
I

Revie , v of Dit Yerential Calculus

The mathematics of physiology serves two functions . The first is what

most people usually think of as mathematics , a set of tools for providing

numerical answers to problems . The second is that of a language by which

concepts can be easily communicated and handled . As in any language ,

there is a certain basic vocabulary to be learned . This vocabulary consists

largely of definitions that must be learned , just as in learning French , one

learns that poule ! means chicken . There is no logical way to derive this . It is

a definition .

Some of the chapters begin with a mathematical introduction that

describes the new mathematical concepts introduced in that chapter and which

also contains their definitions . Try to think of these definitions as a new vocabulary 

and learn them as you would learn a vocabulary .

1 . Dimensions

At many places throughout this book , the reader will observe that a

dimensional equation has been written beneath the usual symbolic equation .

It is hoped he will develop the habit of doing this himself at least twice in the

solution of each problem : when the physical problem is stated in mathematical 

terms , and in the solution to the problem . Checking for dimensional

balance should be a routine part of the solution of any problem . Remember ,

if it does not balance dimensionally , it is not correct . There are a few simple

rules for manipulating dimensions .

Rule 1 : Only quantities of like dimensions can be added or subtracted .

Rule 2 : Dimensions multiply and divide in the same manner as numbers .
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Example.

where the exponent is a ratio of two times (in the same units) and therefore
dimension less.

In dimensional equations we shall use the symbol * to indicate adimensionless 
quantity .

When dimensional equations are used in this book they are usually written
in terms of typical units rather than dimensional abbreviations . Other units
having the same dimensionality can be substituted provided that the same
substitution is made throughout the equation . For example,
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To find the cost of 3 eggs plus 4 apples, given that E is the cost

I cents centsC cents = - dozen E + 4 apples Al4 dozen app e

60 min ~~~ = 10,800 sec3 hours l-~ 1 min
Rule 4 : Exponents must be dimensionless . When dimensioned quantities

appear in exponents, they must combine with other dimensioned quantities
so that the product or quotient is dimensionless . One cannot have a term
such as 2' where 1 is time . One can have

2'1/'2

c=gv

of eggs per dozen and A the cost of one apple ,

In the first term dozen cancels dozen, and in the second term apple cancels
apple . Both are now in units of cents and can be added.

Rule 3 : The easy way to convert from one set of dimensions to another is

to write the conversion factor as a fraction whose value is I . For example , to
convert 121 feet to inches, construct the fraction 12 inches divided by 1 foot ,
and multiply this by 121 feet :

12 inches x 121 feet = 150 inchesI foot

The constructed fraction is equal to I . Similarly , to convert 3 hours into
seconds, construct the fraction 60 min divided by I hour , which is equal to I ,
and a second fraction , 60 sec divided by I min , which is equal to I . Multiply
3 hours by these two fractions , each of which is numerically one :

60 mind 60 secan
I hour I min



urposes,

2. The Concept of a Functional Relationship

The term .. a function of " might be called a .. depend-upon " relation .
The postage required to send a package depends upon the distance the package 

must go and the weight of the package. A mathematician says that

postage is a function of distance and weight . He indicates this relationship
with the symbolism P(D, W) and calls P a dependent variable because it
depends upon the two independent variables D and W. The term .. independent" implies that the independent variable can be chosen arbitrarily . You

tell me a distance and weight and I will tell you , by some rule called the
functional relationship , the postage required .
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moles 1= moles -liter liter
I

~ ~~~ = mmoles ~cm3

Except in this chapter , where other units are used for illustrative p
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Figure 1-1. A graph of hypothetical postal rates for a package as a function of weight.

the units used in this book are metric .



The two foregoing examples of functional relationships are clearly defined
by rules. In the first case, given distance and weight we go to a table at the post
office and read off the corresponding value for the postage. In the second case,
we do a simple arithmetic operation of squaring the radius and multiplying
it by Jr. Other functional relations are empirical . For example, we can make
a graph of the weight of a baby versus its age, which might resemble Figure
1-3. There is no obvious way to find an algebraic expression that represents
the weight of the baby as a function of age. Nevertheless, it is a clearly defined
number and it is perfectly appropriate to write W(age).

