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in which the vertical lines enclosing the array of elements aik are intended
to take the place of parentheses as an indication that these elements are
the variables of the function A, just asf (x) is written as a symbol for a
function of x.

The determinant is said to be of the nth order when it involves 11- rows
and 11- columns, the total number of elements then being n2. The italic
capital letter A is used as an abbreviation for the function whose elements
are denoted by the lower case letter a. Thus, B may represent another
determinant with the elements bik, etc. The first index on an element
indicates the row, the second index the column in which that element is
situated.

The determinant may be defined uniquely in terms of the following
three fundamental properties:

I . The value of the function is unchanged if the elements of any row:
(column) are re Placed by the sums of the elements of that rowi
(column) and the corresponding ones of another row (column),.
for examPle, if all , a12, . . . aln are re Placed by (all + a31),
(al2 + a32), . . . (aln + a3n).

II . The value of the function is multi Plied by the constant k if all the
elements of any row or column are nzultiplied by k.

III . The value of the function is unity if all the elenzents on the princiPal
diagonal, that is, all , a22, . o. . ann, are unity and all others are zero.

*C. Caratheodory, Vorlesunge1t uber rcclle Funktio1t Cn (Leipzig, 1918), Ch. VI.
I

1. DEFINITIONS AND USEFUL PROPERTIES

A discussion of the theory of determinants may be approached in a
variety of ways. For the reader who already has an acquaintance with
this subject and can, therefore, dispense with introductory remarks, the
following procedure* is particularly effective since it strikes directly at
those ideas which make th~ determinant a useful tool .

A determinant is commonly written in the form
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To these three fundamental properties may be added the following
derived ones:

IV. The first fundamental property may be amplified to the effect that
an arbitrary factor times the elements of any row or column may be
added to (or subtracted from) the corresponding elements of another
row or column.

V. The algebraic sign of the function is reversed when any two rows or
columns are interchanged.

VI. The value of the function is zero if all the elements of a row or column
are zero, or if the corresponding elements of any two rows or columns
are identical or have a common ratio.

Rule IV may be seen to follow from I and II. As shown in the numerical
example below, the elements of the third column are first multiplied by k;
the resulting k-multiplied elements are then added to the respective ones
of the first column, after which column three is multiplied by k�, thus
restoring to its elements their original values.

1 3 2 1 3 2k (1+2k) 3 2k
A= 4 2 6 kA= 4 2 6k = (4+6k) 2 6k

3 1 7 3 1 7k (3+7k) 1 7k

(1+2k) 3 2
A= (4+6k) 2 6 [ 2]

(3+7k) 1 7

Rule V is a consequence of I and the extended form IV of II. Thus,
suppose column 1 is first added to column 3, next the resultant column 3
is subtracted from column 1, and, finally, this resulting first column is
added to the resultant column 3. The net effect is to interchange columns 1
and 3 and prefix all the elements of the first column with minus signs,
as illustrated below:

1 3 2 1 3 (2+1)
A= 4 2 6 = 4 2 (6+4)

3 1 7 3 1 (7+3)

�2 3 (2+1) �2 3 1
= �6 2 (6+4) = �6 2 4 [ 3]

�7 1 (7+3) �7 1 3

The first part of rule VI follows from the property II for k = 0, and the
second part is seen to be true on account of IV because a row or colunm
of zeros is obtained when, for a suitably chosen factor, the k-multiplied
elements of one of the proportional rows or columns are subtracted from
the respective elements of the other row or column.



Step 2. Subtract from the third row the 3-multiplied elements of the
first row :

3

�

1 3 2
4 2 6
3 1 7

[4]
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- 8
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2. EVALUATION OF NUMERICAL DETERMINANTS

The properties discussed above may be applied to the numerical
evaluation of determinants, as is best illustrated by the following numerical 

example. Let

Step 3. Subtract from the third row the ~ multiplied elements of the
second row:

1 3 2
A = 0 - 10 - 2 [7]

0 0 13T

Step 4. Subtract from the second column the 3-multiplied elements of
the first column:

1 0 2
A = 0 - 10 ......2 [8]

0 0 li5

Step 5. Subtract from the third column the 2-multiplied elements of
the first column:

1 0 0
A = 0 - 10 - 2 [9]

0 0 1-1-
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is given by the product ( alla22 . . . ann ) of the elements on its

principal diagonal .

With the help of this rule the value of the determinant in the above

example may be set down after the completion of the third step .

If in the determinant A the rows and columns are interchanged , the

values of the elements on the principal diagonal are not affected ; and if

the above operations with respect to rows are then replaced by the same

operations with respect to corresponding columns and vice versa , the

same final value is evidently arrived at . This fact demonstrates the

equivalence of rows and columns as far as the value of a determinant is

concerned . For convenience in reference this is stated as the property :

VIII . The value of a determinant is unchanged if its rows are written

as corresponding columns or vice versa .

In numerical work , the method of evaluation illustrated in the above

example is short and convenient to apply . When an analytic result is

desired , however , other methods are usually preferable . They are given in

Arts . 4 and 5 , to which the discussion immediately following serves as an

introduction .

3 . 11INORS AND COFACTORS

If in the determinant A of Eq . 1 , one or more rows and a corresponding

number of columns are deleted , the remaining square array of elements is

again a determinant . It is referred to as the ( n - f ) - rowed minor ( or
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minor determinant) of A , where the integer p denotes the number of rows
or the corresponding number of columns which have been deleted. Thus
the n- rowed minor is the determinant itself . An (n - 1 )-rowed minor is
also spoken of as afirst minor , an (n - 2)-rowed one as a second minor ,
etc .*

The minor is customarily denoted by a symbol whose indexes refer to
the canceled rows and columns. Thus the minor M ik is formed by canceling 

the ith row and the kth column in A . It is quite common to speak of
M ik as the minor of aik, or as the minor corresponding to the element aik,
although (according to the immediately following discussion) it should
more properly be referred to as the complement of aik.

A minor of second order, denoted by M ik, is formed by canceling the
. . .

ith and rth rows and the kth and sth columns . The extension of this

notation to the designation of minors of higher order is readily recognized,
but when the number of canceled rows and columns is large (cases of this
sort are infrequent in engineering applications), such notation becomes
awkward and is usually replaced by some other expedient which seems
more effective at the moment .

The elements which lie at the intersections of the canceled rows and

columns , arranged in a square array in the same order (from left to right
and from top to bottom ) as they appear in the original determinant , form
another minor determinant N which is called the comPlement of M . The
complement of a first minor is a single element; that of a second minor is
a two - rowed determinant , etc .

