
1
Knowing Computers

Of all the technologies bequeathed to us by the twentieth century, one
above all saturates our lives and our imaginations: the digital computer.
In little more than half a century, the computer has moved from rarity
to ubiquity. In the rich, Euro-American, world—and to a growing extent
beyond it as well—computers now play an essential part in work, educa-
tion, travel, communication, leisure, finance, retail, health care, and the
preparation and the conduct of war. Increasingly, computing is to be
found in devices that do not look like computers as one ordinarily thinks
of them: in engines, consumer products, mobile telephones, and in the
very fabric of buildings.

The benefits brought by all this computerization are clear and compel-
ling, but it also brings with it dependence. Human safety, the integrity
of the financial system, the functioning of utilities and other services,
and even national security all depend upon computing. Fittingly, the
twentieth century’s end was marked both by an upsurge of enthusiasm
for computing and by a wave of fear about it: the huge soon-to-be-
reversed rise in the prices of the stock of the “dotcom” Internet compa-
nies and the widespread worries about the “millennium bug,” the Y2K
(year 2000) date change problem.

How can we know that the computing upon which we depend is de-
pendable? This is one aspect of a question of some generality: how do
we know the properties of artifacts? The academic field of the social
studies of science and technology (a diverse set of specialisms that ex-
amine the social nature of the content of science and technology and
their relations to the wider society) has for several decades been asking
how we know the properties of the natural world.1 The corresponding
question for the properties of artifacts is much less often asked; sur-
prisingly so, given that a good part of recent sociological interest in tech-
nology derives ultimately from the sociology of scientific knowledge.2

2 Chapter 1

Asking the question specifically for computers—how do we know the
properties of computers and of the programs that run on them?—is
of particular interest because it highlights another issue that sociolog-
ical work on science has not addressed as much as it might: deductive
knowledge.

Sources of knowledge, whether of the properties of the natural world
or of those of artifacts, can usefully be classified into three broad
categories:

• induction—we learn the properties by observation, experiment, and
(especially in the case of artifacts) testing and use;

• authority—people whom we trust tell us what the properties are; and

• deduction—we infer the properties from other beliefs, for example
by deducing them from theories or models.3

Social studies of science have focused primarily on the first of these
processes, induction, and on its relations to the other two: on the de-
pendence of induction upon communal authority4 and interpersonal
trust;5 and on the interweaving of induction and deductive, theoretical
knowledge.6

Deduction itself has seldom been the focus of attention: the sociology
of mathematics is sparse by comparison with the sociology of the natural
sciences; the sociology of formal logic is almost nonexistent.7 At the core
of mathematics and formal logic is deductive proof. That propositions
in these fields can be proved, not simply justified empirically, is at the
heart of their claim to provide “harder,” more secure, knowledge than
the natural sciences. Yet deductive proof, for all its consequent cen-
trality, has attracted remarkably little detailed attention from the sociol-
ogy of science, the work of David Bloor and Eric Livingston aside.8 In
the social studies of science more widely, the single best treatment of
proof remains one that is now forty years old, by the philosopher Imre
Lakatos in the 1961 Ph.D. thesis that became the book Proofs and Refuta-
tions (see chapter 4).9 Indeed, it has often been assumed that there is
nothing sociological that can be said about proof, which is ordinarily
taken to be an absolute matter. I encountered that presumption more
than once at the start of this research. Even the founder of the modern
sociology of knowledge, Karl Mannheim, excluded mathematics and
logic from the potential scope of its analyses.10

Asking how we know the properties of computer systems (of hardware
and/or of software) directly raises the question of deductive knowledge

Knowing Computers 3

and of proof. An influential current of thinking within computer science
has argued that inductive knowledge of computer systems is inadequate,
especially in contexts in which those systems are critical to human safety
or security. The number of combinations of possible inputs and internal
states of a computer system of any complexity is enormously large. In
consequence it will seldom be feasible, even with the most highly auto-
mated testing, to exercise each and every state of a system to check for
errors and the underlying design faults or “bugs” that may have caused
them.11 As computer scientist Edsger W. Dijkstra famously put it in 1969,
“Program testing can be used to show the presence of bugs, but never
to show their absence!”12 Even extensive computer use can offer no guar-
antees, because bugs may lurk for years before becoming manifest as a
system failure.

Authority on its own is also a problematic source of knowledge of the
properties of computer systems. In complex, modern societies trust is
typically not just an interpersonal matter, but a structural, occupational
one. Certain occupations, for example, are designated “professions,”
with formal controls over membership (typically dependent upon pass-
ing professional examinations), norms requiring consideration of the
public good (not merely of self-interest), mechanisms for the disciplin-
ing and possible expulsion of incompetent or deviant members, the ca-
pacity to take legal action against outsiders who claim professional status,
and so on. Although many computer hardware designers are members
of the established profession of electrical and electronic engineering,
software development is only partially professionalized. Since the late
1960s, there have been calls for “software engineering” (see chapter 2),
but by the 1990s it was still illegal, in forty-eight states of the United
States, to describe oneself as a “software engineer,” because it was not
a recognized engineering profession.13

With induction criticized and authority weak, the key alternative or
supplementary source of knowledge of the properties of computer sys-
tems has therefore often been seen as being deductive proof. Consider
the analogy with geometry.14 A mathematician does not seek to demon-
strate the correctness of Pythagoras’s theorem15 by drawing triangles and
measuring them: since there are infinitely many possible right-angled
triangles, the task would be endless, just as the exhaustive testing of a
computer system is, effectively, infeasible. Instead, the mathematician
seeks a proof: an argument that demonstrates that the theorem must
hold in all cases. If one could, first, construct a faithful mathematical
representation of what a program or hardware design was intended to

