
Chap tcr 1
A Meta-Rule Treatment for
English Wh- Constructions

Lynette Hirschman1
Paoli Research Center

Unisys Defense Systems

Abstract

This paper describes a general metarule treatment of English wh-
constructions (relative clauses, and questions) in the context of a broad -coverage
logic grammar that also includes an extensive metarule treatment of co-ordinate

conjunction . ' Vh-constructions pose difficulties for parsing , due to their introduction
of a dependency between the wh-word (e.g., which) and a corresponding gap

in the following clause: This is the book which I thought you told me to refer to
() . The gap can be arbitrarily far away from the wh-word , but it must occur
within the clause, or tIle sentence is not well -formed , as in *The book whicll I
read it .

A meta -rule treatment has several advantages over an Extraposition
Grammar -style treatment : a natural delimitation of the gap scope, the ability
to translate / compile the grammar rules , and ease of integration with conjunction

. \ Vh-constructions are handled by annotating those grammar rules that

license a gap or realize a gap . These annotations are converted , via the metarule
component , into parameterized rules . A set of paired input / output parameters
pass the need for a gap from parent to child and left sibling to right sibling until
tIle gap is realized ; once the gap is realized , the parameter takes on a no_gap
value , preventing further gaps from being realized . Tilis 'change of state ' in the
paired parameters ensures that each gap is filled exactly once. The conjunction
metarule operates on the parameterized wh-rules to link gaps within conjoined
structures by unification , so tllat any gap within a conjoined structure is treated
identically for all conjuncts .

I This work has been supported in part by DARPA under contract NOOO14-85-C-OO12,
administered by the Office of Naval Research; and in part by internal U nisys funding .

Wh -constructions are one of the classically difficult parsing problems , because a
correct treatment requires interaction of non-adjacent constituents , namely the
wh-word, which introduces a constituent in clause-initial position , and the following

construction which is missing a constituent (the gap). The gap can be
arbitrarily far from the introducing wh-word (an unbounded dependency) ; in
particular , it can appear within deeply embedded constructions, such as the person

that [1 had hoped [Jane would tell [() to get the books])] , where there are
three levels of embedded structure . It is possible , in principle , to write a rule for
each case where a gap can appear . I Iowever , since the number of constructions

which can accommodate a gap is very large (e.g., most complement types), this
is both extremely labor -intensive and unmaintainable from the grammar writer 's
point of view .

It is also possible to write general rules for gap-realization , e.g., a noun phrase
can be realized as a gap . If this approach is taken , then these rules must be care-
fully constrained to accept gaps only when inside a wh-construction ; in addition ,
the wh-construction must contain exactly one gap . These restrictions involve
complex and expensive search up and down the parse tree , to determine whether
a gap is occurring inside a wh-construction .

In many ways, the wh-problem parallels the problem of co- ordinate conjunction
that has also been a major obstacle for natural language systems . Both

constructions involve gaps, both affect large portions of the grammar , and both
require a major modification to the grammar and/ or to the parsing mechanism
to handle the linguistic phenomena .

There have been two basic approach es to conjunction and wh-constructions in
the computational linguistics literature : modification of the parser (interpreter)
and meta -rules . Of these, the first approach has been far more common . For
conjunction , a number of variants on the ' interrupt ' driven approach have been
presented, both in conventional natural language processing systems [13, 12, 14] ,
and in the context of logic grammars [4] . The same is true for logic grammar
implementations of wh-constructions : the most generally used treatment is the
interpreter-based treatment of Extraposition Grammar (XG) [10] .

Meta -rules offer an appealing alternative to interpreter -based approach es, both
for conjunction and for wh-expressions . Metarules are particularly well -suited to
phenomena that range over a variety of syntactic structures , where the linguistic

description would otherwise require regular changes to a large set of grammar
rules . The use of metarules turns out to be efficient computationally . It

also preserves compactness of the underlying grammar , so that the grammar is
still maintainable from the point of view of the grammar -writer . Finally , the
meta-rule approach avoids additional interpretive overhead and permits translation

/ compilation of grammar rules for efficient execution [5] .
For conjunction , the meta -rule approach forms the basis for a comprehensive

Hirschman2

1.1 Introduction

1. A Meta-Rule Theatment for 1Vh-Constructions 3

treatment of co- ordinate conjunction in Restriction Grammar [7] . Abramson has
provided a generalization of this approach , formulating meta -rules as a specialized
case of metaprogramming [2] . Other researchers have also examined a metarule
approach to related phenomena ; Banks and Rayner , for example , have proposed
a meta -treatment of the comparative [3] .

For wh-constructions , we propose here an approach based on parameterization
of the grammar rules . This is similar in spirit to the GPSG notion of 'slash cate-
gories ' [6] , but in the framework of logic grammar . The use of parameterized rules
to pass gap information has previously been proposed in a logic grammar framework

, specifically as gap- threading [10, 11] . Our approach differs from Pereira 's in
several ways , the most important of which is the use of metarules . The meta -rule

approach provides a much cleaner user interface , making it possible for the grammar
writer to use linguistically motivated annotations to indicate gap license and

gap realization for the un parameter ized BNF definitions in the grammar . The
meta -rules process these annotations to generate parameterized grammar rules
which , in turn , can be translated and compiled for efficient execution . The metarule

treatment also has the property of combining seamlessly with a metarule

treatment of co- ordinate conjunction .