In particular , the minors formed by canceling the same rows as columns
(these intersect on the principal diagonal) are called principal minors, and
their complements are again principal minors.

An alternative view may be taken with regard to the formation of
minors. Instead of obtaining the minors by canceling rows and columns
in the original determinant , they may be formed by first selecting from the
determinant certain rows, and subsequently selecting from this rectangular 

(nonsquare) array any like number of columns. Or, from a given set
of columns in the determinant A , minors may be formed by the selection
of corresponding numbers of rows. The minors thus formed are evidently
the complements of those obtained by the process of canceling the same
combinations of rows and columns .

If M is a minor of the determinant A and N is its complement, and if
the rows and columns contained in M are formed from the i , j , k , . . . th

rows alld the q, r , s, . . . th columns of A , then

N X (- l )(i+i+k+",+q+r+s+"') [ 13J

* The terms " minor of first order ," " second order ," etc ., are also used .
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�

all a12 a14 a15 . . . aln

a31 a32 a34 a35 . . . a3n

M23 = a41 a42 a44 a45 . . . a4n
. . . . . . . . . . . . . . . . . . . . . .

ani an2 an4 an5 . . . ann

Here the element a32, for instance , is located at the intersection of

[15J

�

the

second ro\v and the second column. This is referred to as the (2,2) position
in the minor detenninant of Eq . 15. In general, the term (r ,s) position is
used to indicate the location at which the rth row and sth column of a

given rectangular array intersect. The object of the present argument is
to point out as a typical case that in fonning the co factor for the element

It differs from the minor (which is the complement of aik) only in algebraic
sign; hence the co factor is sometimes referred to as the signed minor .

The indexes i and k, whose integer values determine the sign-controlling
factor (- ! ) i+k, refer respectively to the row and column intersecting at
the point where the element aik is located. If the co factor is formed for an
element in the original detenninant , its indexes and those appearing in
the sign-controlling factor obviously agree with the indexes appearing
on the element in question, because the indexes on an element of the
original determinant indicate respectively its row and its column positions.
This correspondence is, however, no longer consistently true in a minor
of the original determinant .

For example, the minor M23 of A , Eq . 1, reads

is referred to as the algebraic complement of M . This differs from the
ordinary complement only in its algebraic sign. If the sum of the indexes
referring to the (first , second, etc.) rows and columns of A contained in M
is an even integer, the algebraic sign, by Eq . 13, is + 1; if this sum is an
odd integer , the sign is - 1.

The relation between a minor and its complement is evidently a mutual
one in the sense that the two designations may be interchanged. Whereas
M may be called a minor and N its complement, N may be looked upon
as the minor and M as its complement. Thus, a single element may be
thought of as a one-rowed minor . If the element is aik, its complement is
the minor M ik .

The algebraic complement of the single elelnent aik is sufficiently
important to deserve a special name and symbol. It is called the co factor
of aik and is quite commonly denoted by the corresponding upper-case
letter with like subscripts (although various other notations are also
encountered in the literature ) . Thus, the co factor of aik is given by

Aik = ( _ l ) i+kMik [14]
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a32 for the minor determinant of
(- 1)2+2 and not (- 1)3+2.

If only the algebraic signs of the co factors are set down at the positions
of the corresponding elements in a rectangular array, the following
checkerboard of + and - signs is obtained :

Art . 1] DEVEWPMENT

Eq . 15 , the sign - controlling factor is

7

� �

[16J
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This pictorial statement for the signs of the co factors is sometimes referred
to as the (' checkerboard rule ."

4 . LAP L A C ES DEVELOPMENT

In the manipulation of detenninants , and sometimes to facilitate their
numerical evaluation , a process of development formulated by Laplace
is frequently useful. It may be stated in the following form :

If all the minors are formed from a selected set of rows or columns of a
determinant a1zd the products of these mi1wrs with their respective algebraic 

Corn Piements are added, the resulting sum is equal to the determinant
.

If a single row is selected, this development reads

A = ail Ail + ai2Ai2 + . . . + ainAin (i = 1, 2, . . . n) [ 17]

For a single column, the result is written

A = alkA1k + a2kA2k + . . . + ankAnk (k = 1, 2, . . . n) [ 18]

In Eq . 17 the determinant is represented by the sum of the products of
the elements of any row with their respective co factors. In Eq. 18 a
corresponding summation is carried out with respect to the elements and
co factors of any column. This simplest form for the Laplace development,
which is also called an expansion of the determinant along one of its rows
or columns, is the one most frequently used.

It may be of interest , however , to illustrate a more complicated example
of this type of development. Let the following fourth -order determinant

all al2 al3 al4

A = a21 a22 a23 a24 [ 19]
a31 a32 a33 a34

a41 a42 a43 a44

be developed through the selection of the first two columns for the forma-

+

+

-

+



By means of the Laplace development a determinant may evidently be
evaluated in a variety of ways. One possible method of evaluation consists
in repeatedly applying the simplest form of development given by Eqs. 17
and 18. In the first step of this process, the development is given by the
sum of n terms, each of '\vhich is the product of an element and an (n - 1)-
rowed co factor . In the second step, each of these co factors is similarly
developed, thus yielding for the determinant A a sum of n (n - 1) terms,
each of which consists of the product of two elements and an (n - 2)-
rowed co factor . As the process is continued one recognizes that the final
evaluation of A is given by the sum of n ! terms, each of which consists of
the product of n elements. .

The determinant is, therefore, a rational integral function , homogeneous
, and of the nth degree in its elements. In any term of the final

evaluated form, the appearance of the product of an element with another
element of the same row or column is not possible. This fact is readily
appreciated by noting in the term a12A 12, for example, that the co factor
A 12 contains no elements of the first ro'\v or second column. Hence none
of these elements can subsequently appear in a term containing a12. The
determinant is, therefore, a linear function in the elements of anyone row
or column.
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I a41

�

-

� �
all

a21
X a23

a43
A -

x a24 +
a34

all a21
a31

- a14 + a31a34 a41a21

a41
[20]

�

x

+ x
�

x

�
x

a34
a44

all
a31

a33

a43

a23

a33

a13

a33

tion of minors. All possible two-rowed minors are systematically formed
as the rows : 1 , 2 ; 1 , 3 ; 1 , 4 ; 2 , 3 ; 2 , 4 ; 3 , 4 are selected from these columns .