4 Chapter 1

do (in the terminology of computing, construct a “formal specifica-
tion”), and, second, construct a mathematical representation of the ac-
tual program or hardware design, then perhaps one could prove
deductively that the program or design was a correct implementation
of its specification. It would not be a proof that the program or design
was in an absolute sense “correct” or “dependable,” because the specifi-
cation might not capture what was required for safety, security, or some
other desired property, and because an actual physical computer system
might not behave in accordance with even the most detailed mathemati-
cal model of it. All of those involved in the field would acknowledge that
these are questions beyond the scope of purely deductive reasoning.16

Nevertheless, “formal verification” (as the application of deductive proof
to programs or to hardware designs is called) has appeared to many
within computer science to be potentially a vital way of determining
whether specifications have been implemented correctly, and thus a vital
source of knowledge of the properties of computer systems.

The Computer and Proof

Formal verification is proof about computers. Closely related, but dis-
tinct, is the use of computers in proof. There are at least three motiva-
tions for this use. First, proofs about computer hardware designs or
about programs are often highly intricate. Many of those who sought
such proofs therefore turned to the computer to help conduct them.
Mechanized proofs, they reasoned, would be easier, more dependable,
and less subject to human wishful thinking than proofs conducted using
the traditional mathematicians’ tools of pencil and paper. This would
be especially true in an area where proofs might be complicated rather
than conceptually deep and in which mistakes could have fatal real-
world consequences. Second, some mathematicians also found the
computer to be a necessary proof tool in pure mathematics. Chapter 4
examines the most famous instance of such use: the 1976 computer-
assisted solution of the long unsolved four-color problem: how to prove
that four colors suffice to color in any map drawn upon a plane such
that countries that share a border are given different colors. A third
source of interest in using computers in proofs is artificial intelligence.
What is often claimed to be the first artificial-intelligence program was
designed to prove theorems in propositional logic (see chapter 3), and
automated theorem proving has remained an important technical topic
in artificial intelligence ever since. Underneath the more glamorous

Knowing Computers 5

applications of artificial intelligence, such as robotics, are often “infer-
ence engines” based upon theorem proving.

Although the theorems they prove would not be regarded by mathe-
maticians as interesting or challenging, more sophisticated mechanized
provers (far broader in their scope than the ad hoc programs used in
the four-color proof) have been used to solve problems that human
mathematicians found intractable, such as the 1996 solution of the Rob-
bins problem, an open question in Boolean algebra (see chapter 3).
Automated theorem proving, therefore, raises the question of whether
there is a sense in which a computer can be an artificial mathematician.
To the proponents of artificial intelligence this has been an attractive
possibility; to its opponents it is a repugnant one.

Historical Sociology

The topic of this book is the interrelations of computing, risk, and proof.
It is neither a technical nor a philosophical treatment of them, but rather
a historical sociology. The historical aspect is the more straightforward.
What this book seeks to do is to describe salient features of the interrela-
tions between computing and proof as they have evolved from the 1950s
onward. Relevant archival material is still sparse, so I have used two main
bodies of evidence. First is the technical literature of computer science
and of artificial intelligence, which offers the central documentary rec-
ord of the evolving thinking of the relevant technical communities. Sec-
ond is an extensive series of “oral history” interviews with the main
participants. Interview data must be treated with caution: interviewees’
memories are fallible, and they may wish a particular version of events
to be accepted. As far as possible, therefore, I have tried to use written
sources to document factual assertions, using interviews primarily as evi-
dence of interviewees’ opinions and beliefs.

Even in this role, interviews are an imperfect source (interviewees’
opinions may change through time in ways they may not wish to acknowl-
edge or of which they may even be unaware). Nevertheless, they add an
important dimension to what would otherwise be the overabstract and
disembodied history that would result from the use of the technical liter-
ature alone. The interviews were conducted under conditions of confi-
dentiality, but they were tape-recorded and transcribed, and intended
quotations were sent to interviewees for review and permission to pub-
lish.17 In many cases, points made in interview were then elaborated in
further exchanges, especially by electronic mail.

6 Chapter 1

The result, I hope, is accurate narrative history. Nevertheless, it is se-
lective history: I have not attempted comprehensive accounts of the
development of the various technical specialisms bearing upon comput-
ing, risk, and proof.18 I have focused upon episodes, issues, and debates
that appeared to be particularly interesting from the viewpoint of my
twin concerns: the nature of knowledge of the properties of computer
systems and the nature of deductive proof. I see these not just as techni-
cal matters (though plainly they are that) but as sociological questions,
issues for the social studies of science and technology.

Since the social studies of science (less so those of technology) have
recently become controversial in the debate called the “science wars,”19

some preliminary remarks on the sociological aspect of the approach
taken here are also necessary. Although some of the diverse strands that
make up social studies of science can rightly be classified as criticism of
science (not just in the literary, but in the everyday meaning of “criti-
cism”), that is emphatically not true of the kind of historical sociology
pursued here. To investigate the variety of meanings of mathematical
proof, for example, is simply to inquire, not to denigrate. The funda-
mental point—almost always missed in “science wars” debates—is that
the analysis of science, technology, and mathematics is not a zero-sum
game in which the greater the weight of social influence the less the
weight of empirical input or other aspects of what used to be called
“internal” factors, such as intellectual consistency and rigor.20 For exam-
ple, that modern mathematicians do not usually work in isolation, but as
members of specialist mathematical communities, deeply affecting each
other’s work, has surely the typical effect of improving the mathematics
they generate. That kind of social influence, which arises from the way
in which science and mathematics are conducted within communities,
is in no sense in tension with empirical input or with matters such as
consistency. In an appropriate community with an appropriate orienta-
tion, social processes surely generate rigor rather than undermine it.