I . Review oj Differential Calculus4

50

.--, 40
N

E
u

~ 30
~

 

20

10

1 2 3 4

Radius [ cmJ

Figure 1-2. The area of a circle as a function of its radius .

A dependent variable can be a function of one independent variable
(Figure 1- 1) or two independent variables (as in this case) , or of many independent 

variables . Most of the problems we will encounter in the early parts

of this book involve only a single independent variable . It is therefore easy
to draw graphs that depict functional relationships . Conventionally , the
independent variable is the horizontal axis of the graph .

Le~ us illustrate the concept of a functional dependence for some other
simple cases. Consider the area A cm2 of a circle of radius r cm. We know
from plane geometry that

A = nr2

cm2 = * cm2

and we graph this functional relation A (r ) in Figure 1-2. If we wish to designate 
the area corresponding to a radius of 2 cm, we write A (2 cm), by which

it is understood that the independent variable will take on the value 2 cm
even though the independent variable r is not specifically written in this
notation . We might even leave out the symbol cm if this is mad~ clear by
context , and simply write A (2) .
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The last two examples, the area of the circle and the weight of the baby,
have a property that mathematicians refer to as being continuous junctions .
The term " continuous " means simply a smooth relationship . Given two
values of the independent variable , the radius , for example, that are very
close to each other , the two corresponding values of the dependent variable
will then also be very close to each other . This is not true , for example , of
the postage required to send a package a specified distance, since by post
office rules a package that weighs a trifle more than 6 pounds goes at the
7-pound rate, whereas a package that weighs a trifle less than 6 pounds goes
at the 6-pound rate. No matter how close to 6 pounds each of these packages
becomes, the rates do not get closer together but remain discretely at the 6-
pound rate and the 7-pound rate. Thus , postage is a discontinuous function
even though it is continuous between say, 6.01 pounds and 6.99 pounds ,
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where the rate would not change. Discontinuous functions are usually
discontinuous at a limited number of points . Although it is possible to define
functions that are discontinuous everywhere, they do not arise in this book .

3. The Derivative

One of the important things we want to know about a functional relationship 
such as A(r) is how much A changes when r changes a little bit (in other

words, their relative rates of change). If , for example, r changes by 0.1 cm
from 3.0 to 3.1 cm,

A(3.1) cm2 = 30.19 cm2

A(3.0) cm2 = 28.27 cm2

change in A - !.:2~~ = 19.2 cm = relative rate of change
change in r - 0.1 cm

Thus , A changes 19 cm times as fast as r for a small change in r located
around the point r = 3.0. Now , had we done the same calculation with r
starting at 4 cm and going to 4.1 cm, we would find that A would change
at a different rate relative to r :

A (4.1) = (4.1)2 = 52.80 cm2

A(4.0) = (4.0)2 = 50.25 cm2

in this case by an amount 2.55 cm2 or 25.5 cm times as fast as r . So that in
general we observe that in defining the relative rates of change of A and r
we must allow for the possibility that this relative rate is not uniform but
changes as r changes. We can easily draw a picture by constructing a little
triangle around the point r = 3 cm on the g~aph of r versus A in which the
horizontal leg of the triangle is the change in r and the vertical leg of the
triangle the change in A (Figure 1-4). The relative rates of change are then
given by the ratios of the two sides of the triangle , and we see that if we
construct the triangle in a variety of places along the graph , the ratio of the
two sides will change. Our original question was, how fast does A change
relative to r around the point r = 3 ? The quantity we have actually calculated 

is not quite this . It is, in fact , a sort of average of this rate between the

point r = 3 cm and the point r = 3.1 cm. We would perhaps have gotten a
slightly different answer if we had calculated the relative rates of change
between r = 3 cm and r = 3.0 I cm, which we proceed to do :

A (3.0 I ) - A (3.00 ) 28 .46 - 28 .27
= = 19 .0 cm

3 .01 - 3 .00 0 .01
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We note that this relative rate is not much different from the one we calculated 

previously , but it is slightly different and that in order to define the
precise rate of change around the point r = 3 we should really do the calculation 

with an extremely small change in r .

