some of these criticisms (Webb 1996; Domingos
1999) seem applicable to MDL as well. The following two are probably heard
most often:
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“1. Occam’s razor (and MDL) is arbitrary.” Because “description length” is
a syntactic notion it may seem that MDL selects an arbitrary model: different
codes would have led to different description lengths, and therefore, to dif-
ferent models. By changing the encoding method, we can make “complex’
things “simple” and vice versa.

“2. Occam’s razor is false.” It is sometimes claimed that Occam’s razor is
false: we often try to model real-world situations that are arbitrarily complex,
so why should we favor simple models? In the words of G. Webb:7 “What
good are simple models of a complex world?”

The short answer to 1 is that this argument overlooks the fact that we are
not allowed to use just any code we like! “Refined MDL” severely restricts
the set of codes one is allowed to use. As we explain below, and in more
detail in Chapter 7, this leads to a notion of complexity that can also be inter-
preted as a kind of “model volume,” without any reference to “description
lengths.” The short answer to 2 is that even if the true data-generating ma-
chinery is very complex, it may often be a good strategy to prefer simple
models for small sample sizes.. Below we give more elaborate answers to
both criticisms.

1.8.1 Answer to Criticism No. 1: Refined MDL’s Notion of “Complexity”
Is Not Arbitrary

In “algorithmic” or “idealized” MDL (Section 1.4), it is possible to define the
Kolmogorov complexity of a point hypothesis H as the length of the short-
est program that computes the function value or probability H(x) up to r

bits precision when input (x, r). In our practical version of MDL, there is
no single “universal” description method used to encode point hypotheses.
A hypothesis with a very short description under one description method
may have a very long description under another method. Therefore it is
usually meaningless to say that a particular point hypothesis is “simple” or
“complex.” However, for many types of models, it is possible to define the
complexity of a model (interrelated set of point hypotheses) in an unambigu-
ous manner, that does not depend on the way we parameterize the model.
This is the “parametric complexity” that we mentioned in Section 1.5.3.8 It

7. Quoted with permission from KDD Nuggets 96:28, 1996.
8. The parametric complexity of a probabilistic model M = {P} that consists only of one hy-
pothesis, is always 0, no matter how large the Kolmogorov complexity of P ; see Chapter 17,
Example 17.5.
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will be defined for finite models in Chapter 6. In Chapter 7 we extend the
definition to general models that contain uncountably many hypotheses.

There exists a close connection between the algorithmic complexity of a hy-
pothesis and the parametric complexity of any large model that contains the
hypothesis. Broadly speaking, for most hypotheses that are contained in any
given model, the Kolmogorov complexity of the hypothesis will be approxi-
mately equal to the parametric complexity of the model.

In Example 1.3 we did speak of a “complex” point hypothesis. This is really
sloppy terminology: since only the complexity of models rather than hypothe-
ses can be given an unambiguous meaning, we should instead have spoken
of “a point hypothesis that, relative to the set of models under consideration,
is a member only of a complex model and not of a simple model.” Such
sloppy terminology is commonly used in papers on MDL. Unfortunately, it
has caused a lot of confusion in the past. Specifically, it has led people to
think that MDL model selection is a mostly arbitrary procedure leading to
completely different results according to how the details in the procedure
are filled in (Shaffer 1993). At least for the refined versions of MDL we dis-
cuss in Part III of this book, this is just plain false.

Complexity of Models vs. Complexity of Hypotheses
In algorithmic MDL, we may define the complexity of an individual (i.e.,

point) hypothesis (function or probability distribution). In practical MDL,
as studied here, this is not possible: complexity becomes a property of
models (sets of point hypotheses) rather than individual point hypotheses
(instantiations of models).
MDL-based, or parametric complexity, is a property of a model that does
not depend on any particular description method used, or any param-
eterization of the hypotheses within the model. It is related to (but not
quite the same as) the number of substantially different hypotheses in a
model (Part II of this book, Chapter 6, Chapter 7). A “simple model” then
roughly corresponds to “a small set of hypotheses.”