Nor should one assume a priori the existence of a zero-sum trade-off
when social influence arises from outside the scientific community. In
a sense, most of this book is a study of social influence of that second
kind, of the effects upon deductive knowledge of the desire to be able
reliably to predict the behavior of computer systems upon which human
life and security depend. Those effects, I would argue and I think this
book demonstrates, have in general been beneficial intellectually as well
as practically. Concern for safety or security does not diminish concern
for rigor or for intellectual consistency; it increases it.

Knowing Computers 7

Another cross-disciplinary matter is raised by the historical sociology
of science or technology: technical accuracy. Writing about disciplines
that are not one’s own is an error-prone activity, and its difficulty is in-
creased when these disciplines are mathematical and one is trying to
describe developments in them in a way that is accessible to the non-
mathematical reader. The healthiest attitude is to accept that one will
make mistakes and to seek the help of one’s technical colleagues in erad-
icating them. Although I am extremely grateful to those who have as-
sisted in this, I have no illusions that what remains will be beyond
criticism. I welcome any errors here of any kind being pointed out; I
only ask the “science wars” critic not simply to indulge in facile cross-
disciplinary point scoring, but to concentrate attention on the main
themes and arguments of the book.

Risk, Trust, and the Sociology of Proof

From a sociological viewpoint, the question of one’s knowledge of
computer-system dependability blends in to a more general issue: risk
and trust in the societies of “high modernity.” (The term is drawn from
the sociologist Anthony Giddens.21 It is preferable to the more voguish
“postmodernity,” which tends to exaggerate the discontinuities between
the present and the recent past, sometimes on the basis of sloppily im-
pressionistic analyses.) One of the most striking features of the politics
of high modernity is the salient place in it of issues of technological risk.

Measured by life expectancy, today’s Euro-American world is uniquely
safe. We have learned to protect ourselves against natural hazards such
as earthquake, flood and storm; famine is for us a distant memory; and
epidemic infections (the great killers of premodernity) have largely been
eliminated or, at worst, controlled. Patently, however, members of these
societies do not always feel safe. The issue of whether the cattle disease
BSE (bovine spongiform encephalopathy, or “mad cow disease”) could
be transmitted to human beings played a significant part in British poli-
tics in the 1990s. Debates over the safety of chemical pesticides, of nu-
clear power, and, most recently, of genetically modified organisms have
raged internationally, often involving political direct action and signifi-
cant impact upon the industries involved.

Among the most influential commentators on the politics of risk
in high modernity has been the German sociologist Ulrich Beck.22

“[S]ooner or later in the continuity of modernization,” wrote Beck, “the
social positions and conflicts of a ‘wealth-distributing’ society begin to

8 Chapter 1

be joined by those of a ‘risk-distributing’ society.” Previous forms of soci-
eties had their dangers, but the “hazards in those days assaulted the nose
or the eyes and were thus perceptible to the senses, while the risks of
civilization today typically escape perception.” The layperson’s senses are
no guide to whether BSE poses risks to human beings, or whether geneti-
cally modified foodstuffs are safe. On questions such as these, the lay-
person must turn to others, and in the process risks can “be changed,
magnified, dramatized or minimized within knowledge. . . . [T]he mass
media and the scientific and legal professions in charge of defining risks
become key social and political positions. . . . Knowledge gains a new
political significance. Accordingly the political potential of the risk soci-
ety must be elaborated and analyzed in a sociological theory of the origin
and diffusion of knowledge about risks.”23

Despite the pervasive high-modern concern with technological risk,
in only one episode has fear of the computer become widespread: the
Y2K problem. In the United States especially there were many predic-
tions and a substantial amount of popular fear that the “millennium
bug” would seriously disrupt utilities and other essential parts of the
infrastructure of high modernity. These concerns turned out to be mis-
placed, and in retrospect it is easy to mock them and to question whether
the large sums spent on checking for and eliminating the “bug” were
justified (worldwide spending is said to have totaled as much as $400
billion, though much of this sum represents system replacement and
upgrading desirable on other grounds).24

The episode highlights, however, both the dependence of high-
modern societies upon computing and the difficulty of forming a judg-
ment on the risks posed by that dependence. However small or large
Y2K dangers might have been in the absence of the effort to detect and
to correct them, political and business leaders throughout most of the
Euro-American world judged the effort essential: not knowing how com-
puter systems would behave was intolerable. The Y2K problem was, fur-
thermore, in a sense an easy case: one in which the possible underlying
fault (the vulnerability of two-digit representations of the year to a cen-
tury change) was clear, even though immense effort was needed to be
sure what its effects would be. More typically, those involved in issues of
computer-system dependability will be trying to judge the trustworthi-
ness of a system that may be vulnerable to any number of faults, includ-
ing design faults or “bugs” in its software. Even though this is an issue
scarcely ever discussed in the burgeoning literature on “risk society,”25 it
is an archetypal case of the phenomenon described by Beck: an invisible

Knowing Computers 9

potential danger, the seriousness of which the layperson’s unaided
senses cannot judge.