The sign-controlling factors of the corresponding algebraic complements
are respectively :

( _ 1)1+2+1+2 = + 1
(_ 1)1+2+1+3 = - 1
(_ 1)1+2+1+4 = + 1
(_ 1)1+2+2+3 = + 1
(_ 1)1+2+2+4 = - 1
(_ 1)1+2+3+4 = + 1

With the terms written down in this order, the development reads

a12

a22

a12

a42

(J;22

a42

a13

a43

a13

a23

a12

a32

a22

a32

a32

a42

a24

a44

a14

a44

a14

a24



By inspection of Eq. 21 it may be said that the value of a two-rowed
determinant is given by the product of the elements on the principal
diagonal less the product of the elements on the conjugate diagonal
(lower left to upper right) as indicated in the following by arrows:

This is called the diagonal product rule. It is applicable in extended form
to the evaluation of a three-rowed determinant. Here there are three
positive and three negative products, the positive ones being formed by
elements on the principal and adjacent parallel diagonals and the negative
ones by elements on the conjugate and adjacent parallel diagonals in a

 steps.
Alternative abbreviated methods of solving such equations are given

in Arts . 7 and 11 of Ch. II . From a broader standpoint it is well to be
familiar with numerous process es of evaluating determinants, so that the
particular conditions of a specific problem may be met most expeditiously .
In this regard the following remarks may also prove useful.

Evaluations of two of the simplest cases by means of the Laplace
development method are written down so that their resultant fonns may
be examined.

all a12 \
= alla22 - a2lal2

a21 a22

�

[21]

-

�
all

a21

a31

a12
a22
a32

a13

a23

a33

alla22a33 ~ a12a23a31
- a31a22a13 - a32a23all

+ a13a Zla3 Z

- a33a Zlal  Z
[22]

principal-""" ,,~-negative productdiagonal 'all 912" ",,'<-,". ,, "conjugate a2l a22diagonal ~" ',,-positive product
[23]

Art. 5] OTHER METHODS OF EVALUATION 9

5. OTHER METHODS OF EVALUATION IN NUMERICAL OR FUNCTIONAL
FORM

The evaluation of a detenninant by means of the Laplace development
, although useful for numerous analytic investigations, is a long and

tedious process. The solution of simultaneous linear equations by means
of determinants, as discussed in Art . 8, is usually found in numerical
problems to involve a larger number of component operations than a
systematic process of elimination . This situation is true even when the
determinant and co factors are evaluated by the method given in Art . 2,
although this method parallels the elimination process in its essential
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[24]

.
. . . . . N ~ N ~ ~ . . . . . . ~ N ~ " " " ~

.
; : . . . ; : . . . ; : . . . - . N , - , C

I
. ) C

I
. ) C

I
. ) . - . N

N

1
3
3
1
2
4
2
4
4
1
3
2

"
" W

N
W

" " W " " N ~ N ~ ~

.
; : . . . ; : . . . ; : . . . . . . . t - . Jt - . J ~ ~ ~ . . . . . t - . J . . . . .

~

t - . J . . . . . . ; : . . . ; : . . . . . . . t - . J ' ; : " " " ' ~ ~ t - . J

which is n !
In this process, the algebraic signs of the various terms are control led

by the rule that all pennutations formed by an even number of inversions
of the pennuted subscripts represent positive tenns, all others being
negative. Thus for n = 4 the possible permutations are

manner which is more easily understood if the first two colwnns are
repeated so that the arrows may continue straight , thus :

negative products -

r - ;~ - _. " --;- : -- , , ( '\
... , " r + - - - r . ,

! " "t " , I
all a12 , al3 , /'. 11.11 .. a12 I

, , . . " "

, .... I " I
, . . , " ,

" " ' 1 , ' I

a2l ,a22 ,a23 , raZl a22 I repeated columns
.. ' " , , ' , I ' , : . - "

. . " ' " ' 4 ' 1 -
.. " , , . " I

a31 a32 ,a33 I a Sl a32 '
" , L '

" - " ' , - - - . . .

~ ' '\. ~ ~ ~ J
positive products

The result is seen to check with Eq . 22.
An extension of this rule does not yield the value of fourth and higher

order determinants, as may readily be appreciated from the fact that the
number of terms in the final evaluation must be n !, whereas the diagonal
product rule yields only 2n terms. If n = 4, there remain 4 ! - 2 X 4 = 16
terms unaccounted for after all diagonal products have been formed.

From a more comprehensive study of determinants, it is seen that all
the terms in the final evaluation may be found by writing down the group
of elements on the principal diagonal

all a22 a33 ' " ann

and carrying out all permutations of the first subscripts, keeping the
second subscripts fixed , or vice versa . In either case there are as many
different products as there are permutations of n things taken n at a time ,
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The twenty -four terms written
indexes, the fixed set being 1 2

11Art. 7]

7.
�

[27J

[28]

with these as the first or second set of

3 4, and prefixed with algebraic signs
according to the stated rule , represent the evaluation of the fourth -order
determinant .

PRODUCTS OF DETERMINANTS

The product of two determinants of like order can be expresse.d as a
single determinant of the same order. If the two determinants are initially
not of the same order, one of them can be bordered. In the present discussion 

the determinants can, therefore, be assumed to have the same order.
The procedure for obtaining the elements of the product determinant

is best illustrat~d by means of a simple example. By the Laplace development 
the transformation of the following product is justified:

all al2 -- 1 0

A X B = all al2 X bII bl2 = a2I a22 0 ...1 [26]a2I a22 Q21 b22 0 0 Q~lb !2
0 0 b2I b~~

According to rule IV, Art. 1, the resultant fourth-order determinant may
be modified in the following manner without changing its value. First
the bll-multiplied elements of the first row and the bl2-multiplied elements 

of the seco;nd row are added to the corresponding elements of the
third row, giving

all al2 - 1 0

A X B = a2l a22 0 - 1Cli C21 0 0
0 0 b21 b22

in which
CII = allbll 4r ~ lbl2
C2l = al2bll 4r ~ 2b12
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[31]

� � � ��

[32J. . . . . . . . .
. . . . . . . . . . . . . . . . . .

Cnn

,

The object of this transformation is to produce zeros in place of the elements 

b11 and b12 in the fourth - order determinant of Eq . 26 . Now both

the b21 - multiplied elements of the first row and the b22 - multiplied elements

of the second row are added to the corresponding elements of the fourth

row , giving

all a12 - 1 0

A X B = a2l a22 0 - 1 [ 29J

Cll C21 0 0

C12 C22 0 0

where

C12 = allb21 + a2lb22 [ 3 OJ

C22 = a12b21 + a22b22

By the method of Laplace ' s development the determinant of Eq . 29 is

simply

A X B = = Cl1 C21 = = Cll C12

C12 C22 C21 C22

the sec . ond form being obtained by an interchange of rows and columns .