In practice, we often use models for which the parametric complexity is un-
defined. We then use an extended notion of complexity, based on a “luck-
iness function.” While such a complexity measure does have a subjective
component, it is still far from arbitrary, and it cannot be used to make a com-
plex model “simple”; see Chapter 17, Section 17.2.1.
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1.8.2 Answer to Criticism No. 2

In light of the previous discussions in this chapter, preferring “simpler” over
more “complex” models seems to make a lot of sense: one should try to avoid
overfitting (i.e. one should try to avoid modeling the noise rather than the
“pattern” or “regularity” in the data). It seems plausible that this may be
achieved by somehow taking into account the “complexity”, “richness”, or
“(non-) smoothness” of the models under consideration. But from another
viewpoint, the whole enterprise may seem misguided: as the example below
shows, it seems to imply that, when we apply MDL, we are implicitly assum-
ing that “simpler” models are somehow a priori more likely to be “true.” Yet
in many cases of interest, the phenomena we try to model are very complex,
so then preferring simpler models for the data at hand would not seem to
make a lot of sense. How can these two conflicting intuitions be reconciled?

Authors criticizing Occam’s razor (Domingos 1999; Webb 1996) usually do
think that in some cases “simpler” models should be preferred over more
“complex” ones since the former are more understandable, and in that sense
more useful. But they argue that the “simpler” model will usually not lead to
better predictions of future data coming from the same source. We claim that
on the contrary, for the MDL-based definitions of “simple” and “complex” we
will introduce in this book, selecting the simpler model in many cases does lead
to better predictions, even in a complex environment.

Example 1.7 [MDL Hypothesis/Model Selection for Polynomials, cont.]
Let us focus on point hypothesis selection of polynomials. Let Hγ be the set
of γth degree polynomials. Suppose a “truth” exists in the following sense:
there exists some distribution P ∗

X such that the xi are all independently dis-
tributed according to P ∗

X . We assume that all xi must fall within some in-
terval [a, b], i.e. P ∗

X([a, b]) = 1. There also exists a function h∗ such that for
all xi generated by P ∗

X , we have yi = h∗(xi) + Zi. Here the Zi are noise
or “error” terms. We assume the Zi to be identical, independent, normally
(Gaussian) distributed random variables, with mean 0 and some variance σ2.
For concreteness we will assume h∗(x) = x3 − 8x2 + 19x+ 9 and σ2 = 1.

This is actually the polynomial/error-combination that was used to generate
the points in Figure 1.1 on page 13. However, the xi in that graph were not
drawn according to some distribution such as in the present scenario. Instead,
they were preset to be 0.5, 1, 1.5, . . . , 12. This is similar to the practical case
where the experimental design is controlled by the experimenter: the experi-
menter determines the xi values for which corresponding yi-values will be
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measured. In this setup similar analyses as those below may still be made (see,
e.g. (Wei 1992)).

In such a scenario with a “true” h∗ and P ∗
X , as more and more data pairs

(xi, yi) are made available, with high probability something like the follow-
ing will happen (Chapter 16): for very small n, MDL model selection will se-
lect a 0th-degree polynomial, i.e. y = c for some constant c. Then as n grows
larger, MDL will start selecting models of higher degree. At some sample
size n it will select a third-order polynomial for the first time. It will then for
a while (as n increases further) fluctuate between second-, third- and fourth-
order polynomials. But for all n larger than some critical n0, MDL will select
the correct third order H3. It turns out that for all n, the point hypothesis ḧn
selected by two-part MDL hypothesis selection is (approximately) the poly-
nomial within the selected Hγ that best fits data D = ((x1, y1), . . . , (xn, yn)).
As n goes to infinity, ḧn will with high probability converge to h∗ in the sense
that all coefficients converge to the corresponding coefficients of h∗.

Two-part code MDL behaves like this not just when applied to the model
class of polynomials, but for most other potentially interesting model classes
at well. The upshot is that, for small sample sizes, MDL has a built-in prefer-
ence for “simple” models. This preference may seem unjustified, since “real-
ity” may be more complex. We claim that on the contrary, such a preference
(if implemented carefully) has ample justification.