Reliance upon experts is an inevitable aspect of high modernity. Par-
ticular experts, including those regarded by the scientific community
as the appropriate experts, may be disbelieved (a sense that the public
authority of science has declined may well be one factor fueling the pas-
sions of the science wars), but, without turning one’s back entirely on
high modernity, that distrust cannot be generalized to rejection of cogni-
tive authority of all kinds. Disbelief in one set of experts’ knowledge
claims is often belief in those of others, in those of environmental groups
such as Greenpeace, for example, rather than in those of biotechnology
companies such as Monsanto. The sociologist Brian Wynne and others
have pointed out that lay thinking about scientific and technological
matters is often more sophisticated and less ignorant than commonly
believed,26 but one should not exaggerate the possibility of cognitive “di-
rect democracy.” In a complex society, engaged in many complex activi-
ties, no one can be an expert in everything. Outside the necessarily
narrow domains in which one has expertise, one can at best choose
wisely in whom or in what to trust and find an appropriate balance be-
tween blind faith and self-defeating scepticism.

Among those within the social studies of science who have written
most interestingly on the problems of trust are the historians Theodore
Porter and Steven Shapin. The question addressed by Porter is how “to
account for the prestige and power of quantitative methods in the mod-
ern world,” not just in science but in areas such as actuarial work, accoun-
tancy, cost-benefit analysis, and social policy more generally. Although
formal verification in computer science differs in important ways from
these applications of quantitative methods, Porter’s analysis of them is
worth considering because it suggests a trade-off between mathematici-
zation and trust. In traditional communities “face-to-face interactions
typically obviated the need for formal structures of objectivity. . . . [U]ntil
the eighteenth century, measurements even of land or grain volume
were never intended to be purely mechanical, but normally involved an
explicit judgment of quality. In a small-scale and unstandardized world,
bargaining over measures caused no more inconvenience than bar-
gaining over prices.”

As Gemeinschaft (community) becomes modernity’s Gesellschaft (soci-
ety), however, face-to-face solutions are no longer viable. Modernity’s
“trust in numbers” is a substitute for absent trust in people, argues Por-
ter: “reliance on numbers and quantitative manipulation minimizes the

10 Chapter 1

need for intimate knowledge and personal trust.” Mathematics is suited
to this role because it is “highly structured and rule-bound,” a “language
of rules, the kind of language even a thing as stupid as a computer can
use.”27 Porter’s analysis nicely captures the vastly increased importance
of quantification and of standardization in modernity. (Indeed, one rea-
son for scepticism about broad-brush notions of “post modernity” is that
apparent departures from uniformity often rest upon deeper standard-
ization, and quantification’s significance has grown rather than declined
in recent years.) Furthermore, Porter’s is an account wholly compatible
with standard sociological analyses of modernity such as that of Anthony
Giddens, who sees modernity as involving “disembedding mechanisms”
in which trust shifts from local, face-to-face relationships to delocalized,
abstract systems. In driving, flying or even simply entering a building,
one implicitly trusts that others—automobile engineers, pilots, air traffic
controllers, structural engineers, building inspectors—have done or will
do their job properly. But this trust is not confidence in specific, individ-
ual people: those on whose expertise we depend are frequently strangers
to us. Instead, says Giddens, what we trust are “systems of technical ac-
complishment or professional expertise,”28 not particular, personally
known people.

Steven Shapin, however, offers a perspective subtly different from Por-
ter’s or Giddens’s. He does not deny that much of the everyday experi-
ence of high modernity involves trust in anonymous, abstract “systems
of expertise,” but he also argues that “within communities of prac-
titioners, for example within the communities of scientific knowledge-
producers . . . it is far from obvious that the world of familiarity,
face-to-face interaction, and virtue is indeed lost.” Gentlemanly codes
“linking truth to honor . . . were adapted and transferred to provide
substantial practical solutions to problems of credibility in seventeenth-
century English science.” Nor should one assume, Shapin argues, that
they offered only a temporary solution: even the scientists of high moder-
nity “know so much about the natural world by knowing so much about
whom they can trust.”29 Although given its sharpest formulation by
Shapin, this is a widely-shared conclusion in social studies of science.
Porter, for example, acknowledges that, at least within secure, high-
status scientific communities, knowledge is still often produced and as-
sessed in informal, nonstandardized ways.30

The subjects of Shapin’s historical work, however, would not have
agreed fully with his conclusion that “no practice has accomplished the
rejection of testimony and authority and . . . no cultural practice recog-

Knowing Computers 11

nizable as such could do so. . . . In securing our knowledge we rely upon
others, and we cannot dispense with that reliance.”31 The early modern
scientific thinkers discussed by Shapin were sharply aware of the neces-
sary reliance in the natural sciences upon honest testimony and upon
skillful experimentation. Thomas Hobbes, one of the two key protago-
nists of Shapin and Schaffer’s earlier Leviathan and the Air-Pump, saw
empirical, experimental knowledge as inadequate on those and other
grounds. Hobbes saw in mathematics, specifically in geometry, however,
a model of reasoning that was in contrast sure, incontrovertible and not
dependent upon the dangerous testimony of others. Although Hobbes’s
opponent, Robert Boyle, had a quite different, much more positive view
of the knowledge produced by experiment and by trustworthy testimony,
he too noted that “In pure mathematicks, he, that can demonstrate well,
may be sure of the truth of a conclusion, without consulting experience
about it.” Even Boyle, the great founder of the modern “experimental
life,” thus conceded that mathematics was, in Shapin’s words, “the high-
est grade of knowledge.” If one’s goal were “uncontroverted certainty
and confidence in one’s knowledge, the culture of pure mathematics
possessed the means to satisfy that goal.”32