1 . 2 Wh - Constructions : The Linguistic Issues

\ Vh-constructions are one instance of a class of problems referred to as unbounded
dependencies - that is, constructions where the interdependent entities may be
arbitrarily far apart . In the case of wh-constructions , we have a wh -expression
which begins the clause (e.g., who, ~vhat , which , whose book , how , etc .) followed
by a gap at some later point in the clause. The wh-expression may take the place
of a noun phrase , an adjective phrase or an adverbial phrase . These may appear
in the subject , object or sentence adjunct positions .

As the sentences of Figure 1.1 illustrate , there are a variety of wh-constructions ,
namely , relative clauses (including the zero- complementizer case, where an overt
wh-word is absent , as in the person 1 saw) , indirect questions (1 don 't know what
they mean) , wh-questions (~Vhat do you want ?) , and headless relatives (You get
~vhat you deserve) . In addition to these basic types of wh-construction , there
are also some constructions where the wh-expression is embedded inside a noun
phrase (this is the person ~vhose mother 1 met) , with the wh-word whose modifying

a noun phrase ; the subsequent gap is filled by the noun phrase (the person 's

mother) of which the wh-word is a part . There are also wh-constructions embed-
ded in prepositional phrases, as in the person from whom 1 learned it or the door
the key to which is missing .

A wh-construction involves (1) a wh-word (e.g., who) contained in aclause -
initial wh-expression ; and (2) a gap : a constituent omitted in the clause following
the wh-word , e.g., the book which 1 bought () . Relative clauses also have an
antecedent for the relative pronoun (the wh-word) ; for questions , the wh-word

llirschman4

marks the questioned item .
�

Wh = who ; gap = subject NP
The person who () was here
Wh = who (m) ; gap = object NP
1Vho did you see () ?
Wh = that ; gap = object NP
The time that I spent ()
Wh = that ; gap = sentence adjunct adverbial
The time I visi ted them ()
Wh = who (nl) ; gap = embedded object
The person who they told me they had tried to visit ()
Wh = who ; gap = embedded subject
1Vho did they tell you () had visited them ?
Wh = how ; gap = sentence adjunct adverbial
Do you know how they did it () ?

Fi ~ ure 1 . 1 : Wh - constructions in En ~ lish

To regularize a wh-construction , the wh-expression fills in the gap , and the
wh-word is replaced by its antecedent (if in a relative clause).! For example, in
the phrase the movie which I sa\v () , the wh-expression is which and the gap is
after saw. Moving the wh-expression into the gap, we get the movie [I saw \vhich).
Then, replacing \vhich by its antecedent (the movie), we get: the movie [I sa\v the
movie). Similarly for questions, we get \vhat did J'ou see () ? regularized as did
you see what ? In some cases , ho \\'ever , the wh - word is not identical to the whole

wh-expression, as in the bird whose nest I found () . I Iere, the wh-expression is
whose nest, and the wh-word is whose. Again , we replace the gap (the object
of found) by the wh-expression, to get the bird [I found whose nest). Then we
replace the wh-word by its antecedent, namely the bird : the bird [I found the
bird 's nest), preserving the possessive marker from whose. Similarly in a question,
we get: which book did you read () regularized as did you read which book?
To summarize , wh-expressions are introduced by a phrase containing a wh-word ;
following a wh-expression , there must be a gap , and this gap is understood as the
wh-expression, after it has had the antecedent of the wh-word word filled in (if in
a relative clause).

1 The expression replace by its antecedent is used loosely here . What is really meant
is replacing the relative pronoun by a pointer to the antecedent . This preserves co-
referentiality of the relative pronoun and its antecedent , and avoids the dangers of copying

quantifier and other modifier information .

1. A Meta-Rule Treatment [or "Vh-Constructions 5

The need for a gap can be captured very simply by associating with each
grammar definition a set of paired input / output parameters. The input parameter
signals whether or not a gap is need when the node is about to be constructed , at
rule invocation time . The output parameter signals whether that need has been
satisfied once the node is completed , at rule exit . Thus an assertion in a relative

clause has as its input parameter the need for a gap (need _gap) and on exit , that
need must have been satisfied (indicated by a no _gap output parameter). Tllese
parameters , once set, are simply passed along from parent to child , and sibling to
sibling , via unification through linked input / output parameters .

I Iowever , an assertion may also occur as the main clause , where it is not

licensed for a gap . This is illustrated in Figure 1.2 by the (simplified) definition for
. ,

a sentence, as having two alternatives : an assertion or a question . The definition
for assertion itself tllerefore must be neutral with respect to gaps , since that

depends on where it is called from (relative clause or sentence) . The parameters. -
in the assertion definition simply pass along the information from parent to child
and sibling to sibling . If the assertion is in a relative clause, then the need for a

gap is passed along until some node (nullwh in Figure 1.2) realizes tIle gap (that is,
accepts the empty string) , at \vhicll point its output parameter is set to no _gap ;
this is passed along and finally , back up to assertion . If the assertion O(' (' lJr", ::I",

tIle main clause of a sentence, it has no need for a gap and in fact , cannot unify
with the gap realization rule , wllich requires an input parameter of need _gap .

