
CHAPTER 1

INTRODUCTION

Queueing network models are the most widely used analytical method

for estimating the standard performance measures of computer systems . With

these models , calculations of throughput are typically within 5 % of actual

values , and mean response times are within 30 % [DENN78] . Their success has

been enhanced by simple and efficient solution algorithms and good

commercial packages such as BEST / ! [BGS80 , BUZ E78a] , CADS [IRA77] and

RESQ [S A U E82a , S A U E82b] .

The simplicity of analytic queueing network models limits their utility .

They cannot directly represent certain behaviors common in computer

systems . These behaviors include simultaneous resource possession , queueing

for passive resources such as memory and semaphores , preemptive priorities at

some servers , and the blocking of one server by the actions of another .

Ignoring these behaviors can lead to substantial errors in the estimates of

performance measures . Because of the computational efficiency of queueing

network models , analysts have sought ways to represent these behaviors by

extending queueing network models . A bewildering array of approximate

models has been the result .

In reviewing the literature on approximate queueing models , one is led

to a long list of questions . For example :

1 . When should one replace a subnetwork with a flow equivalent server ?

MET AMODELING2

2 . When should one add servers to the model to represent queueing delays

for nonphysical resources ?

3 . When should one split a server into two or more separate servers ?

4 . Why does iteration show up in some approximations but not in others ?

5 . If iteration is used , does it converge to a unique solution ?

6 . Is there any systematic way of analyzing the errors in the solutions of

models ?

7 . Is there any common structure in the process es by which each model was

constructed ?

The goal of the research reported in this monograph has been to critically

study some well known approximate methods and find answers to these

questions . The result is a metamodel of the process of developing system

models .

This metamodel is a general model of the modeling process . We will

show , by considering a large number of examples , that the structure of the

modeling process envisioned in metamodeling is capable of representing a

wide variety of approximations . The central principle of this structure is that

an approximation involves mapping a " complex " model into one or more

" simpler " models , solving these simpler models , and mapping the solution back

into an estimate of the solution of the original model . We employ two general

techniques , behavior sequence transformations and state space

transformations , to develop , describe and analyze model transformations .

Results of our study include a catalog of common transformations , several

new methods for analyzing preemptive priority scheduling , the method of

aggregate servers for analyzing serialization delays , general theorems about

convergence of iterative approximations , and the discovery that some

queueing systems may have multiple stable solutions for key performance

quantities . These convergence theorems enabled us to prove the convergence

3INTRODUCTION

of

1) The Bard -Schweitzer approximation for large networks [SCHW79] ,

1.1.1 Single Resource Models

A single resource model is the

model . It is a description of a service

completion or service process , a

units of a resource that renders the se

waiting customers at the resource .!

elementary form of a queueing

comprising an arrival process , a

2) The Jacobson - Lazowska method for simultaneous resource possession

[JACO82] in a simpler way , and

3) The shadow CPU approximation for preemptive priority scheduling

[SEYC77] .

In the remainder of this chapter , we review analytic queueing network

models ; they are the focus of the most of the discussion in later chapters . We

then review the principal approximations reported in the literature . We next

set forth the plan of the subsequent chapters , in which the components of

modeling process are taken up . We conclude the chapter with a review of

related prior work .

1 . 1 Queueing Network Models

In this section , we provide a brief overview of queueing network models .

We begin with single resource models and then discuss queueing networks ,

multiple workloads , product form solutions , computational algorithms , and

robustness of queueing network models . We conclude the section by

reviewing the history of the queueing networks .

MET AMODELING4

(1.1)

solution reduces to

p (n) = (1 - ~S)(~S)" . (1.2)

1.1.2 Queueing Network Models

A queueing network models is a collection of single resource models

The parameters of thisarranged in

model are :

V .
,

the same configuration as a real system.

- Number of times each customer visits (or requests service at)

device i .

algorithm for computing p (n) , the proportion of time n customers are in the

queue , given the parameters

>.. (or >..(n)) - mean arrival rate (possibly conditioned on n) , and

S (or S (n)) - mean service time (also possibly conditioned on n).

If N is the maximum number of customers observed at the server , the solution

is [BUZ E76a] :

1

p (0) = - Nn - l - -,.. c- - -
1 + I II >"(k) S (k +1)

n = 11 = O

n - l

p (n) = p (0) II >..(k) S (k + 1) , for n = 1, . . . ,N .
1 = 0

Under the assumptions of Homogeneous Arrivals (HA : >..(n) = >") and

Homogeneous Service (HS: S (n) = S) [BUZ E76a, DENN78 , BRUM82], the

�

tion or service process, C denotes the number of units of resources that render the
serviceD specifies the maximum number of customers that can be queued at the
server , and E is the size of the population . Some examples of this notation are

M /M / 1 - Poisson (M arkov) input , exponential (M arkov) service times , 1 server ;
M / G / 1 - Poisson (M arkov) input , General (arbitrary) service time distribution
function , 1 server ;
GI /M / 1 - General , Independently distributed interarrival times , exponential
(M arkov) service times , 1 server.

INTRODUCTION 5

s ; (or S ; (n)) - mean service time per visit to device i .

An analytical model typically gives an algorithm for computing the

solution p (! !) = p (nt , . . . , nK) , the proportion of time nt customers are

present at device I , . . . , and nK customers are at device K . If the arrival rate

is specified , the model is open . If the total number of customers

N = n t + . . . + nK is fixed , the model is closed .

1 . 1 . 3 Multiple Workloads

Customers in the network can be differentiated by tagging them with

their type or class r ; a network with multiple classes of customers is called a

multiclass network . Separate parameters Vir and Sir are specified for each

class ; separate performance measures are computed for each class . Some

classes may be open (i . e . , their >" r ' S are given and the number of customers of

these classes in the system is not fixed) , and others may be closed (i . e . , their

N r are specified) . A network with both open and closed classes is called a

mixed network . The state of the system is typically defined to be

! ! = nil " " , nlR) , ' " , (nKl " " , nKR ,

where nir is the number of class r customers present at device i .