The process we describe here should be studied carefully , as it is fundamental 
to the rest of this book.

I n order to find the rate of change of A relative to the rate of change of r ,
we calculate the value of A at the point r and at an adjacent point r + Llr
where Llr is understood to be very small and will eventually be made infinitesimal 

or , to use the conventional terminology , Llr will be allowed to go to zero.
We have already done the calculation of A (r ), but let us repeat it in a symbolic
fashion rather than with numbers . The calculation of A (r + Llr) proceeds
along exactly the same line except that r + Llr takes the place of r :

73. The Derivative

figure / -4. The definition of a derivative in terms of tangents to a line.

L\A A(r + L\r) - A(r) = n2r + L\rn~ = L\r

A(r ) = nr2

A(r + L\ r) = n(r + L\r)2 = n(~ r)2 + 2nr L\r + nr2

We now calculate the difference ~ A between the two areas thus obtained and

divide this difference by the quantity ~ r, just as we did in the numerical
example above,



We have worked out in somewhat tedious detail the derivative of a very
simple functional relationship . Let us now define it formally , recognizing that
this is a definition . The derivative ofafunctionf (x) relative to its independent
variable is given by

when I1x goes to zero.

In most beginning calculus texts the derivative is first defined as the slope
of the hypotenuse of one of the little triangles in Figure 1-4. Although this
definition has a certain intuitive appeal , for the purposes of this book the
formal definition is far more satisfactory .

When one wishes to indicate the value of a derivative at a particular
value of the independent variable , this value is enclosed in parentheses. Thus
the value of df/ dx evaluated at x equal to 4 is df (4)fdx .

Returning to the area example , we have
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The quantity thus obtained , the ratio of the two small quantities L\A and L\ r ,
is called a differential . We now consider what happens as L\ r gets very, very
small , or as it is formally stated, in the limit as L\r goes to zero. This procedure 

is done so frequently that a special notation , called a derivative , is used
for it :

dA I' ,A(r + L\r) - A(r) 2- = Imlt = nrdr !.J'-+o L\r

(1.1)

~ = 2n3 cm = 18.8 cmdr
Note that the dimensions of the derivative dA/dr are the same as the dimensions 

of A/r . This is a general rule . Dimensionally , df/ dx is the same asf / x .

The derivative of a function as defined above is the rate of change of the
function f relative to the rate of change of the independent variable x for
infinitesimal changes in x . Frequently we want to know how much ! changes
for a small but not infinitesimal change in x . To a very good approximation ,
indicated by the symbol ~ , this change is given by

I1f ~ I1x ~dx (1.2)

The error in this approximation is the difference between the true value of

f (x + Ax ) and the triangular approximation we find by drawing a tangent
line to the curve off versus x (Figure 1-5) .

~ = limitf(x + ~x) - f(x)dx Ax-+O ~x
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f (x + l:ix } True
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Figure / -5.
its derivative .

How true rate of change of a function is approximated by Llx multiplied by

Using this approximation, let us find the approximate value of A(3.1) given

dAd; = 2nr
~ = 2n3.0 = 18.84 cmdr

fir = 0.1 cm

so that

dA(3)
A(3.1) ~ A(3.0) + L\r d; : - = 28.27 + 0.1 x 18.8

= 30.15 cm2

The exact value is 30.19 cm2. Had we chosen a smaller interval  \ r , the
approximation would have been better .

�

that A(3.00) is 28.27 cm2:

In the previous example we have calculated the derivative of

A = nr2

To calculate the derivative of any function we proceed along identical lines,
calculating symbolically the value of the function at some value x of the
independent variable and at some slightly different value x + L\x of the
independent variable . We then compute the difference between the values
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thus calculated , divide by the change ~x of the independent variable , and
take the limit as this change goes to zero . Thus to find the derivative of

y = X3

proceed as follows .