It is, indeed, easy to see why deductive, mathematical knowledge was
and is granted a status not enjoyed by empirical, inductive, or testimony-
based knowledge. Anyone who has been exposed to mathematical proof,
at even an elementary level, knows the feeling of compulsion that proof
can induce. Given the premisses, a proof shows that the conclusion must
follow, and that a proof compels is, at least apparently, not a matter of
trust at all. Paraphrasing Hobbes, but largely expressing his own view as
well, Porter comments that geometrical, or more generally mathemati-
cal, reasoning is “solid demonstration, which brings its own evidence
with it and depends on nothing more than writing on paper.”33

Is deductive proof therefore an exception to Shapin’s claim that “the
identification of trustworthy agents is necessary to the constitution of
any body of knowledge?”34 Does deductive proof yield a form of knowl-
edge in which the individual is self-sufficient? The problem with this
apparently common-sense conclusion is the difficulty for the isolated
individual of distinguishing between being right and believing one is
right. Although the point has many ramifications,35 a basic issue was
pointed out nearly three centuries ago by David Hume. “There is no
Algebraist nor Mathematician so expert in his science, as to place entire
confidence in any truth immediately upon his discovery of it,” wrote
Hume. “Every time he runs over his proof, his confidence encreases; but

12 Chapter 1

still more by the approbation of his friends; and is rais’d to its utmost
perfection by the universal assent and applauses of the learned world.”36

Those who have wanted more than personal, subjective conviction of
the correctness of a proof have, traditionally, had to turn to others’ as-
sessments of it. To anticipate an argument discussed in chapter 6, the
“social processes” of the mathematical community sift putative proofs,
thereby achieving a rigor that the individual mathematician cannot
know for sure he or she possesses.

Yet the human community is now not the only “trustworthy agent” to
which to turn: it has been joined by the machine. The mechanization
of proof has produced automated systems that check whether a sequence
of formulae expressed in sufficient detail in appropriate formalism has
the syntactic structure that makes it a formal proof, in other words that
check whether each formula in the sequence is generated from previous
formulae by application of the rules of inference of the formal system
in question. Some systems, furthermore, even have a limited capability
to find such proofs for themselves. Modernity’s “trust in numbers” can,
it appears, lead back to a grounding not in trust in people, but trust in
machines.

That the pursuit of objectivity may lead back literally to an object is
a conclusion that some may find reassuring, but others disturbing.37 As
Sherry Turkle pointed out, the computer is an “evocative object.” Previ-
ously, “animals, . . . seemed our nearest neighbors in the known universe.
Computers, with their interactivity, their psychology, with whatever frag-
ments of intelligence they have, now bid for this place.” The computer
is an “object-to-think-with,” in particular to think about what it is to be
human.38 As sociologist of science Harry Collins has pointed out, artifi-
cial intelligence is in a sense an experiment in the sociology of knowl-
edge.39 If genuine “artificial experts” are possible, then, since no current
machine (not even a neural network) learns by socialization in the way
human experts appear to learn, there may be something wrong with the
sociological view of expertise. The relationship between the computer
and proof has the practical importance outlined above, but it has this
intellectual importance as well. If machines can prove, does it mean that
proof is not social?

The mechanization of proof is also of interest because of the light
it throws upon nonmechanized deduction. Until the advent of formal,
machine-implemented mathematics, there was a single dominant ideal
type of deductive proof: proof as conducted by skilled human mathema-
ticians. Although even that ideal type was not unitary—the contrast be-

Knowing Computers 13

tween different forms of human proving offers fascinating, if still
underexplored, material for the social studies of mathematics40—it has
now been joined by another ideal type: machine proof. There are now
two “cultures of proving.”41 Mostly, they exist independently of each
other, in different institutional locations, and only seldom is there overt
conflict between them. But the existence of each reveals the contingency
of the other.

This book examines the historical sociology of machine proof: ordi-
nary, human-conducted, mathematical proof is discussed only in passing
(mainly in chapters 4 and 9). I hope, however, that the contrast between
the two forms of proving will lead colleagues in the social studies of
science to be more curious about ordinary mathematical proof, indeed
about mathematics. Pace Porter, mathematics, at least the mathematics
of human research mathematicians, is not entirely “the kind of language
even a thing as stupid as a computer can use.” The mechanization of
proof, to date, has largely been the mechanization of philosophy’s ideal
of formal proof (a sequence of formulae in which each formula is de-
duced from previous formulae by syntactic, “mechanical,” inference
rules), not proof as it is ordinarily conducted by human mathematicians.
Indirectly, therefore, the mechanization of proof shows the need for
the development of an analysis of mathematical proof that is better, as
an empirical description of what mathematicians actually do, than phi-
losophy’s ideal type. As the concluding chapter suggests, there is rea-
son to think that such an analysis will have to have a strong sociological
component.42

Synopsis of the Book

Although I have tried to keep this book as nontechnical as possible, some
of the passages in the chapters that follow will be demanding for the
nonspecialist. The reader, therefore, may wish to skip particular passages
or even particular chapters while still following the overall narrative. To
facilitate this process, the remainder of this chapter gives a reasonably
extensive summary of each of the chapters that follow.