1 . 1 . 4 Product For D) Solution

The direct solution p (! !) of a general queueing network would involve a

very expensive solution of the global balance equations [HERZ75 , STEW78] .

Under the following assumptions , however , p C! !) has the " product formw and is

efficiently computable :

a . One Step Behavior : A state transition can occur only due to a departure

of a single customer from one resource to another or outside the system ,

or due to arrival of a customer from the outside ,

MET AMODELING6

b . Flow Balance : The number of arrivals (in each class) at a device must

equal the number of departures (in each class) from the device,

c. Device Homogeneity : A device 's service rate for a particular class does

not depend on the state of the system in any way except for the total

device queue length and the designated class's queue length . This

assumption essentially implies that :

. Single Resource Possession: A customer may not be present (waiting

for service or receiving service) at two or more devices at the same

time ,

. No Blocking : A device renders service whenever customers are

present ; its ability to render service is not control led by any other

device .

. Independent Customer Behavior : Interaction among customers is

limited to queueing for physical devices , e.g., there should not be

any synchronization requirements .

. Local Information : A device 's service rate depends only on local

queue length and not on the state of the rest of the system .

. Fair Service : If service rates differ by class, the service rate for a

class depends only on the queue length of that class at the device

and not on the queue lengths of other classes. This means that the

server does not discriminate against customers in a class depending

on the queue lengths in other classes.

d . Routing Homogeneity : The customer routing should be state independent .

Because of their intuitive meaning , we will call the assumptions (c) and (d)

the autonomous behavior assumptions . With the assumptions (a)-(d) , the

solution has following product form :

where f ; is a factor affecting the overall device service rate depending on the

INTRODUCTION 7

PI_) - Fl~l) . . . F I_)\!! - - -- - - ! - \!!KG - . (13)

In this expression G is a normalization constant such that all probabilities sum

to 1, !!; = (n; l ' . . . , n;R), where n;r is the number of class r customers at

device i , and F; is the device factor for device i :

F;C!!;) = f ;(n;1+ . . . +n;R) [n llV ;rS;rU))r=1 j =1 (1.4)

total queue length .

Another set of assumptions for "product form ~ solution is provided by

Baskett , Chandy, Muntz and Palacios [BASK75] ; these assumptions are:

a. Allowable Scheduling Disciplines: The following disciplines are allowed :

First -Come-First -Served (FCFS), Processor Sharing (PS) , Last-Come-

First -Served-Preemptive-Resume (LCFS-PR), and Infinite Server (IS) or

delay service.

b. Service Time Distribution : The service times at a FCFS server should be

exponentially distributed ; moreover, the Sir should be same for all

classes. The service times at PS, LCFS-PR, and IS can have any

distribution that has a rational Laplace transform . The mean service

times for different classes may also be different .

c. State Dependent Service Rates: The service rate (time) at a FCFS server

can depend only on the total queue length of the server. The service

rate for a class at PS, LCFS-PR and IS servers can also depend on the

queue length for that class, but not on the queue length of other classes.

Moreover , the overall service rate of a subnetwork can depend on the

total number of customers in the subnetwork .

Algorithms

network

MET AMODELING8

interarrival

succeSSive

distributed .

d.

WILL 76]. Open

Time Distribution : In open networks , the time between

customer arrivals for a class should be exponentially

No bulk arrivals are permit ted .

Note that the fair service and autonomous operation assumptions are central

to this set of assumptions too . These assumptions lead to the condition of

" local balance " [CHAN77] , i .e . , the flow rate into a state due to arrival of a

class r job equals the flow rate out of that state due to departure of a class r

job . When local balance conditions are met , the system has a product form

solution .

computational algorithms is the strong point of

Two major algorithms are the Convolution algorithm

and the Mean - Value - Analysis algorithm

These algorithms are alternative ways to

the recursive structure of the product form solution and are specified

these two basic algorithms are presented in

1 . 1 . 6 Robustness and Accuracy

Performance measures predicted by queueing networks are usually

sufficiently accurate : utilization estimates are typically within 5 % of observed

values and response time and queue length estimates are generally within 30 %

[DENN78] .

Closed queueing networks are robust . The

estimates and homogeneity assumptions are

performance measures [GORD80 , SUR I83b ,

1.1.5 Fast Computational

The existence of fast

product form solution .

[BRUE80 , BUZE7I , BUZE73]

[REIS80, SCHW80, ZAHO8I].

exploit

in Box 1 .1 . Variations of

[CHAN80 , HOYM82 , LAM83] .

errors in the parameter

usually not magnified in

INTRODUCTION 9

MET AMODELING10

performance measures are , however , more sensitive to the errors . Both the

parameter estimation errors and the homogeneity assumption errors may be

magnified by a factor of the order of l / (lU) , where U is the server

utilization [BRUM82] .

1 . 1 . 7 I Ilstory

Theory

Open models , usually single server models , have been studied for long

time . Kleinrock [KLEI75] provides an extensive treatment . Jackson [JACK57 ,

JACK63] , and Gordon and Newell [GORD67] showed that the solution of a

closed network of exponential servers has the product form . Baskett , Chandy ,

Muntz , and Palacios extended the range of the product form networks to

include multiclass , mixed networks with a variety of state dependent behavior

[BASK75] . Limited forms of state dependent routing are allowed [TOWS80] .

The set of product form scheduling disciplines has been extended to include

Random Selection [SPIR79] , and Load Balancing [AFSH82] .