) ( x) = X3

} '(x + ~x) = (x + ~X)3 = X3 + 3X2 ~x + 3X(L\X)2 + (L\X)3

} '(X + ~X) - ) '(X) = 3X2 + 3x ~x + (L\X)2
L\ x

I. . y (x + L\x) - ) '(x ) 3 2Iffilt = X
ax -+O L\ x

In principle , we can always calculate derivatives in this way . But this is not
the way mathematicians like to do things . Instead they derive a set of rules
which ,- though tedious to develop , then make future problems simpler . We
therefore state a set of rules that are useful in calculating derivatives with
the hope that the reader will either remember (from his elementary calculus )
how these are derived , or will look at Appendix I .

Rule.. The derivative of a constant is zero. This rule requires a moment 's
explanation . A constant can be a function of a variable . It just happens to be
a function that never changes its value. Thus , for example, one might say
that the number of hours in a calendar day is a function of the day of the
year ; but it is a function that never changes from the value 24. Therefore the
difference between its value calculated at one time (the independent variable )
and at another time , slightly different , is zero. Therefore its derivative is zero.

Rule: The derivative of a constant multiplied by a function is the constant 
multiplied by the derivative of the function .

Rule : The derivative of the sum of two functions is the sum of their

individual derivatives :

y = f (x) + g(x)

dy df dg ( 1.3)
- = - + -
dx dx dx

Rule: The derivative of a product of two functions is the first multiplied
by the derivative of the second plus the second multiplied by the derivative
of the first :

y = f (x)g(x)

~ = f (x) ~ + g(x) ~ (1.4)
dx dx dx
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Rule: The derivative of the quotient of two functionsf(x)y=7iX)

IS

y = 7(X)

dy 1 df- - - - -
dx - f2 (X) dx

Rule: The derivative ofy = xn with respect to x is

dy n - 1- =nxdx (1.6)

= 2 - x(x - 2)
c;-=~

Sometimes we have a function that depends upon a second function :
A is a function of Band B is a function of C. We ask for the derivative of A

~ =----~- [ d 2 ddx (X - 1)2 (X - 1)~ (x - 2x) - (X2 - 2x)~ (x - 1)]
1

= ~-=~ [(x - 1)(2x - 2) - (X2 - 2x)]

These rules are used separately or in combination to reduce a function

whose derivative is required to a combination of functions whose derivatives

are known . Thus , for example , to find the derivative of the function

X2 - 2x

y =
x - I

we proceed in the following way , using the quotient rule

is the denominator multiplied by the derivative of the numerator minus the
numerator multiplied by the derivative of the denominator, all divided by the
square of the denominator:

dy ( ( ) df(x) f ( ) dg(x ) 1- = gx - x (1.5)dx dx dx g2(X)
Note as a special case of this rule that the derivative of a reciprocal

1
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with respect to C; in other words, how much does A change if C changes a
little bit ? To find this, we must go through an intermediate step. We know
that for a small change in C, B will change by approximately

dB
~B=~CdC

We know that for a change in B, A will change as follows :

dA
L\A = L\B dB

Thus if we substitute the change in B in the equation above, we find the
result that the rate of change of A relative to C is the product of the rates of
change of A relative to Band B relative to C:

dAd B~A = ~CdBdC
(1.7)dA

In general, the derivative of a function is a different function . Th us the

IS

There is. however. one rather peculiar function and its use fulness

(1.8)

(1.9)~=eXdx

dA dB- =- -dC dB dC

That function is

This is called the chain rule . It is easily remembered by considering the derivatives 
as fractions in which the two dB quantities cancel.

4 . The Function That Is Its Own Derivative

derivative of X3 is 3X2 . The derivative of

~v = . J ;

dy 1
- - -

dx - 2 . J ~

and soon . -

is the result of its peculiarity . It is its own derivative .

y = ex , e ~ 2 . 7182
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Why ex has this property , and why this strange number occurs, is explained
in Appendix I . It is based on the representation of ex by a series with an
infinite number of terms, which is

X X2 X3 X4
ex = 1 + - + - + + + . . .