To back our claim, we first note that MDL (and the corresponding form
of Occam’s razor) is just a strategy for inferring models from data (“choose
simple models at small sample sizes”), not a statement about how the world
works (“simple models are more likely to be true”) – indeed, a strategy can-
not be true or false, it is “clever” or “stupid.” And the strategy of preferring
simpler models is clever even if the data-generating process is highly com-
plex, as illustrated by the following example:

Example 1.8 [“Infinitely” Complex Sources] Suppose that data are subject
to the law Y = g(X) + Z where g is some continuous function and Z is
some noise term with mean 0. If g is not a polynomial, but X only takes
values in a finite interval, say [−1, 1], we may still approximate g arbitrar-
ily well by taking higher and higher degree polynomials. For example, let
g(x) = exp(x). Then, if we use MDL to learn a polynomial for data D =
((x1, y1), . . . , (xn, yn)), the degree of the polynomial ḧn selected by MDL at
sample size n will increase with n, and with high probability, ḧn converges
to g(x) = exp(x) in the sense that maxx∈[−1,1] |ḧn(x) − g(x)| → 0 (Chap-
ter 16). Of course, if we had better prior knowledge about the problem we
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could have tried to learn g using a model class H containing the function
y = exp(x). But in general, both our imagination and our computational
resources are limited, and we may be forced to use imperfect models.

If, based on a small sample, we choose the best-fitting polynomial ĥ within
the set of all polynomials, then, even though ĥ will fit the data very well,
it is likely to be quite unrelated to the “true” g, and ĥ may lead to disas-
trous predictions of future data. The reason is that, for small samples, the
set of all polynomials is very large compared to the set of possible data pat-
terns that we might have observed. Therefore, any particular data pattern
can only give us very limited information about which high-degree polyno-
mial best approximates g. On the other hand, if we choose the best-fitting
ĥ◦ in some much smaller set such as the set of second-degree polynomials,
then it is highly probable that the prediction quality (mean squared error) of
ĥ◦ on future data is about the same as its mean squared error on the data
we observed: the size (complexity) of the contemplated model is relatively
small compared to the set of possible data patterns that we might have ob-
served. Therefore, the particular pattern that we do observe gives us a lot of
information on what second-degree polynomial best approximates g.

Thus, (a) ĥ◦ typically leads to better predictions of future data than ĥ; and
(b) unlike ĥ, ĥ◦ is reliable in that it gives a correct impression of how good
it will predict future data even if the “true” g is “infinitely” complex. This idea
does not just appear in MDL, but is also the basis of the structural risk mini-
mization approach (Vapnik 1998) and many standard statistical methods for
nonparametric inference; see Chapter 17, Section 17.10. In such approaches
one acknowledges that the data-generating machinery can be infinitely com-
plex (e.g., not describable by a finite degree polynomial). Nevertheless, it
is still a good strategy to approximate it by simple hypotheses (low-degree
polynomials) as long as the sample size is small. Summarizing:

The Inherent Difference between Under- and Overfitting
If we choose an overly simple model for our data, then the best-fitting
point hypothesis within the model is likely to be almost the best predictor,
within the simple model, of future data coming from the same source.
If we overfit (choose a very complex model) and there is noise in our
data, then, even if the complex model contains the “true” point hypothesis,
the best-fitting point hypothesis within the model may lead to very bad
predictions of future data coming from the same source.
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This statement is very imprecise and is meant more to convey the general
idea than to be completely true. The fundamental consistency theorems for
MDL prediction and hypothesis selection (Chapter 15, Theorem 15.1 and
Theorem 15.3), as well as their extension to model selection (Chapter 16),
are essentially just variations of this statement that are provably true.