After noticing that many statements about performance are valid

without requiring any distributional assumptions , Buzen and Denning

developed an operational approach to queueing network modeling [BUZ E76a ,

BUZ E76b , DENN78 , BUZ E80a , BUZ E80b] . This approach does not require

any distributional assumptions ; it relies only on the measurable quantities of

the system ; its homogeneity assumptions are testable . Within this approach ,

analysis of errors is possible [BRUM82 , DENN82 , KOW A81 , SUR I83b] .

11

Practice

Single resource models have long been used to analyze specific aspects of

behavior , e.g., scheduling disciplines , and buffer allocation [COFF73 ,

The first successful application of queueing network models to computer

systems was Scherr 's machine repairman model of the Compatible - TimeSharing

-System [SCHE67] . Other applications rapidly followed [BUZE71 ,

KELL76 , MOOR71 , S A U E75a] . The growth of the applications has been

aided by commercially available packages such as BEST / 1 [BGS80 , BUZ E78a] ,

CADS [IRA77] and RESQ [S A U E82a , S A U E82b] .

Algorithms

Though the concept of product form solution was known since 1957

[JACK57] , queueing network model applications did not really take off before

1971, when Buzen reported an algorithm for computing the normalization

constant G for exponential networks and computing performance measures in

terms of G [BUZE71] . The algorithm has now been extended to compute

performance measures for all product form networks [BRUE80 , SAUE83] .

The other major algorithm , Mean Value Analysis , computes the performance

measures directly [REIS80 , SAUE83 , SCHW80 , ZAHO81] . Some variations of

these algorithms are also available . CCNC (Coalesce Computation of

Normalizing Constants) is useful when storage is at a premium , and LBANC

(Local balance Algorithm for Normalizing Constants) is useful when the

number of queues is small but the number of customers is very large

[CHAN80] . Tree -Convolution [LAM83] and Tree -MV A [HOYM82] algorithms

are useful for analyzing large , but sparse networks . Distributed systems are

examples of such sparse networks .

INTRODUCTION

system

KLEI75 , KLEI76] .

In addition to the exact solution algorithms discussed above , some

algorithms have been developed to solve large networks approximately . They

will be discussed in Section 1.2.8.

1.2 Approximate

servers or changing

represents the actual

12 MET AMODELING

assumptions

General service time distribution at FCFS servers ,

Memory queueing ,

Simultaneous resource possession in I / O subsystems ,

Preemptive priority scheduling ,

Serialization (critical sections) ,

Internal program con currency (FORK / JOIN) , and

Blocking .

We conclude the section by considering approximate methods for solving large

product form networks . Throughout , unless otherwise stated , we assume a

closed network with population N , servers I , . . . , K , visit ratios { V k } , service

functions { Sk (n) } , and system throughput Xo .

Models of Complex Computer Systems

Many practical computer systems violate the homogeneity

required for product form solution . Approximate methods for such cases

modify the network model of the system , by adding

parameters , until a product form model is found that

behaviors accurately [CHAN78] .

In this section we briefly review some of the principal approximate

methods . We first present some methods that overcome following nonhomogeneous

behaviors :

INTRODUCTION 13

1.2 . 1 General Service Time Distribution at an FCFS Server

Occasionally , the service time of a customer at a FCFS server has a high

coefficient of variation (CV 1) . Networks that include such servers in

general do not have a product form solution because the exponential service

time assumption is violated . (The CV of an exponentially distributed random

variable is 1.) Consequently , ignoring high CV can lead to significant errors .

We now discuss some methods for modeling systems containing FCFS servers

with non -exponential (CV :#: 1) service times .

Shum and Buzen [SHUM76 , SHUM77] observed that within a

multiplicative factor F ; (n) (Eqns . (1.1) and (1.2)) in the product form solution

is , in fact , the queue length distribution for an M / M / l /N queue . They

proposed that F ; (n) for a general service time server can be taken as the

queue length distribution of an M / G / l /N queue . Assuming a value for

network throughput , Xo , they compute arrival rates to each queue and use the

M / G / l /N queueing function to compute the device factors . The device

factors are then used to evaluate device utilizations from the product form

solution algorithms . From the device utilizations , they evaluate the output

rate of each queue . If the output rates do not match the arrival rates , the

procedure is repeated with another guess for network throughput Xo . The

algorithm normally provides fairly accurate solutions but occasionally fails to

find a flow -balanced solution .

Chandy , Herzog and Woo (CHW) [C H A N75a] construct K submodels ,

M l ' . . . , M K , one for each queue . The submodel M k consists of the general

server k and a flow -equivalent server that represents its complement in the

network . The complementary network consists of exponential servers whose

initial service functionS ; (n), is computed from input parameters by ignoring

method [C H A N75a].

MET AMODELING14

Table 1.1: Service function correction in the CHW

Throughput Queue Length Service Function

X}./V}. < Xo(lE) I /n, > N (l + E) S; (n) = S; (n)Xo/X}.
~ - A . .

X}. / V}. > Xo(l + E) ~ /n, < N (lE) S}.(n) = S}.(n)Xo/X}.

I(Xi/V}' - Xo)/Xol < E I(Iln , - N)/N I ~ ES ; (n) = S; (n)Ijnj /N
I(Xi /Vi - Xo)/Xol ~ E I(I /nN)/N 1< ES ; (n) = S; (n)XO/Xi

Note : These service functions are used only in characteriz -
ing the complementary network in M ; , i :1: k . The
two queue model Mi represents the queue k as general

server . A rationale for these corrections is provided
in [TOLO79] .

the CV . Ml is solved to obtain the mean queue length I Tl and the throughput

Xl for server k . Because the M l 'S are solved independently , the sum of the

queue lengths (Il IT!) may not equal N , the network population; moreover,

the local throughputs (Xl 'S) may not satisfy the forced -flow law (Xl = V lXO ,

where Xo = (Il Xl IV 1)/K). When this happens, the S; (n)'s are corrected as

shown in Table 1 .1 , and the M l ' s are solved with the new estimates of the

service functions .