This mechanism enforces tIle constraint tllat only a node with the parameter
pair (need _gapjno _gap) can dominate a gap. Any node whose input and output
parameters are equal has not 'changed state' - that is, wllatever it needed (or
didn ' t need) on rule entry , it will still need at rule exit . Procedurally , any rule
whose input and output parameters are equal cannot unify with the gap realization
rule . The flow of information tllrougll the tree is illustrated in Figure 1.3.

1 .3 The Framework : Restriction Grammar

1' lle proposed solution is presented in the context of Restriction Grammar [8] ,
wllich is the syntactic portion of the PUNDIT text processing system [9] . I Iow-
ever , this solution is only dependent on a few general properties of Restriction
Grammar , which it shares with other formalisms (e.g., Definite Clause Translation
Grammars [1]). A Restriction Grammar is written in terms of context-free DNF
definitions , augmented with constraints (restrictions) on tile well -formedness of
the resulting derivation tree . Constraints operate on the derivation tree , whicll is
constructed automatically during parsing ; restrictions tra \.erse and examine this
tree , to determine well - formedness .

One of tile significant characteristics of Restriction Grammar is the absence

of parameters . Context sensitivity is enforced by the restrictions , which obtain
information from the derivation (parse) tree, ratller than via parameter passing.

Hirschman6

% Simplified BNF definitions before parameterization for
~h- constructions :

Figure 1.2: Simplified Rules with Parameters for Who�

1. A .i\-Ieta-Rule Treatment for 1-Vb-Constructions 7

�

Figure 1.3: Flow of Information in ...mice which they eat.
�

Restriction Grammar is implemented as a form of logic grammar which includes
parameters not just for the word stream, as in DCG's, but also for the automatic

construction of the derivation tree as well. In addition , each grammar rule

is augmented with an associated regularization rule (indicated by a right hand
arrow -+) , which incrementally constructs an Intermediate Syntactic Representation

(ISR) . The ISR is an operator/ operand notation that represents a canonical,
regularized form of the parse tree. The regularization rule composes the I S Rs of
the daughter nodes in the derivation tree into the ISR of the current node, using
lambda reduction. Computation of the ISR for wh-constructions is discussed in
greater detail in section 6.

The Solution: MetaRules1.4

Although parameterization is an elegant and efficient solution, it presents a major
problem - it obscures the declarative aspect of the BNF rules, and correct

parameterization of rules can be tedious and error prone, especially since there
are some 40 object types in our current broad-coverage grammar of English.

The solution is to define a set of annotations to express the required linguistic
constraints: gap introduction via wh-word, gap realization, and gap prohibition .
Figure 1.4 shows a grammar using annotations defined as prefix operators applied
to the node names in BNF definitions. Gap introduction is written as < < , gap
realization as , and gap prohibition as < > . These are used) for example, to
flag the need for a wh-word in a wh-expression, followed by the need to realize a

Hirschman8

gap:

re I _clause : : = wh, assertion .

'I. Conjunction
take _apart ((A, B) , (New A, New B) , In Pararn,Out Pararn) 1 ,. -.

check _head _pararns (Label , Pararns , New Head) : -
insert _pararn (Head, Pararns , New Head) .

insert _pararn (Head, Pararns , New Head) : -
New Head = . . [Head, Pararns] .

Annotations can appear on either the left - hand side or the right - hand side of

BNF definitions . By introducing the gap - requirement on the right - hand side of a

DNF definition , we create a conditional gap requirement . For example , assertion

requires a gap in the context of a relative clause , but not as the normal realization

ofa sentence (main clause) option . Thus we do not want to annotate the definition

for assertion , but the call to assertion in re I _clause . I Iowever , tIle definition for

nullwh is always a gap realization rule , hence it is annotated on the left - hand side

(see Figure 1 . 4) .

In certain cases , we need to define a special gap - requirement rule . For example

, we define a special case for noun - phrase gap realization . This enables us

to block transmission of gap parameters in all other options of noun phrase . To

do this , we use the third annotation < > to set input parameter equal to output

parameters . This annotation is also used to show that the verb can never license a

gap . Similarly , the determiner (det) and prenominal adjective (adjs) rules cannot

license a gap .

The remainder of the rules require no annotation ; their parameters simply

transmit whatever gap information is passed in . Figure 1 .5 shows the parameter -

ized definitions corresponding to the annotated definitions used in Figure 1 .4 .

1 . 5 The MetaRule Component

The meta - rule component for parameterization is implemented as a general procedure

which adds parameters to each production in the grammar . At grammar

read - in time , each rule is parsed and parameterized appropriately , depending on

its annotation . The basic case is no annotation , in which case the following rules

apply (Label is the left - hand side of the BNF definition ; Rule is the right - hand

side) :

'I. Basic case :

wh _ params (Label , Rule , New Label , New Rule) : -

check _ head _ params (Label , In Param / Out Param , New Label) ,

take _ apart (Rule , New Rule , In Param , Out Param) , ! .

% Regular noun phrase rule .
% Parameters block gap
<>noun _phrase : : = lnr .
% Gap realization rule
 noun _phrase : : = nullwh .