Chapter 2 begins with the issue of dependability. Almost as soon as
computers began to be used to control critical systems, the potential
for disaster appeared. The chapter documents the main features of an
awareness emerging in the 1960s that, despite the enormous strides be-
ing made in computer hardware, software production remained slow,
expensive, and bug-ridden. This awareness crystallized in October 1968

14 Chapter 1

at a NATO conference held at Garmisch in the Bavarian Alps. A “soft-
ware crisis” was diagnosed there, and “software engineering” was pro-
posed as its solution.43 The latter had two broad strands, not always
compatible: an emphasis on the “practical disciplines” to be found in
other areas of engineering, and an emphasis on the “theoretical foun-
dations” of computer science, especially on its foundations in mathe-
matics and in logic. The chapter discusses the evolution of testing, as an
empirical, inductive route to knowledge of the properties of computer
systems, but it focuses mainly upon those who sought deductive knowl-
edge of those properties, such as the Dutch computer scientist Edsger
W. Dijkstra. Dijkstra hoped that the mountain sunshine of Garmisch rep-
resented “the end of the Middle Ages” of programming. He was the most
outspoken of a group of computer scientists attempting to subject the
computer to the rigor of mathematics and logic: others included the
American computer scientist and artificial intelligence pioneer, John
McCarthy; the Danish computer scientist, Peter Naur; the American,
Robert W. Floyd; and the Briton, Tony Hoare.

Chapter 2 also outlines the first stirrings within computer science of
Hume’s issue: how does one know that a claimed proof is correct? There
were two broad responses to the possibility of erroneous proofs. First
was that of Harlan D. Mills, director of software engineering at a key site
of the development of critical software: IBM’s Federal Systems Division.
Mills wanted programmers to prove mathematically that their programs
were correct implementations of the specifications they were given, but
he saw proof as a human activity that could lead only to “subjective con-
viction.” The second response—the dominant one, at least in academic
computer science—was to turn to the computer itself to alleviate the
difficulty and error-proneness of the production of proofs. By 1969 the
first automated system for applying proof to programs was constructed
by Floyd’s student, James King.

The automation of mathematical proof, however, did not begin with
King’s system. Chapter 3 returns to 1956 and to the iconic moment,
often taken as the beginning of artificial intelligence, when Herbert Si-
mon declared that he and his colleague Allen Newell had “invented a
thinking machine.” That machine—first a human simulation of a com-
puter program and then an actual program—proved theorems in propo-
sitional logic. Simon’s work in artificial intelligence interwove with his
social science, especially with his critique of economists’ hyperrationalis-
tic view of human beings. In developing the “Logic Theory Machine,”
Simon studied how human beings like himself found proofs. To the logi-

Knowing Computers 15

cians becoming interested in automated theorem proving, however, Si-
mon and Newell’s search for human-like “heuristics” was misguided and
amateurish. For Hao Wang, one of those logicians, the attraction of com-
puters was not that they were potentially intelligent machines but that
they were “persistent plodders.” Deep in the history of logic lay the
search by the philosopher Gottfried Leibniz for a universal scientific lan-
guage and logical calculus that would make it possible to “judge immedi-
ately whether propositions presented to us are proved . . . with the
guidance of symbols alone, by a sure and truly analytical method.”44 In
the centuries after Leibniz, human logicians had gradually accumulated
the formal systems necessary for machine-like deductive inference; the
computer offered them the means of turning these systems into techno-
logical reality, and to seek to make their operation human-like was, to
the logicians, at best a distraction. In 1963, this strand of automated
theorem proving reached its epitome in the development by philoso-
pher and computer scientist Alan Robinson of the single most important
technique of automated deduction: resolution, an explicitly “machine-
oriented” rather than “human-oriented” form of inference.

Chapter 3 also describes other debates about computers, mathematics
and artificial intelligence. Philosopher J. R. Lucas and mathematician
Roger Penrose, the first an opponent of “mechanism,” the second of
artificial intelligence, argued that Gödel’s famous incompleteness theo-
rems showed that human minds could know mathematical truths that
machines could not prove. From the side of artificial intelligence, Doug-
las B. Lenat sought to develop an “automated mathematician” (AM),
which, he claimed, was able on its own to “rediscover” important parts
of human mathematics. Lenat’s system not only reopened the divide
between artificial intelligence and formal logic (Wang described Lenat’s
thesis on AM as “baffling”), but also sparked fierce critique from within
artificial intelligence.

Chapter 4 turns from computer science and artificial intelligence to
mathematics itself. The most celebrated use of a computer to prove a
mathematical theorem was the 1976 proof of the four-color conjecture
by mathematician Wolfgang Haken and mathematical logician Kenneth
Appel. First proposed in 1852, the conjecture can be understood by a
young child, but a century of work by human mathematicians had not
led to a proof that survived scrutiny. Appel and Haken’s solution raised
the issue of whether a partially computerized demonstration such as
theirs was a proof at all. Opinions on that point differed sharply. The
members of what Harry Collins calls the core set,45 those mathematicians

16 Chapter 1

attempting a similar proof using similar computerized means, accepted
the mechanized part of Appel and Haken’s analysis as almost certainly
correct, and they focused their doubts on the complicated human rea-
soning involved. Other mathematicians, however, focused their unease
on Appel and Haken’s use of computers. It was, one commented, as if
they had simply consulted an oracle, and oracles were not mathematics.

Chapter 5 returns to the issue of dependability and to the dominant
practical concern driving proof about computers: the vulnerability to
intrusion of computer systems containing information critical to na-
tional security. Here, one encounters the two most important organiza-
tions that have influenced the development of computer proof: the U.S.
Department of Defense’s Advanced Research Projects Agency (ARPA)
and the more powerful, but also more secretive, National Security
Agency (NSA). For many years, NSA’s very existence was not usually ac-
knowledged. From the 1960s on, NSA and some other military agencies
began to be concerned about computer security. Early experiments were
unfailingly worrying: all serious attempts to circumvent the controls of
the “time-sharing” computer systems entering service in the late 1960s
succeeded.