Marie 's method [MARI78] is similar to the CHW method . Marie treats

each submodel M k as an M (A(n))/G / 1 queue, where A(n) is the arrival rate to

the queue and equals the throughput of the complementary network with

Nn customers . Assuming that queue k 's service time has a rational

Laplace transform, he computesS; (n) directly rather than by solving for nk

and Xk and using Table 1.1. (Marie's method always has Iknk = N and

XO= VkXk.) The initial value of S; (n) is obtained by ignoring the CV of

queue k , and then , is iteratively corrected .

INTRODUCTION 15

�

~
-

.

a
Q

C
~

~
~

n til

til

.

. . . , A

- -

~

~

~

~

.
. II ~

~

>
- I II II

~

~

~

~

~

1 -

]

~

" " N
I

II

~

t ' :] N

+

~

- I ~

k

-
0 ~ II IN " " I ' "

0
~

~

~

It ' :] ~

- +

~

~

N
N

I ~

-
. ~

~

I

P
' t - N

-
C

II
(

b
"

1
<

(
b

"
1

.

Balbo has extensively studied and compared these three methods

[BALB79]. His recommendation is to ignore the problem if the CV is small

(0.5 < CV < 2). Otherwise, Shum and Buzen's method should be used if the

network contains only one FCFS server with general service times. If there

are two or more non-exponential servers in the network, Marie's method is

preferable. The CHW method is not robust and is not as good as other two

methods. It is also much more cumbersome to implement.

Zahorjan, Lazowska and Garner's method is based on the theory of

near-decomposability [ZAHO83]. We illustrate their method with an example.

Assume that the service time at the CPO can be represented as a two stage

hyperexponential server as shown in Figure 1.1. With the assumption that

JiLl J.Lz and p (1 - p), the states of the network can be decomposed

into two nearly-decomposable sets. The first set represents the states in which

stage 2 (rate J.Lz) of the hyperexponential is not in service; these states are the

states of the network M 1 in which the CPO is replaced by stage 1 (rate JiLl) of

MET AMODELING16

the hyperexponential . The second aggregate represents the states in which the

stage 2 of the hyperexponential server is always busy ; these states are

isomorphic with the states of the network M2 which has N - 1 customers and

in which the CPU is replaced by the stage 2 of the hyperexponential . The

conditional probability distribution p (s Ii) , the probability that the system is

in state s given that the system is in the aggregate i , can be obtained by

solving product form model Mi . The unconditional steady state probability is

p (s) = p (s Ii) wi '

where Wi is the probability that the system is in aggregate i ; the wi are given

by :

J1iP
wI = - - - - ,. ,- -

J12 + U1J11(1 - p) '

\V 2 = 1 - wI ,

where U 1 is the utilization of stage 1 in MI . Other performance measures are

the weighted averages of the measures of M 1 and M 2.

1 . 2 . 2 Memory Queueing

Memory queueing occurs in two stages . First a job has to wait for

memory partition or a scheduling token to become available before it can

compete for CPO and I / O devices . Then , once scheduled , it experiences

paging delays that depend on the current level of multiprogramming . Because

a job holds two limited resources at the same time (memory and CPO or an

110 device) , the autonomous behavior assumption is violated and the system

does not have a product form solution .

INTRODUCTION 17

Most approximations for this problem are applications of the

decomposition principle [C H A N75b , DENN78] . Consider a network with a

subsystem containing non -homogeneous behavior . Construct a flow -equivalent

server for the subsystem by analyzing the subsystem in isolation under fixed

load . Replace the subsystem by its flow -equivalent server in the original

network . If the state transitions within the subsystem occur at a much greater

rate than interactions between the subsystem and the rest of the system , not

much error is introduced by this replacement [COUR75 , COUR77] .

In the memory queueing problem , we replace the central subsystem by a

flow -equivalent server and equat the memory queue with the queue at the

flow -equivalent server . This method is directly applicable to single class

networks [BRAN74 , C H A N75b , COUR75 , COUR77] and is examined in detail

in Section 25 .

A direct application of the decomposition technique to multiclass

networks produces a flow -equivalent server with service functionS

Er (n l ' . . . , nR) . A network containing servers with such service functions

does not have a product form solution . Sauer [S A U E81a] used global balance

analysis to solve it . Brandwajn [BRAN82] , and Lazowska and Zahorjan

[LAZO82] used the following approximation :

SE, (n) ~ SE, (ii 1- . . . - ii , - 1' n , ii, +1- . . . - iiR) '

where SE, (ii 1- . . . - ii , - 1' n , ii , +1- . . . - iiR) is the service time for class r when

there are n class r and ~ class j customers U :1= r) in the subsystem, and nj

is the average number of class j customers in the subsystem . With this

approximation , the network is effectively decomposed into R single class

product form networks . These networks areiteratively solved to determine

if l ' . . . , if R. This approximation is examined further in Chapter 4.

MET AMODELING18

1.2.3 Simultaneous Resource Possession in I / O Subsystems

Memory queueing was an instance of simultaneous resource possession .

Another instance of simultaneous resource possession occurs when a disk is

blocked and cannot transfer data because another disk is using the channel .

If this blocking is neglected , the resulting model usually underestimates the

response time . Several researchers have developed approximate solutions for

this problem . We discuss some of them below .

Wilhelm [WILH77] models each disk as an (open) M / G / 1 queue. The

basic service time of disk includes the time for seek, preparation (or search) ,

and data transfer phases. It is elongated to include the effect of channel

contention . A model for the probability that the channel (the path to the

CPO) is free when requested is used to compute elongation of the service

time . His model assumes that only a single path exists for each disk and disks

are not shared between different CPOs . This assumption simplifies the

calculation of the free path probability . Bard removes this assumption and

computes the free path probability by using the maximum entropy principle

[BARD80] .