1. A Meta-Rule Treatment for ~Vh-Constructions 9

Inr

% Wh- yord Rules

: := [which] ; [who] . wh

% Operator definitions

assertion

subject
< > verb

object

% ANNOTATED SOURCE RULES

: - op (500 , fx , [, , < >]) .

% Relative clause requires gap in assertion .

re I _ clause : : = ~ h , assertion .

: : = subject , verb , object .

: : = noun _ phrase .

: : = * v . % verb can ' t have gap .

: : = noun _ phrase ; assertion . .

: : = In , * n , rn . % lnr =

% left - adjunct + noun + right - adjunct

% Left noun adjunct rules

In : : = det , adjs .

< > det : : = * t ; null . % t = determiner

< > adjs : : = null ; * adj , adjs .

% Right noun adjunct rules

rn : : = null ; pp ; re I _ clause .

pp : : = * prep , noun _ phrase .

% Normal empty string rule

null : : = % .

% Gap realization rule

 null ~ h : : = % .

Figure 1 . 4 : Illustration of Annotated Rules for Wh

% PARAMETERIZED VERSION OF ANNOTATED RULES

I Iirschman10

�

 % Gap propagation rules , generated via MetaRule
assertion (In / Out)

verb (Subj / Verb) ,
noun _phrase (In / Out) .
* v .

noun _phrase (In / Out) ;
assertion (In / Out) .

% Regular noun phrase rule .
% Annotation blocks gap : <>noun_phrase : : = lnr .
noun _phrase (In / In) : : = lnr (In / In) .
% Gap realization rule : noun_phrase : : = nullwh .
noun _phrase (need _gap/ no_gap)

: : = nullwh (need_gap/ no_gap) . % the empty string
lnr (In / Out) : : = In (In , Outl) , * n , rn (Outl / 0ut) .
% Left noun adjunct rules
In (In / Out) : : = det (In / Outl) , adjs (Outl / 0ut) .
det (In / In) : : = * t ; null (In / In) . % <> det : : = * t ; null .

adjs (In / In) : : = null (In / In) ; * adj , adjs (In / In) .
% <>adjs : : = null ; * adj ,
% adjs .

% Right noun adjunct rules
null (In / Out) ; pp(In / Out) ;
rel _clause (In / Out) .
. prep , noun_phrase (In / Out) .

. . -. .

% wh : := [which] ; [who] .: : = [which] ; [who] .

Figure 1.5: Illustration of Parameterized Rules for \ Vh
�

subject (In / Out)
verb (In / ln)
object (In / Out)

rn (In/ Out)

'I. Wh- word Rules
wh(need _wh/ no_wh)

% Operator definitions
: - op(500,fx , [, ,<>]) .

 wh , assertion .

wh (need _wh/ no _wh) ,

assertion (need _gap / no _gap) .

'I. re I _clause
rel _clause (In / ln)

. . -. .

. . -. .

object (Verb / Out) .

'!. <>verb : : = * v .

pp (In / Out)

'I. Normal empty
null (In / In)

'I. Gap realization

. . -

. .

string rule
. . - "
. . - " .

rule

nullwh (need _ gap / no _ gap) : : = % .

1. A Meta -Rule Treatment [or \ Vh-Constructions 11

take _apart (A, New A, In Pararn, Out Pararn A) ,
take _apart (B, New B, Out Pararn A, Out Pararn) .

'!. Non- Terminal

take _ apart (Def , New Def , In Param , Out Param) : -

insert _ param (Def , In Param / Out Param , New Def) , ! .

If there is a terminal symbol , indicated by * , there is clearly no gap , and input

and output parameters are equal ; terminal symbols do not get parameterized :

% Terminal

take _ apart (* Atom , * Atom , In Param , In Pararn) : - ! .

Parameterization of embedded disjunction poses a problem , because there

is a possibility that different disjuncts could instantiate the In / Out parameters

differently . To catch this problem , each disjunct is computed separately , and a

routine same _params checks the results , to make sure that they are consistent ,

before instantiating the parameters . If they are inconsistent , it issues a warning

message . Otherwise , it unifies the inputs of the disjunctions ; likewise , it unifies the

outputs . It is always possible to avoid the warning message by splitting embedded

disjunctions into separate rules , as was done for the noun _phrase definition (see

Figure 1 .4) .

% Disjunction

take _ apart ((A ; B) , (New A ; New B) , In Pararn , Out Pararn) : -

take _ apart (A , New A , In Pararn A , Out Pararn A) ,

take _ apart (B , New B , In Pararn B , Out Pararn B) ,

sarne _ pararns ((A ; B) ,

In Pararn A , In Pararn B , In Pararn , Out Pararn A , Out Pararn B , Out Pararn) , ! .

take _ apart ((A ; B) , _ , _ , -) : - ! ,

print (' $ $ $ Warning : disjunct ') ,

print (A) , print (' ; ') , print (B) ,

print (' may not be parameterized correctly ! ') .

There is also a special case for each annotation , for both the left - hand side

of the rule (check Jiead _params / 3) and the right - hand side (take -t:' lpart / -'l) . For

the case of the wh - word) , the rule is shown below . In this case , the wh - word

functions independently of other nodes in the definition and so it does not hook

up to the input / output parameters .2

2In actuality , the wh - expression needs to pass some information about the wh - word

to the expression containing the gap , and this rule will be revised in section 6 .