Examining the expressions for the elements Cik , as given by Eqs . 28 and

30 , it is observed that they are formed by multiplying successive elements

in the columns of the determinant A by successive elements in the rows of

the determinant B and adding the results , the specific columns and rows

involved being indicated by the first and second subscripts respectively

on Cik . Thus Cll is formed from the elements of the first column of A and

those of the first row of B ; C12 is formed from the elements of the first

column of A and those of the second row of B , etc . More briefly , the c ' s

are said to be formed by multiplying the columns of A by the rows of B .

Since the individual values of the determinants A and B are unchanged

by writing their rows as columns , it is clear that the value of the product

determinant is unaltered if its elements are formed by multiplying either

the rows or columns of A by either the rows . or columns of B . The elements

of this resulting determinant may , therefore , be formed in any of four

different \ vays . Although the individual elements thus obtained are

different , the value of the resultant determinant remains the same .

A straightforward extension of the method used in the above example

shows that the process of forming the elements of a determinant representing 

the product of two given determinants A and B follows the same

general rules when A and B have any order . This result is summarized

in the statement

all . . . al , . b11 . . . Bin Cl1 . . . Cln

X

anI . . . ann bnl . . . bnn Cnl
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[33]
[34]
[35]
[36J

8. LINEAR EQUATIONS

Art . 8 ] LINEAR EQUATIONS

with anyone of the following four relations :

Cik = ailbkl + ai2bk2 + . . . + ainbkn

Cik = ailb1k + ai2b2k + . . . + ainbnk

Cik = alibkl + a2ibk2 + . . . + anibkn

Cik = alib1k + a2ib2k + . . . + anibn ~

On the right - hand sides of the last four expressions , the indexes i and

k have fixed values for anyone of the c ' s . Since the first index refers

to a row and the second to a column , it is recognized that the four representations 

for Cik above correspond respectively to multiplying rows of A

by rows of Brows of A by columns of B , columns of A by rows of B , and

columns of A by columns of B .

(alI A 11 + a2lA2l + . . . + anlAnl )Xl
+ (a12All + a22A2l + . . . + an2Anl)X2
+ (a13All + a23A2l + . . . + an3Anl)X3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+ (alnAll + a2nA2l+ ' . . + ann Ani )Xn= A11Yl+ A21Y2+ . . . + AnlYn [38]

Here the coefficient of Xl is recognized as the Laplace development of the
determinant A with respect to the elements of the first column, as given
by Eq . 18 for k = 1. Similarly , the coefficient of X2 is seen to be the ~. I
Laplace development, WIth respect to the elements of the first column, of I
a detenninant which is formed from A by replacing the elements of the

One of the most important uses for determinants is in the solution of
linear simultaneous equations. A set of n such equations involving n
unknowns reads

all Xl + a12X2 + . . . + alnXn = Yl

~2: ~~ .: . ~2: ~: .~ ....... : . ~~n.X~.~. : ~ [37]

anlXl + an2X2 + . . . + ann Xn = Yn

The object is to determine the values Xl . . . Xn in terms of the values
YI . . . Yn and the coefficients aik which are the elements of the determinant
of this system of equations. This determinant is given by Eq. 1.

Let the equations in the set (Eq . 37) be multiplied successively by
the co factors All , A21, . . . + AnI . Subsequent addition yields the
equation
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first column by those of the second column .
is the determinant

an2 an2 an3

which by rule VI , Art . 1 , has the value zero .

Similarly , the coefficient of Xa is equal to the determinant A with its

first column replaced by the third column . This is likewise zero , as are the

coefficients of all the remaining oX's . Equation 38 is , therefore , equivalent
to

A Xl = All  Yl + A2lY2 + . . . + AnlYn [ 40 ]

whence

Xl = All  Yl + A ~IY2 A + . . . + An I Y!! [ 41 ]

In like manner the solution for X2 may be obtained by multiplying the

equations in the set 37 by the co factors A12 ' A22 ' . . . An2 ' respectively

and adding the results . The coefficient of X2 then equals A , and the

remaining ones are zero . Hence there results

X2 = Al2YI + A 22Y2 + . . . + ~ n2~ ~ [ 42 ]A

This result may be stated in general terms by assuming Eqs . 37 to be

multiplied respectively by the co factors Alk , A2k , . . . Ank and adding the

results . The coefficient of Xk then equals A , and the remaining ones are

zero , so that

AlkYl + A2kY2 + . . . + AnkYn
Xk =

A

For k = 1 , 2 , . . . n , this represents the desired solutions .

The numerator of Eq . 43 is recognized as the Laplace development of a

determinant which is formed from A by replacing its kth column by the

column of y 's appearing on the right . hand sides of Eqs . 37 . Thus the

Eq . 43 , . be writtenresult , may

11- [Ch. I

therefore,This coefficient,

� �

a12
a22

a12
a22

a13
a23

.. .

[39J.

. .

[43J

.

.

.



which justifies the step from Eq. 38 to Eq. 40.
which is established in an analogous fashion, reads

{ A for i = kail Akl + ai2Ak2 + . . . + ainAkn = 0 for i ~ k [46J

For i ~ k this represents the Laplace development of a detenninant whose
ith and kth rows are identical. Equations 45 and 46 may he looked upon
as an extension of the relations expressed by Eqs. 18 and 17 respectively.

The solutions to the set of Eqs. 37 may be written in the form
b11Yl + b12Y2 + . . . + blnYn = Xl '
b21Yl + b22Y2 + . . . + b2nYn = X2
. . . . . . . . . . . . . . . . . . . . . . . . . . .

bnlYl + bn2Y2 + . . . + bnnYn = Xn

in which, according to Eq. 43, the coefficients are given by

b - ~ra - A

Art. 8] LINEAR EQUATIONS 1$

all
a21

Yl
,)'2

al ,k+l

~ ,k+ l

aln

a2n
. . . . .

. . . . .

. .. . .

[44]. . .

. . .

. . . . . . . . . . . . . .

ani an2 . . . ann

al ~ lk + a2~ 2k + . . . + an~ nk = { ~
for ~ = k [45]for 11 ~ k

The companion relation ,

[47]

[48]

A statement describing this form of the solution is known as Cramer's
rule.

A significant feature in the derivation of these solutions is a recognition
of the validity of the relation

al .k- l

a2.k- l

In this result it is significant to note the reversal of the subscripts on Aar

as compared with those on brao
In case the elements of the determinant A fulfill the condition

Gik = aki [ 49 ]

the determinant is said to be symmetrical about its principal diagonal .