Jacobson and Lazowska [JACO82] analyze a closed system containing

simultaneous resource possession . Their method generates two models that

provide parameters for each other . The first model represents the channel

queueing as a pure delay whose value comes from the other model ; it

computes the delay caused by seek , search and data transfer operations . The

second model represents the seek-search -transfer queueing as pure delay

whose value comes from the first model ; it computes the channel queueing .

This technique is applicable to a variety of simultaneous resource possession

problems and is discussed in detail in Chapter 3.

1.2.4 Priority Scheduling

INTRODUCTION 19

shadow server is degraded to reflect the contention from higher - priority

customers . This method is discussed in detail in Chapter 2 . Improvements on

this method are presented in Chapters 3 and 4 .

Bryant and Krzesinski [BRY A83] , and Chandy and Laksmi [CHAN83]

have proposed extensions to Mean Value Analysis (MV A) for analyzing

priority systems . They introduce no new servers ; instead , they modify the

formula for response times at priority servers (see Box 1 .2) . These two

methods are further discussed in Chapter 4 .

Agrawal , Buzen and Shum [AGRA84] analyze systems with preemptive

priority scheduling at CPU by replacing the CPU by a set of equivalent

servers , one server for each priority level . The service times at the equivalent

servers are such that the response times at the priority CPU assuming Poisson

arrivals are equal to that at the equivalent servers . This method is discussed

in Appendix C .

1 . 2 . 5 Serialization

Critical sections and database record access are two examples of

serialized or single - threaded processing . An exact queueing network model of

systems with serialization does not have a product form solution because jobs

simultaneously hold a " serialization token " and physical devices .

Computer systems containing devices at which some job classes have

priority over others violate the fair service assumption necessary for product

form solution .

Sevcik [SEVC77] analyzed such systems by replacing preemptive priority

server with a shadow server for each priority class . The service rate of a

Response time expressions for MY A-like priority algorithms.

MET AMODELING20

Box 1.2:

Response time in MV A at a FCFS , PS, LCFS -PR server

R

Rir~) = Sir (I + I 1T;j ~ - 1,))
j = 1

(! , = (nl " " ,nR) with nr = 1 and nj = 0, j * r .)

Bryant -Krzesinski 's response time formula
for a preemptive priority server

r

Sir + I 1T;j (N. - 1,)S ij
j = 1

R. (N) =, r \!.!.. r - 1

1 - ~ S..V ..X . (N)~ ' J ' J J \!.!..
j = 1

Chandy -Laksmi 's response time formula
for a preemptive priority server

r

Sir + I Nil (N. - 1,)Sij
j = 1

R. (N) = - - - -, r \!.!.. r - 1

1 - ~ S..V ..X .(N - n ..(N) I .)~ ' J ' J J \!.!.. ' J - - J
j = 1

(Class j has priority over class r if j < r .)

INTRODUCTION 21

Agrawal and Buzen [AGRA83] use a shadow server for each critical

section in a given computer system. The shadow server's service time is the

mean time for that phase of serialized processing. Service times of other

devices is degraded to represent concealment of the load imposed by jobs in

serialized phases. The details of this method are presented in Chapter 3.

Agre and Tripathi [AGRE82] model reentrant software by representing

each software module as a separate server. They allow a. module to receive

processing only from one device. The service rate of each module server is a

function of the number of customers at other modules that execute on the

same device. This model is solved using global balance analysis.

Smith and Browne [S~1IT80b] divide a job 's execution into three phases.

Phase 1 is the time from job initiation until the critical section request. Phase

2 is the critical section processing phase. Phase 3 is the processing after the

critical section execution . They include a FCFS server WQ (for Wait Queue)

to simulate the delay for critical section entry . The service time of WQ, SwQ'

equals Rz, the residency time of Phase 2. On switching form Phase 1 to Phase

2, the customer is routed to ' VQ with the probability

[Rl + R)]N- lPWQ = 1 - R~ R; +R; ,

where Ri is the residency time of Phase i . This routing is independent of the

number of customers presently in the critical section; hence it does not

represent the con currency con st rain t satisfactorily .

Jacobson and Lazowska [JACO83] use a two level model for the system.

The low level model computes critical section residency times given a fixed

load equal to the average number of active non-serialized customers and the

average number of customers in each critical section. The high level model

uses these residency times to determine the average number of customers

MET AMODELING22

inside each critical section and the average number of customers outside all

critical sections . The two models areiteratively solved .

Thomasian [THOM83] has developed two different techniques for

modeling serialization delays . First is an iterative technique that is similar to

Smith and Browne ' s techniqueS M I T80b] considered earlier ; it uses an

improved estimate for PwQ . The second is based on state aggregation : the

states are aggregated such that the number of customers in each processing

phase is the same for all states in an aggregate state . The aggregate state

model is solved using global balance solution techniques . This technique is

further discussed in Chapter 4 .

1 . 2 . 6 Internal Program Con currency

Internal program con currency results from FORK - JOIN operations and

overlapped CPU - I / O processing within a job . FORK and JOIN operations

imply nonautonomous behavior of jobs ; the child process es are created

together and the parent process cannot continue until all child process es have

finished . Similar remarks hold for overlapped CPU - I / O processing . (Compare

with nonautonomous behavior of disks and channels) . No product form

solution exists for such systems .

Towsley , Chandy and Browne [TOWS78] model CPU - I / O overlap by

replacing the I / O subsystem by its composite flow - equivalent server . The state

equations of the resulting network are solved numerically .

For process es containing FORK and JOIN operations , Smith and Browne

[S M I T80a] divide jobs into primary and secondary chains . A primary chain

job is the one with the largest expected concurrent execution time (i .e . , the

one which is expected to perform JOIN last) ; other jobs form a secondary

chain . The time from the process (primary job) initiation until the FORK plus

INTRODUCTION 23

the time from the secondary job JOIN until the primary job completion is

represented as pure delay for secondary jobs .