12 Hirschman

'/. Needs wh - word

check _head _params <Head , (need _wh/ no _wh) , New Head) : - ! ,

insert _param (Head , (need _wh/ no _wh) , New Head) .

take _apart <Def , New Def , In Param , In Param) : - ! ,

insert _param (Def , (need _wh/ no _wh) , New Def) .

The gap-requirement annotation also disconnects the phrase containing
the gap from its parent and siblings .

'/. Requires gap

check _head _params (Head , (need _gap / no _gap) , New Head) : - ! ,

insert _param (Head , (need _gap / no _gap) , New Head) .

take _apart (Def , New Def , In Param , In Param) : - ! ,

insert _param (Def , (need _gap / no _gap) , New Def) .

Finally , the annotation < > enforces sameness of input and output , precluding
realization of a gap :

'/. < > Rules out gap

check _head _params >Head , In / In , New Head) : - ! ,

insert _param (Head , In / In , New Head) .

take _ apart >Def , New Def , In Param , In Param) : - ! ,

insert _param (Def , In Param / In Param , New~ef) .

This small set of annotations is sufficient to describe the wh - constructions in

English with one minor addition , needed to handle conjunction correctly (see section
7) . Using this small set of annotations, the grammar writer can control the

flow of gap information , without having a grammar cluttered with parameters .
Unification is used to control generation of gaps only where required, so the technique

is also efficient, avoiding extensive search to determine presence/ absence of
a gap .

1 .6 Refinements

The treatment described above leaves open several issues . The first of these is the

proper generation of a regularized syntax (Intermediate Syntactic Representation)
for these constructions . It is clear that the compositional representation of a gap-
containing expression can readily be described as a lambda expression . First , the
wh-expression itself can be viewed as a lambda expression , which prod uces a filler
when applied to the referent of the relative pronoun . Then , the gap-containing

the

This treatment has one unfortunate property : at the time that the lambda
variable is generated for the relative clause, there is no way of knowing where it
should be placed in the lambda expression , that is, where the associated gap in the
assertion will be. For example , the lambda variable associated with a noun phrase
gap could be realized as the subject or the object of the clause. Our solution is to
pass the lambda variable along , embedded in the gap parameters , until the noun -
phrase gap-realization rule rule is reached , at which point the lambda variable
becomes the representation of the gap , shown in Figure 1.6.

\ Ve implement this by treating need ~ ap as a functor with an argument for
the lambda variable . To avoid explicit mention of parameters in the source rules ,
we again use an annotation . Access to the lambda variable embedded in the

1. A Meta -Rule Treatment for Wh -Constructions 13

which when applied to the filler , produces aexpression is a lambda expression ,
completed clause:

=>

Only wh-words in relative clauses have antecedents , namely the head noun
to which the relative clause is attached . ' Vh-words in questions stand for the
questioned element in the clause; in this case, we insert a dummy element wh _gap
to mark the questioned "element .

buy Filler]) , [larnbda(Wh, [Wh]) , wh\ _gap]
buy Filler]) , [wh_gap]

= >

= >

= >

person whose book I borrowed ()

borrow Filler]) , [larnbda(Wh, [Wh ' s book]) ,
= > person1 ,

lambda (Filler , [I

person1]

= > person1 , lambda (Filler , [I borrow Filler]) ,

= > person1 , [I borrow person1 ' s book]

[person1 ' s book]

=>

=>

This treatment extends very nicely to complex wh -expressions , such as the
person whose book I borrowed , which can be represented as follows :

the book which I bought () :

book1, lambda(Filler , [I bought Filler]) ,
[lambda(Wh, [Wh]) ,book1]

book1, lambda(Filler , [I bought Filler]) , [book1]
book1, [I bought book1] .

what did you buy () ?

lambda (Filler , [you

lambda (Filler , [you

[you buy wh _ gap]

In many cases, the wh-word signals the type of gap to be expected . This
information is critical to determining what element should be realized as the gap .
A simple way of handling this is to add a ' gap- type ' argument to the information
being passed in the parameters . Thus for noun _phrase to realize a gap , the gap
type must be np ; for an adverb to realize the gap , we must have gap type adv .
This information is computed in the handling of the wh-expression and passed
along to the gap-licensing construction . Thus the wh-expression does in fact have
to communicate information to the construction dominating the gap . Tilis is
implemented by a slight complication to the metarule . The gap type information
is accessed by the annotation j jtypc (Gap Typc) on the appropriate rule .

Finally , the semantics needs to know what the wh-word word was, so that
it can distinguish between location expressions (the place ~vhere I left it) from
temporal expressions (the month I left) . Of course, there is not always an overt
wh-word to indicate gap type : the time I spent (np gap) vs. the time I visited
(adverb gap) . All of these complications can be llandled by embedding an additional

parameter to carry the actual wh-word (if present) into the basic need_gap

expression . This information is accessed by the annotation j jwll _word (WH)
and is used in constructing the final ISR .

14 II irschman

need _gap parameter is given by the annotation / / larnbda Var (Var) , where / /
is a binary operator .