The Future and The Past Our analysis depends on the data items (xi, yi) to
be probabilistically independent. While this assumption may be substantially
weakened, we can justify the use of MDL and other forms of Occam’s razor
only if we are willing to adopt some (possibly very weak) assumption of the
sort “training data and future data are from the same source”: future data
should (at least with high probability) be subject to some of the same regulari-
ties as training data. Otherwise,D andD′ may be completely unrelated and no
method of inductive inference can be expected to work well. This is indirectly
related to the grue-paradox (Goodman 1955).

MDL and Occam’s Razor
While MDL does have a built-in preference for selecting “simple”
models (with small “parametric complexity”), this does not at all mean
that applying MDL only makes sense in situations where simpler models
are more likely to be true. MDL is a methodology for inferring models from
data, not a statement about how the world works! For small sample sizes, it
prefers simple models. It does so not because these are “more likely to be
true” (they often are not). Instead, it does so because this tends to select
the model that leads to the best predictions of future data from the same
source. For small sample sizes this may be a model much simpler than
the model containing the “truth” (assuming for the time being that such
a model containing the “truth” exists in the first place).

In fact, some of MDL’s most useful and successful applications are
in nonparametric statistics where the “truth” underlying data is
typically assumed to be “infinitely” complex (see Chapter 13 and
Chapter 15).
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1.9 History and Forms of MDL

The practical MDL principle that we discuss in this book has mainly been
developed by J. Rissanen in a series of papers starting with (Rissanen 1978).
It has its roots in the theory of Kolmogorov complexity (Li and Vitányi 1997),
developed in the 1960s by Solomonoff (1964), Kolmogorov (1965) and Chaitin
(1966, 1969). Among these authors, Solomonoff (a former student of the fa-
mous philosopher of science, Rudolf Carnap) was explicitly interested in in-
ductive inference. The 1964 paper contains explicit suggestions on how the
underlying ideas could be made practical, thereby foreshadowing some of
the later work on two-part MDL. While Rissanen was not aware of Solomo-
noff’s work at the time, Kolmogorov’s [1965] paper did serve as an inspi-
ration for Rissanen’s (1978) development of MDL. Still, Rissanen’s practical
MDL is quite different from the idealized forms of MDL that have been di-
rectly based on Kolmogorov complexity, which we discussed in Section 1.4.

Another important inspiration for Rissanen was Akaike’s AIC method for
model selection (Chapter 17, Section 17.3), essentially the first model se-
lection method based on information-theoretic ideas (Akaike 1973). Even
though Rissanen was inspired by AIC, both the actual method and the un-
derlying philosophy are substantially different from MDL.

Minimum Message Length MDL is much closer related to the Minimum
Message Length (MML) Principle (Wallace 2005), developed by Wallace and
his coworkers in a series of papers starting with the groundbreaking (Wal-
lace and Boulton 1968); other milestones are (Wallace and Boulton 1975) and
(Wallace and Freeman 1987). Remarkably, Wallace developed his ideas with-
out being aware of the notion of Kolmogorov complexity. Although Ris-
sanen became aware of Wallace’s work before the publication of (Rissanen
1978), he developed his ideas mostly independently, being influenced rather
by Akaike and Kolmogorov. Indeed, despite the close resemblance of both
methods in practice, the underlying philosophy is very different - see Chap-
ter 17, Section 17.4.

Refined MDL The first publications on MDL only mention two-part codes.
Important progress was made by Rissanen (1984), in which prequential codes
are employed for the first time and Rissanen (1987), who introduced the
Bayesian mixture codes into MDL. This led to the development of the notion
of stochastic complexity as the shortest codelength of the data given a model
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(Rissanen 1986c; Rissanen 1987). However, the connection to Shtarkov’s
normalized maximum likelihood code was not made until 1996, and this pre-
vented the full development of the notion of “parametric complexity.” In the
mean time, in his impressive Ph.D. thesis, Barron (1985) showed how a spe-
cific version of the two-part code criterion has excellent frequentist statistical
consistency properties. This was extended by Barron and Cover (1991) who
achieved a breakthrough for two-part codes: they gave clear prescriptions on
how to design codes for hypotheses, relating codes with good minimax code-
length properties to rates of convergence in statistical consistency theorems.
Some of the ideas of Rissanen (1987) and Barron and Cover (1991) were, as
it were, unified when Rissanen (1996) introduced the normalized maximum
likelihood code. The resulting theory was summarized for the first time by
Barron, Rissanen, and Yu (1998), and is the subject of this book. Whenever
we need to distinguish it from other forms of MDL, we call it “refined MDL.”