Heidelberger and Trivedi [HEID82 , HEID83] have developed

approximate models for analyzing asynchronous con currency (i . e . , FORK but

no JOIN) and synchronous con currency (i . e . , both FORK and JOIN) . In their,

asynchronous con currency model [HEID82] , forked jobs are represented as

open classes . The throughput of the forked jobs should equal the throughput

of the parent jobs because a parent process forks one child process of each

kind . The model is iteratively solved until balanced throughputs are obtained .

They present two techniques for modeling FORK and JOIN operations

[HEID83] . The first one involves state aggregation : all states in which the

number of active jobs of each type (parent or child process r) is the same are

aggregated and the resulting model is solved using global balance solution

methods . The second method employs a multiclass model in which each

parent and child job is in a separate class . This model also employs additional

delay servers to represent the mean synchronization delays between the

process es ; these delays areiteratively computed . (The second method is

similar to that used by Smith and Browne [S M I T80a] .) All three techniques

are discussed further in Chapter 4 .

1 . 2 . 7 Blocking

Blocking is a general phenomenon that occurs when the operation of a

server is suspended because of the unavailability of resources elsewhere in the

network . Examples include :

. finite buffers - - in store and forward communication networks a node

cannot transmit a message until the destination node has a buffer

available ,

MET AMODELING

model each queue

buffers at node i .) .

24

.

.

A variety of

of some of these techniques follows .

Labetoulle and Pujolle [Lr -

finite buffer size at each node by

as a GI / G / l / M ;

. Ethernet - - a node cannot transmit because another node is transmitting

on the bus ,

token rings - - a node is blocked until it gets the token , and

I / O subsystems - - a disk is blocked because the channel is busy

transferring data for another disk .

Because of the nonautonomous behavior of these resources , a queueing

network with blocking does not have a product form solution .

techniques have been developed to deal with this problem . A brief discussion

,f \ BE80] study packet switched networks with

analyzing each queue separately . They

queue with loss (M i is the number of

The arrival process (GI) at a queue i is the conjunction of

the completion process es (G) of the queues whose output comes to i . If an

arrival from queue j to queue i is rejected , it returns to j and a new service

of the returned job immediately begins at j . Each queue is solved using

diffusion approximation [GELE75 , BADE76] , and these solutions are

reconciled iteratively .

Aimes and Lazowska propose a simple markov model for the

symmetrical Ethernet control policies [ALME79] . In this model , the message

arrival rate is independent of the number of messages already queued , and the

message delivery rate of the network when n nodes desire to transmit equals

the network capacity times the instantaneous throughput efficiency of the

network , E ;

1

E = -

l + . ! - = ~ '

A

where A is the message transmission (the Ether acquisition) probability ;

INTRODUCTION 25

A = (1 - l / n) n - l .

Gelenbe and Mitrani [GELE82] model the Ethernet control policies by

using a two step iterative procedure . In the first step , they analyze each

station in isolation assuming that global parameters , e .g . , probability of

blocking and probability of determining that a transfer is in progress , are

known . In the second step , the results of these single station analyses are

used to obtain characteristics of global load and to compute the unknown

parameters for station analyses .

Kuehn [KUEH79] analyzes

each node i as an M / G / 1 server .

determined by analyzing token

is transmitted at node i

from node i (c ") .

the waiting time of the customer .

1.2.8

R
I n;j C!!j=l

+

nr
Xr~) = K--- '

IV ;rR;r;=1

nir ~) = VirRir (!!);(r (!!) , i

These equations are solved for !! = (Nt , . . . ,NR)' The cost of

 token rings and cyclic service by treating

The service time parameters of server i are

scans in two parts : scans in which no message

(c ') , and the scans in which a message is transmitted

The means and variance of C' and c " are used to compute

Approximate Analysis of Large Product Fonn Networks

Although product form solution algorithms are efficient , their cost rises

exponentially with the number of classes in the network . The cost can

become prohibitive for sufficiently large networks . As an illustration ,

consider the MV A equations for a load independent network :

Rir ~) = Sir (1 - 1, , i = 1, . . . ,K ,

= l , . . . , K .

= (Q) to !! = ~

MET AMODELING26

The principle is to estimate the queue length nir ~ - 1,) from 1T;r ~) in

the response time equations of MV A , thereby obviating the recursion to

obtain nir ~ - 1,) . The resulting iterative algorithm is :

solving this network is RK II : =1(N r + 1) multiplications and and equal

number of additions [ZAHO80] . (The same amount of computation is

required for the Convolution algorithm .) This number grows rapidly with

number of classes R , number of customers in each class, N l ' . . . ,N R; it can

become very large . For example a network with 15 servers , 5 classes, and 10

customers in each class requires about 48 million operations . The storage

requirement for this network is 322,102 words for the Convolution algorithm

and 1,390,895 words for the MV A algorithm . The computational costs for

networks with load -dependent servers are much higher ; if all the 15 servers in

the above example are load -dependent , the number of required operations is

about 1500 times as great , and the storage requirement for MV A is about 9

times (2 times for Convolution) as great .

There are two main approach es to reducing this cost . The first approach

is to avoid recursion in the computation by solving for the mean values at a

single , given load H. . The second approach is to reduce the complexity by

reducing the number of classes (R) , number of customers in each class (N r) '

or the number of servers (K) in the network . The second approach is

discussed and analyzed in detail by Zahorjan [ZAHO80] ; an overview of the

the techniques appears later in Chapter 4. Following examples illustrate the

first approach .

Bard -Schweitzer Approximation [SCHW79] :

INTRODUCTION 27

NInitially assume Il;r~) =~, i = 1,... ,K, r = 1,... ,R.K
Repeat

.