Figure 1.6 shows several wh-constructions , with their associated ISR rules .
The ISR rule appears on the right hand side of the arrow '-> ' . The node names
within the ISR rule access the I S Rs associated with the named node .

There are other complications in covering wh-constructions . One issue is that
several different types of gap can occur , specifically noun phrase gaps, adverbial
phrase gaps, and even adjective gaps:

The book that [bought (np gap)
\ Vhat did you buy ? (np gap)
The place [put it (adverb gap)
\ Vhere did you get it ? (adverb gap)
The way [did it (adverb gap)
I Iow big is it ? (adjective gap)

1.7 Wh and Conjunction

A major complication occurs in the interaction between wll -constructions and
conjunction . For example , with conjunction , it is not longer true that there is exactly

one gap per wh-expression . \ Vithin a conjoined construction , the conjuncts

must be identical with respect to gaps - if one conjunct has a gap , the other must
have one as well , as in :

[+rel _clause,
copy(N)]]]) .

tail of the list .

1. A Meta -Rule Treatment for "Vh-Constructions 15

<>rn

Figure 1.6: The ISR Rules for Wh-Constructions

% ANNOTATED RULES ~ith ISR

: - op (500 , fx , [, , < > , > <]) .

: - op (400 , xfy , / /) .

: : = null - > lambda (N , [N]) ;

pn - > lambda (N , [N , ! pn]) ;

re I _ clause

- > lambda (N , [N , [- re I _ clause , [+ rel _ clause ,

copy (N)]]]) .

% +Def extracts the head of a list ; - Def get the tail of the list .

re I _ clause : : = vh , assertion / / lambda Var (Gap)

- > [vh , larnbda (Gap , [assertion])] .

assertion : : = subject , verb , object - > [verb , object , subject] .

subject : : = noun _phrase - > noun _phrase .

< > verb : : = * v - > larnbda (Obj , [lambda (Subj , [v , Subj , Obj])]) .

object : : = noun _phrase - > noun _phrase ; assertion - > assertion .

< >noun _phrase
: : = lnr - > lnr .

% gapped noun _ phrase - - lambda variable is ISR .

 noun _phrase / / lambda Var (Gap)

: : = nullvh - > Gap .

 vh : : = [vhich] ; [vho] - > lambda (Filler , [Filler]) .

% PARAMETERIZED VERSION

rn (In / In) : : = null (In / In) - > lambda (N , [N]) .

pn (In / In) - > lambda (N , [N , ! pn]) ;

rel _ clause (In / In)

- > lambda (N , [N , [- re I _ clause ,

% +Def extracts the head of a list ; - Det gets the

rel _ clause (In / In)

: : = ~ h (need _ ~ h / no _ wh) , assertion (need _gap (Gap) / no _ gap)

- > [~ h , lambda (Gap , [assertion])] .

noun _phrase (In / In)

: : = Inr (In / In) - > lnr .

noun _ phrase (need _ gap (Gap) / no _ gap)

: : = null ~h (need _ gap (Gap) / no _ gap) - > Gap .

% omitted dets tor assertion , subject , verb , object .

~ h (need _ ~ h / no _ wh)

: : = [~ hich] ; [who] - > lambda (Filler , [Filler]) .

II irschman0

~

'
" 1 ~

the books which I bought () and you read ()

the letter that () arrived yesterday and I sent () on to you .

* the books which I bought and you read them

but not

In an interpreter -based treatment of wh-constructions , the interpreter needs
to make a special provision for ' resetting ' its state to handle gaps over conjoined
structure - that is, it must account for the fact that there may be two gaps if the
wh-construction has scope over a conjoined structure . One advantage of a mcta -
rule treatment is that this interaction occurs in an extremely natural way : the
meta -rules for wh-expressions are applied first ; then the conjunction metarules
simply copy the parameters of the first conjunct for the second conjunct . Since
these are implemented as logical variables , the parameters of the two conjuncts
are unified , and hence are guaranteed to have exactly the desired behavior .

The ability to factor syntax and semantics cleanly makes it possible to implement
a simple metarule treatment of conjunction [7] . The basic idea is to use

metarules to generate all possible conjoinings as explicit rules . Because there
are no parameters in the rules , and because the ISR rules are compositional
and cleanly factored from the BNF definitions , the meta -rules are very simple .
Figure 1.7 shows the transformation of a (simplified) assertion definition into a
conjoined assertion definition . The resultant rule is a disjunction ; one branch
allows a conjunction , followed by a recursive call to assertion ; the other branch
terminates after application of a restriction . Each branch has associated with it
a separate regularization rule . The original metarules , though simple , are low -
level operations , concerned with maintaining and updating a recorded database
of rules . Recently , a general mechanism to support the statement of metarules
has been proposed [2] this treatment would provide a more elegant statement of
the meta -rules used to handle conjunction in Restriction Grammar .