It is clear from rule VIII , Art . 2 , that the minors and co factors of A then
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Bkiaik = B [51]

also have this property , that is,

Aik = Aki [50]

and it then follows from Eq . 48 that the determinant of the system of
Eqs. 47 is likewise symmetrical . In that case the subscript order in Eq . 48
is, of course, unimportant .

Equations 37 and 47 are-mutually inverse systems. The one set represents 
the solution of the other . Consequently by analogy to Eq . 48 the

coefficients of Eqs. 37 may be written
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the nu-
of this

1, be re-

[57]

[59]

which is independent of the values of both Yi and the detenninant A.
It may be inferred, therefore, that Eq. 59 holds also when both Yi and
A are zero.

The correctness of this conclusion is demonstrated in a rigorous fashion
in Art. 7, Ch. III . Meanwhile it is interesting to note that when the
homogeneous set of equations has nontrivial solutions, these are not
uniquely detennined by Eq. 59, in which only the ratios of the unkno\vns
are given. Any value can be assigned to one of them, and the remaining
unknowns are then expressed in tenns of this one.

= Ai8

in which < Xl , . . . < Xn are arbitrary factors . The column of y ' s in

merator of Eq . 44 is then a linear combination of the other columns

determinant and can , by repeated application of rule IV , Art .

duced to a column of zeros .

When the y ' s are expressed by the relations 56 , the Eqs . 37 can be

rewritten in the form

all ( Xl - < Xl ) + a12 ( X2 - < X2 ) + . . . + aln ( Xn - < Xn ) = 0

a2l ( Xl - < Xl ) + a22 ( X2 - < X2 ) + . . . + a2n ( Xn - < Xn ) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ani ( Xl - < Xl ) + an2 ( X2 - < X2 ) + . . . + ann ( Xn - < Xn ) = 0

A special case of this sort occurs when all the y ' s are zero . Then < Xl =

< X2 = . . . = < Xn = 0 , and Eqs . 57 become identical with Eqs . 37 for

Yl = Y2 = . . . = Yn = o . This is called the corresponding homogeneous

set of equations . For these , the Cramer rule as expressed by Eq . 44 yields

the solutions in indeterminate form except when A ~ 0 , but then the

solutions are all zero . They are spoken of as the trivial solutions because

their existence is at once evident upon inspection of the homogeneous

equations .

Nontrivial solutions to the homogeneous set of Eqs . 57 exist only if the

determinant is zero , but Cramer ' s rule , Eq . 44 , is of no use in deternlining

them . In order to see how this difficulty might be overcome , it is helpful

to consider the Eqs . 37 for the special case that one of the y ' s , for example ,

Yi , alone is different from zero . Then , if it is assumed for the moment that

the determinant is not zero and Cramer ' s rule or Eq . 43 is applied , it is

found that

x " = ~ [ 58J

A

In this special case the ratio of any two unknowns is given by

AirXr

X8



The general conditions for the existence of solutions may be discussed
as follows. The fact that the inhomogeneous equations 37 have solutions
only when the determinant is not zero simply amounts to stating that
these equations must be independent. If one is a linear combination of
the others (in this case the determinant vanish es), then, speaking in
physical terms, the data are insufficient to yield an explicit answer.

In case the right -hand members of the Eqs. 37 are zero and all the equations 
are independent (A ~ 0) , the system is overspecified from a physical

point of view. The situation is like a deadlock, and nothing can happen;
that is, only zero values for the unknowns can satisfy the equations. If
one of the equations is a linear combination of the others (A = 0), this
one may be discarded and one of the tenns in each remaining equation,
for example, that with Xn, transposed to the right -hand side. These
(n - 1) equations may then be solved for the (n - 1) remaining unknowns 

in terms of Xn, provided the determinant of this reduced set is

not zero. If it is zero, this method fails, but so does the corresponding
form of solution expressed by Eq . 59.

This kind of failure in the method of solution indicates that two independent 
sets of solutions exist, but it is difficult to obtain a clear

picture of this situation ,vithout the aid of such appropriate geometrical
interpretations as are given in Ch. III . The present discussion is completed
in that chapter. The material of the following article , however, is helpful
in summarizing some of the characteristics of the determinant which are
pertinent to the present problem.

18 DETERMINANTS [Ch. I

10. THE RANK OF A DETERMINANT

If in the determinant A , Eq . 1, there exists among the elements of each
column the same linear relation

alalk + a2a2k+ " ' + anank= O (k = 1, 2, . . . n) [60J

in which the a's are arbitrary nonzero factors, the elements of any row
are expressible as linear combinations of the corresponding elements of the
remaining rows . If some of the factors al . . . an are zero , this fact still
holds for the elements of some of the rows. By repeated modification of the
determinant according to rule IV , Art . 1, anyone of these rows can be
reduced to a ro \v of zeros . Hence it is seen that a determinant is zero if a

relation of the form given by Eq . 60 exIsts in which at least one of the a's
is different from zero .

Conversely, if the determinant is known to be zero, it is surely possible
to :find a relation of the form of Eq . 60, as is clear if Eq . 60 is written out
for all the k -values , thus
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.
. - - ~

[61]
. . . . . . . . . . . . . . . . . . . . . . . . . . .

alnal + a2na2 + . . . + annan = 0

THE RANK OF A DETERMINANT

allal + a2la2 + . . . + anlan = 0
al2al + a22aZ + . . . + an2an = 0

This is simply the homogeneous system of equations in which the determinant 
has its columns written as rows. It is called the transposed set of

equations. According to property VIII , Art . 2, the transposed determinant
is zero if the given one is. Hence, by the method discussed in the previous
article , a set of nonzero a-values can be found to satisfy Eqs. 61.

It is then also possible to find a set of nonzero ,a-values satisfying the
relations

[:11ail + [:12ai2 + . . . + [:1nain = 0 (i = 1, 2, . . . n) [62]

since they are simply a set of solutions to the untransposed system of
homogeneous equations.