1 1 . 2 1 ' 2 . 3 1 . 2 . 3 . 4

When this series is differentiated by differentiating each term

d 1 2x 3X2 4X3-ex=O+-+- + + +---dx 1 1-21-2-31-2-3-4
the resulting series is seen to be identical to the series for ex.

Accepting the fact that ex is its own derivative , we proceed, by means of
the chain rule , to find the derivative of e to a function of x . Let p be a function 

of x

dy dy dp p(x) dp dp
- = - - = e - = y -
dx dp dx dx dx

and in the special case where the function is a constant , say alpha , multiplied
by x , we have

y = ecxx

dy !xx ~ = (Xe!Xx = ay~ = e dx

y = eP(X)

dy'
dP = eP(x)

The functiony = e(Xx occurs so frequently that we would like to describe
its properties in considerable detail .

First , let us make a plot of

y = eax ( 1.10)

on a conventional rectangular graph (Figure 1-6).
To illustrate the point that o:erxx is the derivative of erxx, let us take two

points from the graph and numerically compute the derivative .
Let us choose a = 1.5, x = 1.4, ilx = O. I ; at

x = 1.4, (Xx = 2.10, eax = 8.0
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and at

.\'" + L\x = 1.5, :xx = 2.25, e~.~ = 9.3

~}' )'CX + ~X) - )'Cx) 9.3 - 8.0- = = = 13
i\x i\x 0.1

Using the relation

dy
~ = aeax = 1.5e2.lo = 12.0

We see that finding the derivative numerically does not quite yield perfect
agreement between dyjd.\' and ~}'j ~x. However, this is a result of taking a
finite step in x and of reading the graph inaccurately. Had the step been
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at

x = 1.40,

and at

x = ] .42,

~ = I Xeax = 1.5e2.10 = 12.24
We note that we get consider ably better agreement between the value of the
derivative and the numerical differential .

- - -

the agreement would have been much better . In fact , let us do so , by expanding 

the graph around the point (Xx = 2 . 1 in Figure 1 - 7 and using a L\ x of 0 .02 :

10 .0

8.0
2.10 2.15 2.20 2.25

ax
Figure 1-7. An expanded scale plot of e X as a function of (Xx.

~x = 2.10, e2x= 8.16

~X = 2.13, e2x = 8.41

/!:oy y.(x + /!:ox) - y'(x) 0.25- = = - = 12.5
/!:ox /!:ox 0.02
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The functiony = ecxx occurs so often that special graph paper has been
devised which plots it as straight lines by distorting the vertical scale. This
paper is called semilogarithmic graph paper . In Figure 1-8 we have plotted
on semi logarithmic paper the values of ecxx for various values of alpha .

. .

0

q,

x

eax plotted semi logarithm  ically as a function of x for various values of cx.Figure 1-8.

5. Differential Equations

The statement that eX is its own derivative can be written as an equation

dy
- = y ( 1.11)
dx

This kind of equation is one of a great class of equations that are encountered 
in physical problems called differential equations. They should , perhaps,

be called derivative equations . However , tradition rules here, and we shall
retain the terminology differential equation . The differential equation ( 1.11) ,
since it is the definition of ex , has the solution

y = eX (1.12)



5. Differential Equations 17

It happens, however, that it also has other solutions. In fact, any constant
multiplied by ex is also a solution. Let A be an arbitrary constant.
Let

y=Aex (1.13)

Then

dy dex
�=A�=Ae =y (1.14)
dx dx

We make use of this property to fit solutions of the type Aex to specified
conditions of the physical problem. If, for example, we have the relations

and y(O)=3

we can choose A = 3 to satisfy the �initial condition� of y(O) = 3.

dy
y=3e =� and y(O)=3

dx

Suppose the differential equation is

dy
� = ky
ax

Our previous discussion suggests a solution

y = Ae

Let us try this solution by differentiating it and inserting the derivative into
the differential equation.

= Ake � = ky
dx

We find that, indeed, it does satisfy the differential equation. If we add the
condition y(2) = 4,

4 = Ae

we find

4

which, given k, we can evaluate.

