
Preface

How does one decide among competing explanations of data given limited
observations? This is the problem of model selection. A central concern in
model selection is the danger of overfitting: the selection of an overly com-
plex model that, while fitting observed data very well, predicts future data
very badly. Overfitting is one of the most important issues in inductive and
statistical inference: besides model selection, it also pervades applications
such as prediction, pattern classification and parameter estimation.

The minimum description length (MDL) principle is a relatively recent
method for inductive inference that provides a generic solution to the model
selection problem, and, more generally, to the overfitting problem. MDL is
based on the following insight: any regularity in the data can be used to
compress the data, i.e. to describe it using fewer symbols than the number
of symbols needed to describe the data literally. The more regularities there
are, the more the data can be compressed. Equating “learning” with “finding
regularity,” we can therefore say that the more we are able to compress the
data, the more we have learned about the data. Formalizing this idea leads to
a general theory of inductive inference with several attractive properties:

1. Occam’s razor. MDL chooses a model that trades off goodness-of-fit on
the observed data with “complexity” or “richness” of the model. As such,
MDL embodies a form of Occam’s razor, a principle that is both intuitively
appealing and informally applied throughout all the sciences.

2. No overfitting, automatically. MDL methods automatically and inherently
protect against overfitting and can be used to estimate both the parame-
ters and the structure (e.g., number of parameters) of a model. In contrast,
to avoid overfitting when estimating the structure of a model, traditional
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methods such as maximum likelihood must be modified and extended with
additional, typically ad hoc principles.

3. Bayesian interpretation. Some (not all) MDL procedures are closely re-
lated to Bayesian inference. Yet they avoid some of the interpretation dif-
ficulties of the Bayesian approach, especially in the realistic case when it
is known a priori to the modeler that none of the models under consider-
ation is true. In fact:

4. No need for “underlying truth.” In contrast to other statistical methods,
MDL procedures have a clear interpretation independent of whether or
not there exists some underlying “true” model.

5. Predictive interpretation. Because data compression is formally equiva-
lent to a form of probabilistic prediction, MDL methods can be interpreted
as searching for a model with good predictive performance on unseen
data. This makes MDL related to, yet different from, data-oriented model
selection techniques such as cross-validation.

This Book

This book provides an extensive, step-by-step introduction to the MDL prin-
ciple, with an emphasis on conceptual issues. From the many talks that I
have given on the subject, I have noticed that the same questions about MDL
pop up over and over again. Often, the corresponding answers can be found
only — if at all — in highly technical journal articles. The main aim of this
book is to serve as a reference guide, in which such answers can be found
in a much more accessible form. There seems to be a real need for such an
exposition because, quoting Lanterman (2001), of “the challenging nature of
the original works and the preponderance of misinterpretations and misun-
derstandings in the applied literature.” Correcting such misunderstandings
is the second main aim of this book.

First Aim: Accessibility I first learned about MDL in 1993, just before fin-
ishing my master’s in computer science. As such, I knew some basic proba-
bility theory and linear algebra, but I knew next to nothing about advanced
measure-theoretic probability, statistics, and information theory. To my sur-
prise, I found that to access the MDL literature, I needed substantial know-
ledge about all three subjects! This experience has had a profound influence
on this book: in a way, I wanted to write a book which I would have been
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able to understand when I was a beginning graduate student. Therefore,
since with some difficulty its use can be avoided, there is no measure theory
whatsoever in this book. On the other hand, this book is full of statistics and
information theory, since these are essential to any understanding of MDL.
Still, both subjects are introduced at a very basic level in Part I of the book,
which provides an initial introduction to MDL. At least this part of the book
should be readable without any prior exposure to statistics or information
theory.

If my main aim has succeeded, then this book should be accessible to (a)
researchers from the diverse areas dealing with inductive inference, such as
statistics, pattern classification, and branches of computer science such as
machine learning and data mining; (b) researchers from biology, economet-
rics, experimental psychology, and other applied sciences that frequently
have to deal with inductive inference, especially model selection; and (c)
philosophers interested in the foundations of inductive inference. This book
should enable such readers to understand what MDL is, how it can be used,
and what it does.