The current conjunction metarules will handle correctly the interaction of
wh-expressions and conjunction . I Iowever , one minor problem is the preservation
of a source form of the rules , for inspection and editing by the 'grammar -writer .
This requires that conjunction operate on the source (un parameter ized) form
of the rules . By introduction of one addition annotation > < , it is possible to
apply conjunction to the source rule , which can then be parameterized via the
wh meta -rule component . The > < annotation simply ensures that its operand
receives the parameters associated with the left -hand side of the definition ~. Thus
the conjunction metarule generates :

The introduction of the > < annotation requires a slight complication to the

1. A Meta-Rule Treatment for lVh-Constructions 17

�

: := subject , verb , object ,
(* conj _wd, assertion

- > [conj _wd, [verb , subject , object] ,
assertion]

; { w_conj _restr } - > [verb , subject , object]) .

Figure 1.7: Generation of Conjunction via 1\Ieta -Rule
�

assertion : : =
subject , verb , object ,

~ * conj _ ~ d , > < assertion

[verb , object] ,

assertion]

{ ~ _ conj _ restr } - > [verb , subject , object]) .

- > subject ,

object (Verb/ Out) ,

0a
'

C
- I .

C
D

(
)

rt~'
- "

.
P

J
t

/ 1
t

/ 1
C

D
t1rt1

- ' .
0~

[conj_wd,

The result is the following

% Conjunction meta- rule (using ' =>' as infix operator) :
(LHS : := Body - > ISR) =>
(LHS : := Body.

(* conj _wd. LHS - > [conj _wd. ISR. LHS]
; { wconj_restr } - > ISR)) .

% Example

assertion
=>

assertion

of meta - rule applied to assertion definition :

: : = subject , verb , object - > [verb , subject , object] .

 assertion (In / Out) : : =

subject (In / Subj) , verb (Subj / Verb) ,

(* conj _~d , assertion (In / Out)

- > [conj _~d , [verb , subject ,

; { ~_conj _restr } - > [verb , subject ,

code for takc -.apart , but is very straight-forward.
parameterized definition for assertion:

Combining treatment of conjunction and wh-constructions , the system is able
to parse sentences such as: -

The disk which he repaired and she installed is working .

Hirschman18

1.9 Acknowledgements

A number of people have made important contributions to this work . The basic
grammatical insights come from l\farcia Linebarger , the principal developer of our
broad -coverage English grammar . The implementation of the ISR has been done
by John Dowding , who also suggested the appropriate treatment of gaps and of
complex wh-expressions . Deborah Dahl , Rebecca Passonneau and Franc;ois Lang
provided a number of helpful suggestions on the organization of the paper . I am

The disk which she repaired and installed has failed .
~Vhat disk did she repair and he install ?
The disk which was installed but not repaired has been removed .
~Vhich disks and drives are failing ?
tVhat does she believe they will repair and the engineer will maintain ?

1 .8 Conclusion

It is clear that metarules provide a powerful approach to a range of grammatical
problems . In particular , metarules are very well -suited to the handling of

phenomena that require a regular change to a large range of grammatical constructions
. Although the parameterization approach outlined here for wh-constructions

differs consider ably from the metarule treatment of conjunction , they both share
the property of enabling the grammar writer to capture a high -level generalization
that applies to many rules in the grammar . Perhaps even more interesting is the
fact that these metarule treatments appear to combine gracefully , in a way that
does not appear to be readily available through the extended interpreter approach
of Extraposition Grammar .

\ \ 'e plan to investigate other possible applications of parameterized grammar
rules . These include the use of parameters to propagate feature information ,

and the use of parameters to 'compile ' restrictions into unification of parameters ,
for greater efficiency and greater locality within subtrees . By using parameters
instead of explicit constraints on tree-shape, it may be possible to save well -
formed subtrees . The problem of putting together well -formed subtrees can then
be captured via unification , rather than by constraints which must look outside
the local subtree .

As we continue to develop metarule approach es to various grammatical phenomena
, it will be important to abstract from the specifics outlined here and

move towards a more general language for the statement of grammatical metarules
. Just as grammar examples provide fertile ground for the application of

metaprogramming techniques , we expect metaprogramming techniques to provide
more elegant and efficient ways of capturing the metarules .

1. A Meta -Rule Treatment for "Vh-Constructions 19

[2]

[4] Veronica Dahl and 1\Iichael 1\IcCord. Treating co-ordination in logic gram-

[6] G. Gazdar. Unbounded dependencies and co-ordinate structure. Linguistic

[9] MarthaS . Palmer, Deborah A . Dahl , Rebecca J. [Schiffman] Passonneau,
Lynette I Iirschman, I\1arcia Linebarger, and John Dowding. Recovering implicit

information . In Proceedings of the 24th Annual Meeting of the Association
for Computational Linguistics, Columbia University, New York , August

1986.

American Journal of Computa -

Inquiry, 12:155- 184, 1981.

ming and its Applications, pages 244- 261, Ablex Publishing Corp., Norwood,
N.J., 1986.

l Iarvey Abramson . l\.letarules and an approach to conjunction in definite
clause translation grammars : some aspects of grammatical metaprogramming

. In Logic Programming : Proc . of the 5th International Con/. and Symposium

, pages 233- 248, I\IIT Press, Cambridge , MA , 1988.

[3] Amelie Danks and Manny Rayner . Comparatives in logic grammars - two
viewpoints . In Proc . of the 2nd International ~V orkshop on Natural Language
Understanding , Simon Fraser University , VancouverD .C , August , 1987.