It follows that if the elements in a row of a determinant are expressible
as linear combinations of the corresponding elements of the remaining
rows, the elements in a column of this detenninant are similarly expressible

.
When a determinant of order n is not zero , so that neither the relations

60 nor 62 exist (except for zero a- and (3-values) , it is said to have the rank
r = n. If the determinant is zero but at least one of its (n - 1)-rowed
minors is different from zero , one set of a - and {3-values exist which

satisfy the Eqs. 60 and 62. The determinant is then said to have the
rank r = n - 1. If the determinant and all its (n - 1)-rowed minors are
zero but at least one of its (n - 2)-rowed minors is different from zero, it
has the rank r = n - 2. In this case it is possible to find two independent
sets of a- and {3-values satisfying Eqs . 60 and 62, and the homogeneous

system of equations has two independent sets of solutions, as is discussed
further in Ch. III . Corresponding statements for the condition that the
rank is n - 3, 11- - 4, etc ., are obvious . Finally , if the rank of a determinant 

is zero , all its elements are zero .
The definition of rank facilitates the discussion of possible solutions to

a system of linear equations. Thus the nonhomogeneous Eqs. 37 have
solutions only when the rank of their determinant is n. The corresponding
hnmn !:J"pnpous eQuations have nontrivial solutions only if the rank is less

~ -

than n, and they have p sets of independent solutions if the rank is n - p.
A more lucid exposition of this line of reasoning is found in the chapters
immediately following .
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DETERMINANTS

PROBLEMS

1. Determine the rank of each of the following determinants :

(a) 1 2 3 4 (b) 3 9 20 18 (c) 5
2 4 6 8 8 19 40 37 0

3 6 9 12 13 20 47 34 - 2

4 8 12 16 20 22 59 31 9

(d) 12 - 5 8 (e) 39 24 12 5 (f )
4 0 1 24 21 2 2

- 4 3 - 4 12 2 10 3

5 2 3 1

2. Transform each of the above determinants to the triangular form , thus finding
their values and checking the ans\vers to Prob . 1.

3 . For each determinant inProb . 1 ,vhose rank is less than its order , find relations
of the form of Eqs . 60 and 62.

4. Using determinants (e) and (f ) of Prob . 1, write down corresponding sets of
simultaneous equations , denoting the right -hand members by Yl , Y2, . . . as in Eqs . 37.
Solve these equations by means of Cramer 's rule .

5. Repeat the solutions of the equations inProb . 4 by means of a systematic
elimination 'process. Compare the total number of multiplications and additions with
those required in the solutions using Cramer 's rule .

6. Evaluate the following determinant according to the pattern shown in Eq . 20.

2 1 4 3

6 - 1 2 - 4

3 - 2 5 1

- 5 6 4 - ..1

Repeat the evaluation through reduction to the triangular form and compare the
total numbers of multiplications and additions required in the two methods . Derive a
formula giving the total numbers of multiplications and of additions required for the
evaluation of an nth order determinant by the method involving its reduction to the
triangular form .

7. Determine the solutions to a set of equations (like Eqs. 37) having the ac-
0 .5 0 .5 0 .5 0 .5

- 0 .866 0 .289 0 .289 0 .289

0 - 0 .258 0 .408 0 . 408

0 0 - 0 .707 0 .707

companying determinant . Compare the set of equations representing the solutions
with the given equations and note any obvious mutual relations existing between
these two sets of equations .

8. Given the two sets of equations

- 2

- 11

25

- 19

4

8

4



which are solutions of each other, show that the corresponding determinants A and B
have inverse values; that is,AB = 1. A proof may be based upon the rule for forming
the product of two determinants.

9. In the following special nth order determinant

a 1 0 0 . . . 0
1 a 1 0 . . . 0

Dn = 0 1 a 1 . . . 0

Ch. 1] PROBLEMS 21

� �

0 . . . 0 1 a

~ = K (dl, . . . d,,) = dl +..!l + ..!1 + U + . . .nIl K (d2, . . . d,,) Ida I ds I d4
which is known as a continued fraction.

13. Show that

K(d1, ' . . an) = K(dn, . . . du

. . . . . . . . . . . . . . .

0

all the elements of the principal diagonal are equal to ai those on the diagonals immediately 
above alld below the principal diagonal are unity , and all the rest are zero .

Derive the following recursion formula :

Dn = a Dn - 1 - Dn - 2

applicable for n = 1, 2 , . . . with the definitions : Do = 1 and DI = a . From this

recursion formula obtain an explicit expression for the determinant of order n which
reads

sinh ( n + 1 ) "' ( . a
Dn = . ' With "' ( = CO Sh- l -

sinh "' ( . 2

10 . If the first and the last elements on the principal diagonal of the de terminal  lt

inProb . 9 are replaced by a / 2 , show that the resulting determinant has the value

Dn = sinh ( n - 1 ) "' ( . sinh "' (

while if only thefirst or last of these elements is a / 2 , the value is given by

D n = cosh n "' (

11 . Consider the de terminal  lt

dl 1 0 0 0 0 . . .

- 1 d2 1 0 0 0 . . .

D = 0 - 1 da 1 0 0 . . . = K (dl , . . . an )

0 0 - 1 d4 1 0 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .

alld show that this function K (dl , . . . an ) , called a simple continuant , possess  es the

recursion formula

K (dl , . . . an ) = dnK (dl , . . . an - I ) + K (dl , . . . dn - 2)

with

K (dJ = dl , and K (O) = 1

12 . Denote by DII the co factor formed through canceling the first row alld column

in the determinant given in Frob . 11 . Make use of the results of Prob . 11 to show that
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n
cos (n,x) = ~

n
COg (n,y) =-=w

n=
-(;)cos (n,z)

Since the sum of the squares of these cosines equals unity , ope has
dn=vi (1,2 + b~ + ,%

and that the recursion formula given in Frob . 11 may alternatively be written

K (d1, . . . an) = a1K (d2, . . . an) + K (d3, . . . an)

14. Show that the partial derivative of a det~rminant with resp~ct to one of its
elements equals the co factor of that element. In symbols: dA/ dask = Ask.

15. Consider the co factors A "k and Asf' corresponding to the elements ask and asr
in the same row of a determinant A . Show that the sum (Ask + Asf') is equal to
Ask with the column involving the elements a ST replaced by one with elements
a ST + ask ( _ 1)k- T, or to Asr with the column involving the elements ask replaced by
one in which the elements are ask + a ST( - 1)k- T.

16. Using the type of reasoning involved in the previous problem , show that the
fourth -order determinant may be written as the following sum of two third -order
determinants :

(alla22 - a12a2V a23; a24 a21 a22 (a13a24 - a14a23)
(alla32 - a12a31) a33 a34 + a31 a3~ (a13a34 - a14a33)
(alla42 - a12a4V a43 a44 a4~ a42 (a13a44 - a14a43)

or as a variety of obvious modifications of these forms .

17. Express in determinant form the condition that the three straight lines defined
by

411X + a12Y + alS = 0

a21X + a22Y + a2S =; 0

a Sl X + a32Y + a33 = 0

shall intersect at a common point .