In response, key ideas of computer security began to be formulated,
such as the notion of a “security kernel” that any security-relevant re-
quest by user programs had to invoke. Drawing upon the “general system
theory” then current in the work of von Bertalanffy and others, David
Elliott Bell and Leonard J. LaPadula of the defense think tank, the
MITRE Corporation, developed in the early 1970s the paradigmatic
model of what, mathematically, “security” meant. A way forward then
appeared clear: develop a security kernel that could be proved to imple-
ment the Bell-LaPadula model. Much of the financial support in the
United States for the development of automated theorem provers arose
from the desire of ARPA and NSA for mechanical proofs of security of
this kind, and the 1970s’ projects trying to prove the security of operating
systems, of kernels, and of computer networks were the first real-world
applications of proof to computer systems.

Applying the Bell-LaPadula model in practice was more complicated
than it appeared in theory, and system developers found that they had
to allow “trusted subjects” to violate the model’s rules and to analyze
“covert channels” not represented in the model. Bureaucratic turf wars
and clashes of culture (such as between ARPA’s relative openness and
NSA’s secrecy) also took their toll. By 1983, a stable set of Trusted Com-
puter System Evaluation Criteria (universally known from the color of the

Knowing Computers 17

covers of the document containing them as the “orange book”)
emerged, which demanded deductive proof that the detailed specifica-
tion of the most highly secure systems (those in the orange book’s high-
est, A1, category) correctly implemented a mathematical model of
security like that put forward by Bell and LaPadula. Successful efforts to
meet A1 criteria were, however, few. A vicious circle of high costs, limited
markets, and long development and evaluation times set in. Further-
more, 1986 brought an apparent bombshell: the claim by computer secu-
rity specialist John McLean of the U.S. Naval Research Laboratory that
the Bell-LaPadula model was flawed: it allowed a hypothetical “System
Z” that was patently insecure. The variety of responses to System Z, and
the “dialectical” development of models of computer security that
sought to block the insecurities permitted by earlier models, are reminis-
cent of Imre Lakatos’s classic account of proving.46 At stake, however,
was not just a mathematical theorem, but arguably the authority of NSA
and even the national security of the United States.

Chapter 6 turns to the two most prominent general attacks on the
application of computerized proof to software. The first came in the
1970s from two young computer scientists, Richard A. DeMillo and Rich-
ard J. Lipton, and from Alan J. Perlis, one of the founders of American
computer science. DeMillo, Lipton, and Perlis claimed that “proofs” of
computer programs performed by automated theorem provers were
quite different from proofs within mathematics. A real proof, they as-
serted, was not a chain of formal logical inferences of the kind that a
computer could perform, but an argument that a human being could
understand, check, accept, reject, modify, and use in other contexts. A
computer-produced verification, thousands of lines long and readable
only by its originator, could not be subject to these social processes and
in consequence was not a genuine proof. To practitioners who had felt
criticized by advocates of the mathematicization of computing, the at-
tack by DeMillo, Lipton, and Perlis was welcome puncturing of what they
took to be a theorists’ bubble. To Edsger W. Dijkstra, in contrast, the
attack was “a political pamphlet from the Middle Ages.” Dijkstra was com-
puter science’s great rationalist, a man who describes himself as “a happy
victim of the Enlightenment.”47 As the years went by, indeed, Dijkstra’s
views came to differ even more sharply from those of DeMillo, Lipton,
and Perlis. He was no longer prepared to accept proof as ordinarily con-
ducted by mathematicians as the model for computer scientists to emu-
late. Even mathematicians carried the taint of the Middle Ages: they were
a “guild.” They “would rather continue to believe that the Dream of

18 Chapter 1

Leibniz is an unrealistic illusion.”48 Computer science, in contrast,
showed the way to proofs more rigorous, more formal, than those of
ordinary mathematics.

Chapter 6 also describes the quite different attack on the application
of proof to computer programs launched in 1988 by the philosopher,
James H. Fetzer. Though Fetzer’s conclusion was as hostile to “program
proof” as DeMillo, Lipton, and Perlis’s, his reasoning was quite different.
He rejected their sociological view of proof and in so doing returned to
philosophical orthodoxy: for Fetzer, the canonical notion of proof was
formal proof, and the validity of its logical inferences was not affected
by whether they were conducted by a human being or by a machine.
Instead, Fetzer argued that “the very idea” of “program proof” was what
philosophers call a category mistake. A program was a causal entity that
affected the behavior of a computer, which was a physical machine;
“proof” was part of the formal, abstract, nonphysical world of mathemat-
ics and of logic. The presence or absence of “social processes” was mere
contingency: what doomed program proof, claimed Fetzer, was that it
was a self-contradictory notion.

Chapter 7 discusses how the relationship between proof and the real,
physical world has played out not at the level of philosophical debate
but in practice. It begins with the first major project in which proof was
applied to a system in which the dominant concern was not security but
human safety: an experimental aircraft control system called Software
Implemented Fault Tolerance (SIFT). Though now largely forgotten,
SIFT was the most prominent verification project in the world in the
late 1970s and early 1980s. To SIFT’s sophisticated design were applied
some of the subtlest ideas of computer science, notably about what com-
puter scientist Leslie Lamport called “Byzantine” faults, most easily con-
ceived of by thinking of a system component, such as a clock, as being
actively malicious. SIFT, and the clock convergence algorithm that was
embodied in it, represent a kind of historical loop. Historian of physics
Peter Galison has suggested that Einstein’s theory of relativity may have
been inspired in part by reflections on the technological problem of
synchronizing geographically separate clocks.49 Lamport, fascinated by
time and its treatment in Einsteinian physics, returned the problem of
synchronization from the realm of physics to that of technology. SIFT’s
ambitious design made the application of proof to it even harder than
in the early security projects. A 1983 peer review of the SIFT proof work,
intended largely to evaluate DeMillo, Lipton, and Perlis’s critique of pro-

Knowing Computers 19

gram proving, became, instead, a sharp internecine dispute among those
committed to formal verification.