Second Aim: A Coherent, Detailed Overview In the year 2000, when I
first thought about writing this book, the field had just witnessed a number
of advances and breakthroughs, involving the so-called normalized maximum
likelihood code. These advances had not received much attention outside of a
very small research community; most practical applications and assessments
of MDL were based on “old” (early 1980s) methods and ideas. At the time,
some pervasive myths were that “MDL is just two-part coding”, “MDL is
BIC” (an asymptotic Bayesian method for model selection), or “MDL is just
Bayes.” This prompted me and several other researchers to write papers and
give talks about the new ideas, related to the normalized maximum likeli-
hood. Unfortunately, this may have had somewhat of an adverse effect: I
now frequently talk to people who think that MDL is just “normalized max-
imum likelihood coding.” This is just as much of a myth as the earlier ones!
In reality, MDL in its modern form is based on a general notion known in the
information-theoretic literature as universal coding. There exist many types of
universal codes, the main four types being the Bayesian, two-part, normal-
ized maximum likelihood, and prequential plug-in codes. All of these can
be used in MDL inference, and which one to use depends on the applica-
tion at hand. While this emphasis on universal codes is already present in
the overview (Barron, Rissanen, and Yu 1998), their paper requires substan-



xxviii Preface

tial knowledge of information theory and statistics. With this book, I hope
to make the universal coding-based MDL theory accessible to a much wider
audience.

A Guide for the Reader

This book consists of four parts. Part I is really almost a separate book. It pro-
vides a very basic introduction to MDL, as well as an introductory overview
of the statistical and information-theoretic concepts needed to understand
MDL. Part II is entirely devoted to universal coding, the information-theoretic
notion on which MDL is built. Universal coding is really a theory about data
compression. It is easiest to introduce without directly connecting it to induc-
tive inference, and this is the way we treat it in Part II. In fact though, there
is a very strong relation between universal coding and inductive inference.
This connection is formalized in Part III, where we give a detailed treatment
of MDL theory as a theory of inductive inference based on universal cod-
ing. Part IV can once again be read separately, providing an overview of the
statistical theory of exponential families. It provides background knowledge
needed in the proofs of theorems in Part II.

The Fast Track — How to Avoid Reading Most of This Book I do not
suppose that any reader will find the time to read all four parts in detail.
Indeed, for readers with prior exposure to MDL, this book may serve more
like a reference guide than an introduction in itself. For the benefit of readers
with no such prior knowledge, each chapter in Part I and Part II starts with
a brief list of its contents as well as a fast track–paragraph, which indicates
the parts that should definitely be read, and the parts that can be skipped at
first reading. This allows a “fast track” through Part I and Part II, so that the
reader can quickly reach Part III, which treats state-of-the-art MDL inference.
Additionally, some sections are marked with an asterisk (∗). Such sections
contain advanced material and may certainly be skipped at first reading.

Also, the reader will frequently find paragraphs such as the present one, which
are set in smaller font. These provide additional, more detailed discussion of
the issues arising in the main text, and may also be skipped at first reading.

Also, at several places, the reader will find boxes like the one below:
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Boxes Contain the Most Important Ideas
Each chapter contains several boxes like this one. These contain the most
important insights. Together, they form a summary of the chapter.

To further benefit the hurried reader, we now give a brief overview of each
part:

Part I Chapter 1 discusses some of the basic ideas underlying MDL in a
mostly nonmathematical manner. Chapter 2 briefly reviews general mathe-
matical and probabilistic preliminaries. Chapter 3 gives a detailed discussion
of some essential information-theoretic ideas. Chapter 4 applies these no-
tions to statistical models. This chapter gives an extensive analysis of the
log-likelihood function and its expectation. It may be of interest for teachers
of introductory statistics, since the treatment emphasizes some, in my view,
quite important aspects usually not considered in statistics textbooks. For
example, we consider in detail what happens if we vary the data, rather than
the parameters. Chapter 5 then gives a first mathematically precise imple-
mentation of MDL. This is the so-called crude two-part code MDL. I call it
“crude” because it is suboptimal, and not explicitly based on universal cod-
ing. I included it because it is easy to explain — especially the fact that it
has obvious defects raises some serious questions, and thinking about these
questions seems the perfect introduction to the “refined” MDL that we intro-
duce in Part III of the book.