1.9.1 What Is MDL?

“MDL” is used by different authors in somewhat different meanings, and it
may be useful to review these. Some authors use MDL as a broad umbrella
term for all types of inductive inference based on finding a short codelength
for the data. This would, for example, include the “idealized” versions of
MDL based on Kolmogorov complexity (page 11) and Wallaces’s MML prin-
ciple (see above). Some authors take an even broader view and include all
inductive inference that is based on data compression, even if it cannot be
directly interpreted in terms of codelength minimization. This includes, for
example the work on similarity analysis and clustering based on the normal-
ized compression distance (Cilibrasi and Vitányi 2005).

On the other extreme, for historical reasons, some authors use the MDL
Criterion to describe a very specific (and often not very successful) model
selection criterion equivalent to BIC (see Chapter 17, Section 17.3).

As already indicated, we adopt the meaning of the term that is embraced
in the survey (Barron, Rissanen, and Yu 1998), written by arguably the three
most important contributors to the field: we use MDL for general inference
based on universal models. Although we concentrate on hypothesis selection,
model selection and prediction, this idea can be further extended to many
other types of inductive inference. These include denoising (Rissanen 2000;
Hansen and Yu 2000; Roos, Myllymäki, and Tirri 2005), similarity analysis and
clustering (Kontkanen, Myllymäki, Buntine, Rissanen, and Tirri 2005), outlier
detection and transduction (as defined in (Vapnik 1998)), and many others. In
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such areas there has been less research and a “definitive” universal-model
based MDL approach has not yet been formulated. We do expect, however,
that such research will take place in the future: one of the main strengths of
“MDL” in this broad sense is that it can be applied to ever more exotic model-
ing situations, in which the models do not resemble anything that is usually
encountered in statistical practice. An example is the model of context-free
grammars, already considered by Solomonoff (1964).

Another application of universal-model based MDL is the type of prob-
lem usually studied in statistical learning theory (Vapnik 1998); see also Chap-
ter 17, Section 17.10. Here the goal is to directly learn functions (such as
polynomials) to predict Y given X , without making any specific probabilis-
tic assumptions about the noise. MDL has been developed in some detail for
such problems, most notably classification problems, where Y takes its values
in a finite set – spam filtering is a prototypical example; here X stands for
an email message, and Y encodes whether or not it is spam. An example is
the application of MDL to decision tree learning (Quinlan and Rivest 1989;
Wallace and Patrick 1993; Mehta, Rissanen, and Agrawal 1995). Some MDL
theory for such cases has been developed (Meir and Merhav 1995; Yaman-
ishi 1998; Grünwald 1998), but the existing MDL methods in this area can
behave suboptimally. This is explained in Chapter 17, Section 17.10.2. Al-
though we certainly consider it a part of “refined” MDL, we do not consider
this “nonprobabilistic” MDL further in this book, except in Section 17.10.2.

1.9.2 MDL Literature

Theoretical Contributions There have been numerous contributors to re-
fined MDL theory, but there are three researchers that I should mention ex-
plicitly: J. Rissanen, B. Yu and A. Barron, who jointly wrote (Barron, Ris-
sanen, and Yu 1998). For example, most of the results that connect MDL
to traditional statistics (including Theorem 15.1 and Theorem 15.3 in Chap-
ter 15) are due to A. Barron. This book contains numerous references to their
work.

There is a close connection between MDL theory and work in universal
coding ((Merhav and Feder 1998); see also Chapter 6) and universal prediction
((Cesa-Bianchi and Lugosi 2006); see also Chapter 17, Section 17.9).