Plotted on semilogarithm paper, as in Figure 1-9, the relation y = Ae
also yields a straight line. The value of the vertical coordinate at x = 0 is A,
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in this case 2,6, The slope of the line is related to k , The easy way to measure
this slope is to find the range of x required to double or halve the value ofy ',
For the line shown in Figure 1-9, y decreases by half in the interval between

4

1

Y

O .

O .

o .

o . X 1/ 2 = 2 .5

O.

0 1 2 3 4 6

x = 1 and x = 3 .5 . Thus , the half range xi / 2 is 2 .5 , and since

e- O.69 = !

kXl /2 = - 0.69 (1.15)

Figllre 1-9.
semi logarithmic plot.

x

The method of estimating the half period of decay of an exponential from a

- 0 . 69

k = 25 = - 0 . 276

Note that we could have chosen any two convenient points on the graph to

determine XI / 2 ' We chose the points at which y was 2 and 1 . We could

equally well have choseny equal to 1 . 5 and 0 . 75 . They would have yielded

the same value for k . Had the line sloped upward , we would have used the

doubling range X2 and the relation

e + O . 69 = 2 , kX2 = 0 . 69 ( 1 . 16 )

The foregoing introduction has been intentionally brief . I fthe reader finds

it inadequate , he should refer to his college calculus text or to either ( 18 ) or

( 23 ) .
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  If W = G(x), define the derivative

dW
- = limit ?
dx .

W = X2 - 2x + C where C is a constant ; find

W(2) and
d ~V(2)

d .\"

U(x) = W(x) V(x)

W(2) = 3

V(2) = 4

find

dU (2)

dx
and

4. If ) {x) is a smooth function of x and ) '(3) = 4 and }(3.I) = 4.3, find the

5. Given

~ =2dx y(3) = 12

7.

approximate value of d}'(3)/dx.

find the approximate value of } '(3.1).

6. If u = f (x) and V = g(u), find dVjdx.

Problems

Problems

1 .

2 .

3 . Given

In Problem 6 let

f (x) = x4 + 2, g(u) = U2

find dV/d,X" by the chain rule and also by substituting

V = g(u) = U2 = X8 + 4X4 + 4
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8. Given

~ = kC(t),dt C(O) = 2 moles/liter

~ = kC(t),dt C(l ) = 2 moles/ liter

find C(t).
10. Given

y = Ae- kt, y(4) = ! y(2)
find k.

11. Find the decay constant IX ofy = Aeat for the following data :

t [sec]
I

2

3

4

y

0 .0096

0 .0048

0 .0024

0 .0012

12. Derive the relations corresponding to Eqs. (1.15) and (1.16) for the

13. If the following results occurred in problems , what must the dimension
of K have been in each case?

(a) e- kt2, t in seconds

(b) C = ! t FlitersK' ~ ' c ~ ~
liter

t sec,

liter
F -

sec
(c) R = (F + K)e-(F/V)t,

14.

15.

1/ 10 interval 'rI/ IO or 10 times interval 'rIO'

find C(t).

9. Given

The velocity of light is 3 times 1010 or 30,000,000,000 cmjsec. Find the
velocity of light in furlongs per fortnight given that a furlong is one-
eighth of a mile , a mile is 5280 feet, a foot is 12inches, an inch is2 .54cm ,
and a fortnight is 2 weeks. Use the unit conversion method in Section I .

dC R F
- = - - - C
dt V V

Write a dimensional equation corresponding to the foregoing if C is a
concentration , t time , R a rate of generation of a substance, Va volume ,
F a rate of liquid flow .
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d2C dC16. ~ + B""d(" + DC = E
Write a dimensional equation for the foregoing, given that C is a con-

X3 -x(b) y =;:~
(d) y = xelZX

these problems , additional review of

centration and t is time.

  17. Find the derivatives of the following.

(a) y = x4 + 3X3 + x + 2

(c) y = ex2

If the reader has difficulty with
elementary calculus is indicated.