Although some basic familiarity with elementary probability theory is assumed
throughout the text, all probabilistic concepts needed are briefly reviewed in
Chapter 2. They are typically taught in undergraduate courses and can be
found in books such as (Ross 1998). Strictly speaking, the text can be read
without any prior knowledge of statistics or information theory — all concepts
and ideas are introduced in Chapters 3 and 4. Nevertheless, some prior expo-
sure to these subjects is probably needed to fully appreciate the developments
in Part II and Part III. More extensive introductions to the statistical concepts
needed can be found in, for example (Bain and Engelhardt 1989; Casella and
Berger ; Rice 1995).

Part II Part II then treats the general theory of universal coding, with an
emphasis on issues that are relevant to MDL. It starts with a brief introduc-
tion which gives a high-level overview of the chapters contained in Part II.
Its first chapter, Chapter 6, then contains a detailed introduction to the main



xxx Preface

ideas, in the restricted context of countable model classes. Each of the four
subsequent chapters gives a detailed discussion of one of the four main types
of universal codes, in the still restricted context of “parametric models” with
(essentially) compact parameter spaces. Chapters 11, 12, and 13 deal with
general parametric models — including linear regression models — as well
as nonparametric models.

Part III Part III gives a detailed treatment of refined MDL. We call it “re-
fined” so as to mark the contrast with the “crude” form of MDL of Chap-
ter 5. It starts with a brief introduction which gives a high-level overview
of refined MDL. Chapter 14 deals with refined MDL for model selection.
Chapter 15 is about its other two main applications: hypothesis selection (a
basis for parametric and nonparametric density estimation) and prediction.
Consistency and rate-of-convergence results for refined MDL are detailed in
Chapter 16. Refined MDL is placed in its proper context in Chapter 17, in
which we discuss its underlying philosophy and compare it to various other
approaches.

Compared to Part I, Part II and Part III contain more advanced material,
and some prior exposure to statistics may be needed to fully appreciate the
developments. Still, all required information-theoretic concepts — invari-
ably related to universal coding — are once again discussed at a very basic
level. These parts of the book mainly serve as a reference guide, providing
a detailed exposition of the main topics in MDL inference. The discussion
of each topic includes details which are often left open in the existing litera-
ture, but which are important when devising practical applications of MDL.
When pondering these details, I noticed that there are several open ques-
tions in MDL theory which previously have not been explicitly posed. We
explicitly list and number such open questions in Part II and Part III. These
parts also contain several new developments: in order to tell a coherent story
about MDL, I provide some new results — not published elsewhere — that
connect various notions devised by different authors.

The main innovations are the “distinguishability” interpretation of MDL for
finite models in Chapter 6, the “phase transition” view on two-part coding
in Chapter 10, the luckiness framework as well as the CNML-1 and CNML-
2 extensions of the normalized maximum likelihood code in Chapter 11, and
the connections between Césaro and standard KL risk and the use of redun-
dancy rather than resolvability in the convergence theorem for two-part MDL
in Chapter 15.
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I also found it useful to rephrase and re-prove existing mathematical the-
orems in a unified way. The many theorems in Part II and Part III usu-
ally express results that are similar to existing theorems by various authors,
mainly Andrew Barron, Jorma Rissanen, and Bin Yu. Since these theorems
were often stated in slightly different contexts, they are hard to compare.
In our version, they become easily comparable. Specifically, in Part II, we
restrict the treatment to so-called exponential families of distributions, which
is a weakening of existing results. Yet, the theorems invariably deal with
uniform convergence, which is often a strengthening of existing results.

Part IV: Exponential Family Theory The theorems in Part II make heavy
use of the general and beautiful theory of exponential or, relatedly, maximum
entropy families of probability distributions. Part IV is an appendix that con-
tains an overview of these families and their mathematical properties. When
writing the book, I found that most existing treatments are much too re-
stricted to contain the results that we need in this book. The only general
treatments I am aware of (Barndorff-Nielsen 1978; Brown 1986) use mea-
sure theory, and give a detailed treatment of behavior at parameters tending
to the boundaries of the parameter space. For this reason, they are quite
hard to follow. Thus, I decided to write my own overview, which avoids
measure theory and boundary issues, but otherwise contains most essential
ideas such as sufficiency, mean-value and canonical parameterizations, du-
ality, and maximum entropy interpretations.
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Mistakes
Of course, the many mistakes which undoubtedly remain in this text are
all my (the author’s) sole responsibility. I welcome all emails that point
out mistakes in the text!

Among those who have helped shape my views on statistical inference, two
people stand out: Phil Dawid and Jorma Rissanen. Other people who have