18. In the XY -plane the origin 0 , and the two points P (Xl ,yU and Q(X2,Y2)
determine a triangle . Sho\v that the area of this triangle is expressible by means of the
determinant

!I Xl Yl I2 X2 " 2

19. Using the result of the previous problem show ~that the area of a triangle
determined by the points (Xl ,yJ , (X2,Y2) and (XS,Y3) is expressible as

1 Xc}, Yl 1

"2 Xc2 Y2 1
Xc3 Y3 1

Write the condition for which these three points lie on the same straight line .

20. ax + by + cz + d = 0 is the equation of a plane. Its intercepts on the coordinate 
axes are: x = - dl a, y = - JIb , z = - dl c. Let n denote the normal from

the origin to the plane . Its direction cosines are :



Consider a point Po(xo,Yo,zo) for which axo + byo + cZo + d = Do. Subtracting this
equation from the original one gives a(x - xo) + b(y - Yo) + c(z - zo) + Do = 0,
from which it is clear that the length of the normal dropped from the point Po to the
plane is

These results and that of the previous problem are to be made use of to show: (a)
That the equation of a plane passing through the three points Pl (Xl,Yl,zl),
P2(X2,Y2,Z2) and Pa(X3,Y3,Z3) may be written in the form

x Y z 1

D (x z) = Xl Yl Zl 1 = 0,Y, X2 Y2 Z2 1
X3 Y3 Za 1

(b) That the co factors of the first three elements of the first row, that is,

Yl Zl 1 Zl Xl 1 Xl Yl 1
Y2 Z2 1 , Z2 X2 1 , X2 12 1
Y3 Z3 1 Z3 Xs 1 Xs la 1

are equal to the projections of the area of the triangle PIP2PS upon planes normal to
the X -, Y -, Z-axes respectively and that the square root of the sum of the squares of
these co factors equals the area of this triangle. (c) That Do = D(xo,yo,zo) divided by
this square root equals the normal distance of a point Po(xo,yo,zo) from the plane, and
hence that the volume of the tetrahedron whose vertex es are the points POPIP~ .. is
equal to one-sixth the value of the determinant Do.

21. Three planes passing through the origin are represented by the equations
alX + a2Y + a3Z = 0

blx + b2Y + baz = 0

C1X + C2Y + C3Z == 0

Express in determinant form the condition for which these planes intersect in the
same straight line and find the expressions for the direction cosines of this line. Given
a~y two planes, what are the direction cosines of their intersection?

22. Write the following determinant as a. polynomial in A:

all - ~ alZ al3
P (A) = a2l a2Z - ~ a2S

a31 a S2 a3S - A

and obtain expressions for the coefficients of the polynomial in terms of the determinant 
A and its co factors. Indicate the forms of these expressions for an nth degree

polynomial.
23. Prove 'that

(a) (all + blv C12. . . C1n au C12' . ' C1n bu C12' . ' C1n
(a21 + b2V C22. ' . C2n a21 C22' . ' C2n b21 C22. ' . C2n
. . . . . . . . . . . . . . . . . . . = . . . . . . . . . . . . + . . . . . . . . . . . .

(anI + bnv Cn2. . . Cnn ani Cn2. . . Cnft, I bn1 Cn2. . . Cnft

(b) If C~ = aik + jb ~ i , k = 1, 2, 3

PROBLEMS 23Ch.11

Do, .no = V ~2 + b2 + C2

i = v "=-t

� � �



26. In terms of the n independent functions

Yk = Yk(t) for k = 1, 2, . . . n

n (n - 1) (n - 2) . . . (n - m + 1)

(d) By using the above properties show incidentally that
1 n(n - 1) n(n - 1) (n - 2) + + n! 2n+n+ + ... - =21 31 n!

in which

dYik, - -Y ik - dt

m !
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( differentiable up to and including the nth order ) , construct the following determinant

( the so - called Wronskian of those functions ) :

Y1 Y2 Y3 . . . Yn
, , , ,

Y 1 Y 2 Y 3 . . . Yn dh

A = Y " l Y " 2 Y " 3 ~ . . y " n Yk ( h) = h ( Yk )
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . dt

Yl (n - I > Y2 (n- I > Y3 ( n- I > . . . Yn (n - l )

If these functions are connected by a linear relation of the form

ai . Y1 + A2Y2 + A3Y3 + . . . + An  Yn = 0

in which the A ' s are constants , show that the above determinant vanish  es identically .

Hint . Differentiate the linear relation successively n - 1 times so as to obtain

ai . Y' l + . . . + Any ' n = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

ai . Yl (n - 1) + . . . + An  Yn ( n - 1) = 0

Together with the original relation , one then has a set of n equations . From these , the

value of any function Yk , for example , Yl , and its fust ( n - 1 ) derivatives can be

obtained . Substitution into the Wronskian , followed by an expansion according to

columns , leads to the desired result .

27 . Using the determinant , d , as defined inProb . 26 , show that

Yl Y2 Ys . . . Yn
, , , ,

d Y 1 Y 2 Y 3 . . . Yn
- d = . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dt Yl (n - 2) Y2 ( n - 2) YS (n - 2) . . . Yn (n - 2)

Yl (n ) Y2 ( n ) Y3 (n ) . . . Yn (n )

Hint . Use the result of Frob . 25 and observe the resulting structure of the rows .

28 . If ( with reference to the situation given in Frob . 27 ) there exists a set of n

relationships ( differential equations ) of the form

POYr (n ) + Pl  Yr (n - l ) + P2Yr ( n - 2) + . . . + PnY ,. = 0

for

r = 1 , 2 , . . . n

in which the coefficients po , Pi , P2 , . . . pn are constant or variable , show that .

a Pi

( a ) - A = - - A
at Po

( b ) A = Aoe - f (Pl / PO} de

in which ~ o is the integration constant .

Hint . Give r the values 1 , 2 , . . . n and obtain , from each equation , the value of

Yr (n ) . Substitute these values into the last row of the expression inProb . 27 .

29 . Given

Xk = Xk ( t ) for k = 1 , 2 , . . . n ( a system of n unknown functions of t )

~ k = ~ k ( t ) for k = 1 , 2 , . . . n ( a system of n known functions of t )

and

G' ik for i , k = 1 , 2 , . . . n ( a collection of n2 constants )



related

DETERMINANTS

following

are n single-valued differentiable functions of the independent variables Xl, X2, . . . Xn.
The II Jacobian" of these functions is, by definition, the following functional

determinant:

and their Jacobian with respect to the variables Z1. . . Zn, for example, J 1, differs from
J only in that the variables x are replaced by corresponding z's.