Practical Contributions There have been numerous practical applications
of MDL. The only three applications we describe in detail are a crude MDL
method for learning Markov chains (Chapter 5); a refined MDL method for
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learning densities based on histograms (Chapter 13 and Chapter 15); and
MDL regression (Chapter 12 and Chapter 14). Below we give a few repre-
sentative examples of other applications and experimental results that have
appeared in the literature. We warn the reader that this list is by no means
complete! Hansen and Yu (2001) apply MDL to a variety of practical prob-
lems involving regression, clustering analysis, and time series analysis. In
(Tabus, Rissanen, and Astola 2002; Tabus, Rissanen, and Astola 2003), MDL is
used for classification problems arising in genomics. Lee (2002a,b) describes
additive clustering with MDL. use MDL for image denoising and apply MDL
to decision tree learning. use MDL for sequential prediction. In (Myung,
Pitt, Zhang, and Balasubramanian 2000; Myung, Balasubramanian, and Pitt
2000), MDL is applied to a variety of model selection problems arising in
cognitive psychology. All these authors apply modern, “refined” versions of
MDL. Some references to older work, in which “crude” (but often quite sen-
sible) ad-hoc codes are used, are (Friedman, Geiger, and Goldszmidt 1997;
Allen and Greiner 2000; Allen, Madani, and Greiner 2003; Rissanen and Ris-
tad 1994; Quinlan and Rivest 1989; Nowak and Figueiredo 2000; Liu and
Moulin 1998; Ndili, Nowak, and Figueiredo 2001; Figueiredo, J. Leitão, and
A.K.Jain 2000; Gao and Li 1989). In these papers, MDL is applied to learn-
ing Bayesian networks, grammar inference and language acquisition, learn-
ing decision trees, analysis of Poisson point processes (for biomedical imag-
ing applications), image denoising, image segmentation, contour estimation,
and Chinese handwritten character recognition respectively. MDL has also
been extensively studied in time-series analysis, both in theory (Hannan and
Rissanen 1982; Gerenscér 1987; Wax 1988; Hannan, McDougall, and Poskitt
1989; Hemerly and Davis 1989b; Hemerly and Davis 1989a; Gerencsér 1994)
and practice (Wei 1992; Wagenmakers, Grünwald, and Steyvers 2006).

Finally, we should note that there have been a number of applications, es-
pecially in natural language learning, which, although practically viable, have
been primarily inspired by “idealized MDL” and Kolmogorov complexity,
rather than by the Rissanen-Barron-Yu style of MDL that we consider here.
These include (Adriaans and Jacobs 2006; Osborne 1999; Starkie 2001) and
my own (Grünwald 1996).

Other Tutorials, Introductions and Overviews The reader who prefers a
shorter introduction to MDL than the present one may want to have a look
at (Barron, Rissanen, and Yu 1998) (very theoretical and very comprehen-
sive; presumes knowledge of information theory), (Hansen and Yu 2001)
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(presumes knowledge of statistics; describes several practical applications),
(Lanterman 2001) (about comparing MDL, MML and asymptotic Bayesian
approaches to model selection), or perhaps my own (Grünwald 2005), which
is part of (Grünwald, Myung, and Pitt 2005), a “source book” for MDL the-
ory and applications that contains chapters by most of the main contributors
to the field.

Rissanen (1989,2007) has written two books on MDL. While outdated as
an introduction to MDL, the “little green book” (Rissanen 1989) is still very
much worth reading for its clear exposition of the philosophy underlying
MDL. (Rissanen 2007) contains a brief general introduction and then focuses
on some recent research of Rissanen’s, applying the renormalized maximum
likelihood (RNML) distribution (Chapter 11) in regression and denoising,
and formalizing the connection between MDL and Kolmogorov’s structure
function. In contrast to myself, Rissanen writes in accord with his own prin-
ciple: while containing a lot of information, both texts are quite short.

1.10 Summary and Outlook

We have discussed the relationship between compression, regularity, and
learning. We have given a first idea of what the MDL principle is all about,
and of the kind of problems we can apply it to. In the next chapters, we
present the mathematical background needed to describe such applications
in detail.