- ~

alization of the

estimates queue

Linearizer Approximation [CHAN82]:

Chandy and Neuse's Linearizer algorithm is a gener
Bard-Schweitzer approximation [CHAN82]. It iterative1y

lengths at loads ~ , ~ - ! j and ~ - ! j - 1 to eliminate the need for
recursion. The estimator is

1T;r~) +NrDirj(~)
nir ~ - 4) = N - 1

!-- nir~) + (Nr - l)Dirr~)Nr

.

-

'iir(H.)
!!.!:._- 1

N~ 1Z;r~)

ii;r~) = n;r (~)

ii. 'N - 1.) =,r ~ -J
j =#= r

j = r

R
Rir(~) = Sir (1 + I1T;j (!Y - 1,))j=1

NrX (N) = - ---- -r - K
I v irRir (~)i=1

n;r~) = Xr V ;rR;r~)
until In;r~) - 1T;r~) I < E.

- -

28 METAMODELING

1T;r (~ - ! j) n;r (~) .
- - - J * r

Nr N ,

D;rj ~) = 1T;r (~ - 1,) 1T;r ~) .
- - - - J = r .

N , - 1, N ,

The Linearizer algorithm assumes that D ;rj is a constant . Note that assuming

D;rj (~) = 0 gives the same expressions as the Bard -Schweitzer algorithm .

Bound Analysis [DENN78 , ZAHO82 , E A G E83a]:

A third class of approximations for the solutions of large networks is

based on bounds on performance measures . Bounds are , however , available

only for single class networks . Bottleneck analysis [DENN78] gives asymptotic

upper bounds on network throughput

Xo(N) ~ min[~ , -1_),~ V; S; VbSb

where subscript b indicates the bottleneck device , i .e., the device with largest

V .S . .
I I

Balanced Job Bound analysis [ZAHO82] provides tighter bounds by

comparing the given system with two balanced systems : a faster one in which

all devices have the demand equal to the average (IV ;S; /K), and a slower

one in which all devices have demand equal to the bottleneck (V b Sb). The

bounds are :

NN
- - - - - - - - - - - - - ~ X (N) ~ - .

[IV;S;] IV;S;- - - - - + N - 1 VbSb (K + N - 1) - - - -
VbSb K

Note that IV ;S;/VbSb is the number of devices in a network in which the

demand at each server is Vb S b' and I V; S; /K is the average demand per

device in a balanced K server network .

I N T Ra

A hierarchy of upper and lower bounds on throughput can be obtained

by analyzing system with initial queue length bounds for IT; (no), and then

using MV A equations to compute bounds for no.N customers

[E A G E83a]. A tradeoff exists between the cost and the tightness of bounds:

smaller no means higher cost and potentially tighter bounds.

The goal of this work is to set forth a single description of the modeling

process underlying all the approximations reviewed above. This description is

based upon a general queueing network model of the system. This model

directly corresponds to a set of states and state transitions ; the transitions are

represented as a transition rate matrix . There are three approach es to

obtaining a solution of a model:

1. Direct : Solve the global balance equations implied by the transition rate

matrix on the state space.

IDUCTION 29

1.3 Plan or the Monograph

Most presentations of the approximations reviewed above begin with the

specific nonhomogeneous behavior to be modeled, propose a solution , and

illustrate its validity with a few examples. Few try to fit their models into any

larger scheme of modeling . Fewer still include systematic studies of errors or

validations of their proposals. Consequently , it is difficult for the observer to

appreciate the generality of the result or safely apply the method in new

contexts.

These difficulties hamper communication among researchers,

practitioners , and students. They limit the complexity of the problems that

can be solved. With increasing complexity of models, the situation only

worsens.

MET AMODELING30

2. Sampling : Observe a sample path (behavior sequence) of the system , or

of a faithful simulation , and estimate the desired performance metrics .

3. Approximation : Transform the model to a simpler one , solve it , and use

the results as an estimate of the original solution .

This monograph focuses on approximation .

Chapter 2 shows that the modeling process can be viewed as a series of

simple steps , each of which is is the construction of a transformation from a

given model (Mo) to a simpler but less accurate model (M) . The modeler

must specify a forward map that gives the parameters of M in terms of the

parameters and the performance measures of Mo ; and a reverse map that gives

the performance metrics of Mo in terms of those of M . The exact solution of

M 0 consists of solving the state space equations for Mo . The approximate

solution consists of three steps :

1. Map forward to M .

2 . Solve M .

3. Map reverse to Mo .

The goal is that these three steps be much faster than a direct solution of Mo

without significant loss of accuracy .

In Chapter 2 we show that the above basic pattern can be used

hierarchically -- i .e., the model M can be further transformed and simplified .

We also show that iteration arises naturally in the solution of models -- i .e.,

the three basic steps may need repetition to solve for unknown metrics in Mo .

We illustrate the generality of this description by applying it to some of the

principal approximations reviewed earlier .

Chapter 3 studies the class of approximations based on adding extra

servers , called shadow servers , to represent the additional queueing delay

caused by nonhomogeneous behavior in the original system . An important aid

INTRODUCTION 31

in model development is the behavior sequence transformation , a picture of

the way a typical job uses resources as it moves through the system . The

method is used to show how the Sevcik shadow CPU approximation and the

Jacobson -Lazowska surrogate server approximation can be derived . It is then

used to derive a new approximation , the aggregate servers method for

modeling serialization .

Chapter 4 generalizes further by characterizing the state spaces

underlying models and the ways in which the modeling process manipulates

these spaces. The resulting description of model transformations is compact .

We use state space transfor ~ ations to develop a better model , based on a load

dependent shadow CPU , for the preemptive priority systems . We also catalog

a set of common transformations and illustrate them ; they are load

concealment , state aggregation , server aggregation , load separation , class

aggregation , load scaling , response time modeling , and delay server

introduction .