[10] F .C.N. Pereira. Extraposition grammars.
tional Linguistics, 7:243- 256, 1981.

also indebted to Dale Miller for interesting insights about the metaprogramming
aspects of the wh-problem.

References

[1] I Iarvey Abramson. Definite clause translation grammar. In Proc. 1984 International
Symposium on Logic Programming, pages 233- 241, Atlantic City ,

NJ, 1984.

mars . American Journal of Computational Linguistics , 9(2) :69- 91, 1983.

[5] John Dowding and Lynette I Iirschman . Dynamic translation for rule pruning
in restriction grammar . In Proceedings of the 2nd International }V orkshop On
Natural Language Understanding and Logic Programming , Vancouver , B .C .,
Canada , 1987.

[7] Lynette I Iirschman . Conjunction in metarestriction grammar . Journal of

Logic Programming , 4 : 299 - 328 , 1986 .

[8] Lynette I Iirschman and Karl Puder . Restriction grammar : a prolog implementation

. In D . II . D . \ Varren and M . Van Caneghem , editors , Logic Program -

aram Rule) ,
Param Rule) ,_) .

Hirschman

Appendix

% Do

%

%

Label

read - inparameter

to capture

Pick up rule ,
. . -

record neT.' rule .

off parameters
. -.

0 -

0

! ,' -.

close

r. . 1eta - Rules for Parameterization of BNF Definitions

generation at rule

metarules .

add parameters , and

Rule : -

wh _ params (Label , Rule , Param Label , P

record (Param Label , (Param Label : : =

Fernando Pereira and Stuart Shieber . Prolog and Natural - Language Analysis .

University of Chicago Press , Chicago , Illinois , 1987 .

C . Raze . A computational treatment of coordinate conjunctions . American

Journal of Computational Linguistics , 1976 . l \ Iicrofiche 52 .

Naomi Sager . Syntactic analysis of natural language . In Advances in Computers

, pages 153 - 188 , Academic Press , New York , NY , 1967 .

\ Villiam A . \ Voods . Progress in natural language understanding : an application

to lunar geology . In AFIPS Conference Proceedings , 1973 .

time ,

% Generate wh - parameters

wh _ params (Label , Rule , New Label , New Rule) : -

make _ head _ params (Label , In Param / Out Param , New Label) ,

take _ apart (Rule , New Rule , In Param , Out Param) .

% Parameterize head of rule

% Case 1 - - head cannot dominate gap ;

make _ head _ params (Head , In Param / In Param , New Head)

cant _ pass _ on (Head) , ! ,

insert _ param (Head , In Param / In Param , New Head) .

% Case 2 - - parameterize head .

make _ head _ params (Head , In Param / Out Param , New Head)

insert _ param (Head , In Param / Out Param , New Head) .

% TAKE APART RULE BODY to insert params

% Semantics Rule

take _ apart ((A - > B) , (New A - > B) , In Param , Outparam)

take _ apart (A , New A , In Param , Out Param) .

% Conjunction

take _ apart ((A , B) , (New A , New B) , In Pararn , Out Param) : - ! ,

20

[11]

[12]

[13]

[14]

Constructions1. A Meta-Rule Treatment for Wh- 21

X cant _pass _on sets two parameters equal in the head of the
X name rule ;

this means that the automatically generated
nodes of this type
CANNOT contain a gap or a wh word . These nodes have

parameterized rules that permit gap or wh- words .

insert _param (Head , X/ Y , New Head) : -

Head = . . [Head I Args] ,

New Head = . . [Head, X/ YIArgs] .

cant _pass _on (sa) .
cant _pass _on (rn) .
cant _pass _on (nstg) .
cant _pass _on (thats) .

take _apart (A ,New A , In Param, Out Param A) ,
take _apart (B,New B,Out Param A,Out Param) .

% Disjunction
take _apart A;B) , (New A;New B) , In Param,Out Param) : -

take _apart (A ,New A , In Param A , Out Param A) ,
take _apart (B,New B, In Param B,Out Param B) ,
same_params(

(A; B) , In Param A, In Param B, In Param,Out Param A, Out Param B, Out Param) , ! .
take _apart A;B) ,_ ,_, -) : - ! ,

print (' $$$ Error : disjunct ') , print (A) , print (' ; ') , print (B) ,
print (' cannot be parameterized correctly ! ') .

% Literal
take _apart ([Word I More Words] , [Word I More Words] , In Param, In Param) : - ! .
% Restriction
take _apart ({ Restr } , { Restr } , In Param,In Param) : - ! .
% Prune
take _apart (prune (Name,Defs) ,prune (Name,New Defs) , In Param,

Out Param) : - ! ,
take _apart (Defs ,New Defs , In Param,Out Pararn) .

'I. Literal
take _apart (*Atom, *Atom, In Pararn, In Pararn) : - ! .
'I. Empty node
take _apart ('I. , 'I. , In Pararn, In Pararn) : - ! .
'I. Non- Terminal
take _apart (Def ,New Def , In Pararn,Out Param) : -

check_params(Def , In Pararn,Out Pararn) ,
insert _pararn(Def , In Pararn/ Out Pararn,New Def) , ! .

take _apart (Def ,Def , In Param, In Pararn) .