26

These quantities are
equations

by the

Uk = Uk(Xl . . . xn) for k = 1, 2, . . . n

� �

Xk = Xk(Zl . . . Zn) for k = 1, 2, . . . n

The original Uk functions are now

Uk = Uk(Zl . . . Zn) for k = 1, 2, . . . n

= 1 ! X 2 ! X 3 1. . . (n - 1) !

to the diagonal form. Use Barlow's tables of squares

tion .

31 .

a U I a U I a U I
- - " , -

a X I a X2 a Xn

- (UIU2 . . . Un)J- =X1X2 . . . Xn
. . . . . . . . . . . . . . .

a Un

a Xl

fJun

8X2

QUn
. . . -

QXn

d U2- - -
c1Xn

a U2 a U2- -
ax ! a X2

Suppose the variables Xl . . . xn are changed to the new independent variables Zl". .-. Zn
according to the equations of transformation

alixl + a2kX2 + . . . + ankXn = Yk

Show that a solution of this system (the particular one) is given by

Alk J Yl dt + A2k J Y2 dt + . . . + Ank J Yn dt
Xk = 1 Iaik

in which the Aik'S are co factors of the determinant laikl.
30 . Show that

1 1 1 . . . 1

1 2 22 . . . 2n- l
1 3 32 . . . 3n- l

. . . . . . . . . . . . . . .

1 n n2 . . . nn - l

Hint . Reduce the deternlinant -
(pages 202 to 206) for the powers of integer numbers and observe the law of forma -



(b) Extend the above result so as to consider subsequent transformations of the
form

zi = Zi (rl , r2, " ' rn) forj = 1 2, " ' n

rp = rp (tl , t2, . . . en) for p = 1, 2, ' . . n

termediate
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��

(p, q = 1, 2, . . . n)

�

�

Xl

c1Xn
- .

c1Z2

QX11
. . az

a X2

a ZlJl =

dXn

dZl

aX !

a X2

ax

a -1 =

(a) Show that the above Jacobians are connected by the relation

8Xl 8Xl 8Xl
- - . . . -

c1Z1 c1Z2 c1Zn

(c) What happens with the last Jacobian when any in functional
determinant is identically zero? Hint. Apply the rule for differentiation which reads:

OUr i =n OUr OX,
- = ~ - - r,s = 1,2, ' . .nOZ. '& =1 OX, OZ.

32. Let
aik = aik(XI, X2, . . . Xn) forj, k = 1,2,. . . n

be a system of n2 differentiable functions of the independent variables Xl, X2. . . Xn.
Through the introduction of a new set of independent variables Xl, X2, . . . xn by means
of the functional relations

Xk = Xk(XI, XZ, . . . xn) for k = 1,2,. . . n

the system of functions ajk in the old variables goes over into the transformed syste I I
ajk in the new variables.

Accepting the result that ajk goes over into ajk in accordance with the la,v oj
transformation

a  xi
. -

. . axn

a X2

. . . ~
. . . . . . . . . . . . . .

8xn 8xn 8xn
- _ . . . -

I aX! a X2 axn

O XlO Xl
OX2O Xl

a X2 a X2
- . . . -

a Z2 i  Jzn

. . . . . . . . . . .
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33. The expression for the three-dimensional volume element in a general system
of co-ordinates is given by

dV = /j Jdxidx 2 dx 3
in which

v=n 9x 9X
gjk= v=1,2, ��n j=1,2, ��n k=1,2, ��n

, ÔXj

If the co-ordinate system is orthogonal, the gjk system has the property

1 O forj=k
2 10 forjk

Check the values of \ ] I for the different co-ordinate systems and laws of co-
ordinate transformation given in the following table:

Name Equations of Transformation V� g,k

I = i
Cartesian X2 = x2 1

Va = X3

Circular X1 = 2 cos 22
cylindrical X2 = Xi sin X2 Xi

X3 = X3

I i = c cosh 2 i cos 2a
Elliptic X2 = c sinh 2 i sin 22 c 2 (cosh 2 i � cos 2 22)
cylindrical 

= 2 ; c = const.

Parabolic = 2 (2 2 � X2 2 )

cylindrical 
X2 = X1X2 (212 + 222)

=

I =_____ asinh2i

cosh � cos X2
Bipolar . - a 2

a sm x2
cylindrical X2 = (cosh 2i � cos 22)2

cosh i � cos 22

= 2 ; a = const.

1 x 1 = c cosh 2 cos 22; C = const.
Spheroidal X2 = c sinh 2 i sin 2 cos 23 c 3 (cosh 2 2i � C0s 2 2 ) sinh 2i sin 22

= csinh2lsin22sin2 a

(xi = 2 cos 22 Sill 23
Spherical = i sin 2 sin 23 2 2 sin 2

= 2 i cos 23

34. Given the multiple integral

I=ff...fF(x 1 ,x 2 ,...x )dx 1 dx 2 ...dx 1
in which Xj, x 2 , � x , are the independent variables. If new variables 2i, 22,�
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ition functions

for X = 1, 2 , . . . n

for p = 1 , 2 , . . . m
p~n:I; app,x.i' = 0p=l

Ch . I ] PROBLEMS

are introduced in accordance with the relations

Xk = Xk ( Xl , X2 , . . . x , , ) for k = 1 , 2 , . . . n

it can be shown that the above integral becomes

I = J J . . . J JF ( Xl , X2 , . . . Xn ) dXl dX2 . . . dzn

in which J is the determinant given in Frob . 32 .

Compute the value of the determinant J for each set of transform  a

given in the second column of the table in Frob . 33 .

35 . Given the following system of m + n linear equations involving the m + n

unknowns XX for A = 1 , 2 , . . . n , and ep for p = 1 , 2 , . . . m , " , ' ith n > m :

p=n p=m
}: A~xJ4 - eX.), + }: epaph = 0p=1 p=1

( a ) Write in determinant form , according to the above order of these equations ,

the condition for the existence of nontrivial solutions .

( b ) Show that this detenninant is a polynomial in e of the degree n - m .

( c ) Using Laplace ' s development with respect to the last m rows , show that the

total n \ lID .ber of mth - order minors which can be formed is given by

( n + m ) ( n + m - 1 ) ( n + m - 2 ) . . . ( n + 1 ) ( m < n )
m !

and that only

n ( n - 1 ) ( n - 2 ) . . . ( n - m + 1 )

m !

of these are not necessarily zero ( the rest being identically zero ) .