The overt debate in the peer review concerned the achievements of
the SIFT proof work and how these had been reported. The SIFT proj-
ect, however, also generated a divergence of greater long-term signifi-
cance. Two participants in the early phases of the SIFT verification,
Robert S. Boyer and J Strother Moore, took on what appeared to be a
small task: applying proof to the fourteen lines of program that imple-
mented the SIFT “dispatcher,” lines written not in a high-level program-
ming language but in assembly language, closer to the operations of the
physical machine. Attempting to verify these lines of code, Boyer and
Moore began to see a flaw in the entire enterprise of program proof as
it was then practiced. It implicitly assumed, they suggested, that it was
a “god,” not a machine, that implemented programs. They began to
believe that proof needed to be driven downwards, towards the hard-
ware: verified programs needed verified machines to implement them.
Chapter 7 describes the effort to produce such a machine and also dis-
cusses the controversy (described elsewhere)50 over whether the claim
of proof for a different, British-designed, microprocessor was justified.
The chapter ends by briefly describing the form in which a version of
proof (a highly automated form called model checking) has broken
through from research to widespread industrial adoption.

Chapter 8 moves from the applications of mechanized proof to its key
tools: automated theorem provers, in particular those systems designed
not as exercises in artificial intelligence but to be controlled by a human
being and used in practical verification tasks. The development of sev-
eral of these provers is described to provide the basis for a discussion
of what it means to use such a prover to perform a proof. One issue is
the fact that different provers embody different formal logics. Another
arises because theorem provers are themselves computer programs of
some complexity. Alan Robinson, developer of resolution, has taken that
latter fact as indicating a vicious regress undermining the entire enter-
prise of formal verification. Those most centrally involved do not accept
that conclusion, and their different responses to the possibility that
theorem-proving programs contain bugs are described.

A further matter discussed in chapter 8 is explicitly one of social trust.
Among the most popular theorem provers, especially in Europe, is a
family of systems that protect the validity of the inferences they perform
by building a “firewall” (implemented by what computer scientists call

20 Chapter 1

“type checking”) around formulae of a particular type: axioms and those
formulae constructed from axioms by the mechanical rules of logical
inference that the system implements. To proponents of systems of this
kind, the firewall around the type “theorem” makes their use highly rig-
orous. The most widely used such system, Higher Order Logic (HOL),
however, permits a user simply to assert a theorem by using the facility
known as mk thm. In the academic world from which HOL came, users
were implicitly trusted not to abuse mk thm. As HOL entered the world
of security-critical computing, however, that trust could no longer be
taken for granted. The malicious demon of the philosophy of mathemat-
ics became personified in the fear that among those performing an ap-
parent proof might be a hostile agent. In the world of security, mk thm
became not a facility, as it had been in the academic world, but a loop-
hole that had to be closed.

In chapter 9 the threads of the book are pulled together. The history
of computer-related accidents is reviewed, and the question is asked why
software-based systems appear to have killed relatively few people despite
software’s dependability problems. That is the most central aspect of
what, in recognition of the man who pointed it out, I call the Hoare
paradox: the fact that, without use of the proofs that Tony Hoare and
his colleagues advocated, the practical record of software systems is bet-
ter, for example, than had been feared at Garmisch. There are a variety
of possible explanations, of which the most interesting from the view-
point of this book are, first, the successful “moral entrepreneurship” of
Hoare and many of his colleagues in alerting technical audiences to soft-
ware’s dangers (and in so doing reducing those dangers), and, second,
that inductive and authority-based forms of knowledge of the properties
of computer systems appear more effective, in sociotechnical practice,
than, for example, the abstract statistical analysis of induction might sug-
gest. In particular, it appears as if they may work to produce knowledge
of people—of trustworthy system developers—as well as knowledge of
the artifacts those people produce.

Chapter 9 then turns to cultures of proving. In the cleanroom, “proof”
is explicitly intersubjective and need not be mathematical in form; for
Dijkstra and those influenced by him, it must be formal, but need not
be mechanical. The two central cultures of proving, however, are that
of formal, mechanized proof and that of ordinary mathematics. Al-
though the intellectual roots of the former lie within logic (a discipline
to a significant extent separate from mathematics), its key practical un-
derpinning has become the desire for mechanization, not for formality

Knowing Computers 21

per se. The resultant culture, however, is not homogeneous. Different
theorem provers implement different formal logics in ways that often
differ significantly, and “investments” in developing these often complex
programs, and in learning to use them effectively, tend to divide the
culture of mechanized proof into distinct, albeit interacting, subcultures.

The book ends by discussing what the proving machines discussed in
this book do not do. They simulate, at most, an individual mathematician
operating within a given formal system. They neither modify formal sys-
tems nor choose between them. Nor, even within a given formal system,
do their operations serve as the ultimate criterion of correctness, as the
theorem-proving “bugs” discussed in chapter 8 demonstrate: they can
be identified as causes of error, rather than as sources of valid, novel
deductions, because normativity—the capacity to distinguish between
“getting something right or wrong”51—remains vested in collective hu-
man judgment. It is we who allow, or disallow, machine operations as
constituting proofs. Mechanized provers can be a vital aid to the fallible
individual computer system developer and, perhaps, eventually to the
individual mathematician as well, but they are no substitute for the hu-
man collectivity.