Chapter 5 takes up consistency requirements and convergence proofs for

iterative algorithms . We explain why convergence proofs are difficult to

obtain in performance modeling . Then , based on the monotonicity properties

of queueing networks , we propose two practical techniques for proving

convergence . We use these techniques for proving convergence of Bard -

Schweitzer algorithm , the Jacobson -Lazowska method for simultaneous

resource possession , and the shadow CPU algorithm for preemptive priority at

CPU . The basic theorem about convergence predicts the possibility of two or

more stable solutions for some networks . This prediction is corroborated with

the shadow CPU algorithm , which correctly predicts two possible values for

high -priority CPU utilization of a simulated system .

MET AMODELING32

Chapter 6 concludes the monograph by outlining the metamodeling

methodology and providing a perspective .

Appendix A presents numerical studies comparing Sevcik ' s original

shadow CPO algorithm , our modifications of the algorithm , the Bryant -

Krzesinski priority algorithm , and the Chandy - Laksmi priority algorithm .

Appendix B extends the aggregate server method for open and multiclass

mixed networks .

Appendix C presents a general technique for developing approximate

analysis methods for a large class of problems . This technique involves

replacing a non - product form subsystem by a set of equivalent servers such

that the response time at the equivalent servers under an assumed arrival

process is same as that at the subsystem . The technique was developed after

the metamodeling framework had been formulated . Therefore , it illustrates

the use fulness of the research reported in the main body of this monograph .

AppendixD presents some considerations for design and simulation of

preemptive priority systems .

As a running example throughout this work , we use a system with

preemptive priority scheduling at CPU . In Chapter 2 , Sevcik ' s algorithm

applied to this problem illustrates how iteration arises in the basic modeling

pattern . In Chapter 3 , behavior sequence transformations applied to this

problem lead to a better approximation extending Sevcik ' s . In Chapter 4 ,

state space transformations applied to this problem lead to an even better

approximation with a load - dependent server . In Chapter 5 , it illustrates the

role of consistency requirements , exemplifies one of the techniques for

proving convergence and exhibits multiple solutions in some cases . In

Appendix C , response time preservation (RTP) transformation applied to this

problem yield another efficient solution technique . Each time , we learn

INTRODUCTION

something new about the preemptive priority systems and their modeling

through the medium of this example.

33

1.4 Related Work

Our review of approximate solution techniques in Section 1.2 showed a

variety of studies employing heuristics that seem to work but which have not

been studied systematically for their general properties . Relatively little effort

has been made to understand the process of approximate model development .

This section reviews the few works that have .

An early approach to solving complex models of computer systems is

based on the concept of near -decomposability ; it was proposed by Simon and

Ando [SIMO61] and applied to queueing systems by Courtois [COUR77]. The

basic idea is simple . Start with a state space that accurately describes the

system . Aggregate subsets of states such that (1) the transitions within a

subset can be analyzed by assuming that the transitions between subsets do not

exist , and (2) the transitions between subsets can be studied without regard to

the transitions within subsets .2 Each aggregate can be solved for its state

occupancies internally as if it were a closed system . A macro model is solved

for the probability of being in each aggregate . The probability of being in a

state is estimated as the product of the two foregoing probabilities .

The process of aggregating the states can be recursively applied to obtain

a hierarchy of state -models . Courtois has studied the requirements for near -

decomposability and the errors introduced by hierarchical aggregation

[CQUR77] . In many computer system applications , the errors are small . He
- - - -

2 . If such an aggregation is possible , then system is nearly -decomposable . An intuitive
condition for ncar -decomposability is that the transitions within a subset of states be
much more frequent than the transitions from the subset to other subsets (i .e., the rest
of the states) .

ME 1"' AMODELING34

also showed that if the service rate of resource Rt . - 1 is an order of magnitude

higher than the service rate of resource Rt . , resources Ro RL can be

aggregated one by one to obtain a linear hierarchy of aggregate resources

A o. AL , where At . is an aggregate of Rt . and At . - 1.

Chandy , Herzog and Woo ' s " Norton ' s Theorem " , discussed in Section

1 .2 .2 on memory queueing , is another method to aggregate resources

[C H A N75b] .3 In contrast to Courtois ' s method , the Norton ' s theorem has its

roots in complete decomposability of product form networks : any set of

resources in a product form network is exactly replaceable by its composite

flow -equivalent server . Vantilborgh et ale have shown that this approach does

not introduce significant errors in non -product form networks if the routing

matrix is nearly -decomposable [V ANT80] .

Another general approach to model development was used by Browne et

ale [BROW75] . They used a macro model of the system in which major

subsystems are represented as single servers . They obtained the parameters of

these servers by analyzing micro models for corresponding subsystems . This

approach is hierarchical and permits successive refinements of the model .

Similar to Browne et alis hierarchical approach is the isolation method

proposed by Labetoulle and Pujolle [LABE80] . They first partition the system

into N solvable subsystems and define the input and output interfaces

- - - -

3. Rccall , thc scrvice functionS (n) of the equivalent scrver is determined by computing
the throughput X (n) of the subsystcm in isolation under fixcd load n and setting

S (n) = l / X (n) . This proccss is the cquivalent of setting the service time of other
rcsourccs to lcro , or "short -circuiting " them . In an analogy with electrical circuits ,

Chandy , llcrzog and Woo call this technique as an application of Norton 's Theorem .
Dcnning and BUlen call it "On -line behavior = Off -line bchavior " because we have

equated its on -line (in -systcm behavior) with its off -line (in isolation) behavior
[DENN78] .

INTRODUCTION 35

(process es) for each subsystem. They then iteratively solve the subnetworks to

obtain a consistent solution for the original network .

These approach es are similar in spirit but different in details . The major

similarity is their use of the principle of hierarchically reducing a complex

model to simpler models. The differences arise from their historical roots ,

their domains of apparent applicability , and their solution algorithms . The

differences can easily mask the strong underlying similarities . One of the

purposes of this work is to identify the general modeling process being used

and show how existing approximate models illustrate this process.

